3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00
z3/src/util/mpz.h
2017-05-14 14:04:00 -07:00

849 lines
22 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
mpz.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2010-06-17.
Revision History:
--*/
#ifndef MPZ_H_
#define MPZ_H_
#include<limits.h>
#include<string>
#include"util.h"
#include"small_object_allocator.h"
#include"trace.h"
#include"scoped_numeral.h"
#include"scoped_numeral_vector.h"
#include"z3_omp.h"
#include"mpn.h"
unsigned u_gcd(unsigned u, unsigned v);
uint64 u64_gcd(uint64 u, uint64 v);
#ifdef _MP_GMP
typedef unsigned digit_t;
#endif
#ifdef _MSC_VER
#pragma warning(disable : 4200)
#endif
template<bool SYNCH> class mpz_manager;
template<bool SYNCH> class mpq_manager;
#if !defined(_MP_GMP) && !defined(_MP_MSBIGNUM) && !defined(_MP_INTERNAL)
#ifdef _WINDOWS
#define _MP_INTERNAL
#else
#define _MP_GMP
#endif
#endif
#if defined(_MP_MSBIGNUM)
typedef size_t digit_t;
#elif defined(_MP_INTERNAL)
typedef unsigned int digit_t;
#endif
#ifndef _MP_GMP
class mpz_cell {
unsigned m_size;
unsigned m_capacity;
digit_t m_digits[0];
friend class mpz_manager<true>;
friend class mpz_manager<false>;
};
#else
#include<gmp.h>
#endif
/**
\brief Multi-precision integer.
If m_ptr == 0, the it is a small number and the value is stored at m_val.
Otherwise, m_val contains the sign (-1 negative, 1 positive), and m_ptr points to a mpz_cell that
store the value. <<< This last statement is true only in Windows.
*/
class mpz {
int m_val;
#ifndef _MP_GMP
mpz_cell * m_ptr;
#else
mpz_t * m_ptr;
#endif
friend class mpz_manager<true>;
friend class mpz_manager<false>;
friend class mpq_manager<true>;
friend class mpq_manager<false>;
friend class mpq;
friend class mpbq;
friend class mpbq_manager;
mpz & operator=(mpz const & other) { UNREACHABLE(); return *this; }
public:
mpz(int v):m_val(v), m_ptr(0) {}
mpz():m_val(0), m_ptr(0) {}
void swap(mpz & other) {
std::swap(m_val, other.m_val);
std::swap(m_ptr, other.m_ptr);
}
};
inline void swap(mpz & m1, mpz & m2) { m1.swap(m2); }
template<bool SYNCH = true>
class mpz_manager {
small_object_allocator m_allocator;
omp_nest_lock_t m_lock;
#define MPZ_BEGIN_CRITICAL() if (SYNCH) omp_set_nest_lock(&m_lock);
#define MPZ_END_CRITICAL() if (SYNCH) omp_unset_nest_lock(&m_lock);
mpn_manager m_mpn_manager;
#ifndef _MP_GMP
unsigned m_init_cell_capacity;
mpz_cell * m_tmp[2];
mpz_cell * m_arg[2];
mpz m_int_min;
static unsigned cell_size(unsigned capacity) { return sizeof(mpz_cell) + sizeof(digit_t) * capacity; }
mpz_cell * allocate(unsigned capacity) {
SASSERT(capacity >= m_init_cell_capacity);
mpz_cell * cell = reinterpret_cast<mpz_cell *>(m_allocator.allocate(cell_size(capacity)));
cell->m_capacity = capacity;
return cell;
}
// make sure that n is a big number and has capacity equal to at least c.
void allocate_if_needed(mpz & n, unsigned c) {
if (c < m_init_cell_capacity)
c = m_init_cell_capacity;
if (is_small(n)) {
n.m_val = 1;
n.m_ptr = allocate(c);
n.m_ptr->m_capacity = c;
}
else if (capacity(n) < c) {
deallocate(n.m_ptr);
n.m_val = 1;
n.m_ptr = allocate(c);
n.m_ptr->m_capacity = c;
}
}
void deallocate(mpz_cell * ptr) {
m_allocator.deallocate(cell_size(ptr->m_capacity), ptr);
}
/**
\brief Make sure that m_tmp[IDX] can hold the given number of digits
*/
template<int IDX>
void ensure_tmp_capacity(unsigned capacity) {
if (m_tmp[IDX]->m_capacity >= capacity)
return;
deallocate(m_tmp[IDX]);
unsigned new_capacity = (3 * capacity + 1) >> 1;
m_tmp[IDX] = allocate(new_capacity);
SASSERT(m_tmp[IDX]->m_capacity >= capacity);
}
// Expand capacity of a while preserving its content.
void ensure_capacity(mpz & a, unsigned sz);
void normalize(mpz & a);
#else
// GMP code
mpz_t m_tmp, m_tmp2;
mpz_t m_two32;
mpz_t * m_arg[2];
mpz_t m_uint64_max;
mpz_t m_int64_max;
mpz_t m_int64_min;
mpz_t * allocate() {
mpz_t * cell = reinterpret_cast<mpz_t*>(m_allocator.allocate(sizeof(mpz_t)));
mpz_init(*cell);
return cell;
}
void deallocate(mpz_t * ptr) { mpz_clear(*ptr); m_allocator.deallocate(sizeof(mpz_t), ptr); }
#endif
mpz m_two64;
/**
\brief Set \c a with the value stored at m_tmp[IDX], and the given sign.
\c sz is an overapproximation of the the size of the number stored at \c tmp.
*/
template<int IDX>
void set(mpz & a, int sign, unsigned sz);
static int64 i64(mpz const & a) { return static_cast<int64>(a.m_val); }
void set_big_i64(mpz & c, int64 v);
void set_i64(mpz & c, int64 v) {
if (v >= INT_MIN && v <= INT_MAX) {
del(c);
c.m_val = static_cast<int>(v);
}
else {
MPZ_BEGIN_CRITICAL();
set_big_i64(c, v);
MPZ_END_CRITICAL();
}
}
void set_big_ui64(mpz & c, uint64 v);
#ifndef _MP_GMP
static unsigned capacity(mpz const & c) { return c.m_ptr->m_capacity; }
static unsigned size(mpz const & c) { return c.m_ptr->m_size; }
static digit_t * digits(mpz const & c) { return c.m_ptr->m_digits; }
// Return true if the absolute value fits in a UINT64
static bool is_abs_uint64(mpz const & a) {
if (is_small(a))
return true;
if (sizeof(digit_t) == sizeof(uint64))
return size(a) <= 1;
else
return size(a) <= 2;
}
// CAST the absolute value into a UINT64
static uint64 big_abs_to_uint64(mpz const & a) {
SASSERT(is_abs_uint64(a));
SASSERT(!is_small(a));
if (a.m_ptr->m_size == 1)
return digits(a)[0];
if (sizeof(digit_t) == sizeof(uint64))
// 64-bit machine
return digits(a)[0];
else
// 32-bit machine
return ((static_cast<uint64>(digits(a)[1]) << 32) | (static_cast<uint64>(digits(a)[0])));
}
template<int IDX>
void get_sign_cell(mpz const & a, int & sign, mpz_cell * & cell) {
if (is_small(a)) {
if (a.m_val == INT_MIN) {
sign = -1;
cell = m_int_min.m_ptr;
}
else {
cell = m_arg[IDX];
SASSERT(cell->m_size == 1);
if (a.m_val < 0) {
sign = -1;
cell->m_digits[0] = -a.m_val;
}
else {
sign = 1;
cell->m_digits[0] = a.m_val;
}
}
}
else {
sign = a.m_val;
cell = a.m_ptr;
}
}
#else
// GMP code
template<int IDX>
void get_arg(mpz const & a, mpz_t * & result) {
if (is_small(a)) {
result = m_arg[IDX];
mpz_set_si(*result, a.m_val);
}
else {
result = a.m_ptr;
}
}
void mk_big(mpz & a) {
if (a.m_ptr == 0) {
a.m_val = 0;
a.m_ptr = allocate();
}
}
#endif
#ifndef _MP_GMP
template<bool SUB>
void big_add_sub(mpz const & a, mpz const & b, mpz & c);
#endif
void big_add(mpz const & a, mpz const & b, mpz & c);
void big_sub(mpz const & a, mpz const & b, mpz & c);
void big_mul(mpz const & a, mpz const & b, mpz & c);
void big_set(mpz & target, mpz const & source);
#ifndef _MP_GMP
#define QUOT_ONLY 0
#define REM_ONLY 1
#define QUOT_AND_REM 2
#define qr_mode int
template<qr_mode MODE>
void quot_rem_core(mpz const & a, mpz const & b, mpz & q, mpz & r);
#endif
void big_div_rem(mpz const & a, mpz const & b, mpz & q, mpz & r);
void big_div(mpz const & a, mpz const & b, mpz & c);
void big_rem(mpz const & a, mpz const & b, mpz & c);
int big_compare(mpz const & a, mpz const & b);
unsigned size_info(mpz const & a);
struct sz_lt;
public:
static bool precise() { return true; }
static bool field() { return false; }
typedef mpz numeral;
mpz_manager();
~mpz_manager();
static bool is_small(mpz const & a) { return a.m_ptr == 0; }
static mpz mk_z(int val) { return mpz(val); }
void del(mpz & a) {
if (a.m_ptr != 0) {
MPZ_BEGIN_CRITICAL();
deallocate(a.m_ptr);
MPZ_END_CRITICAL();
a.m_ptr = 0;
}
}
void add(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz] " << to_string(a) << " + " << to_string(b) << " == ";);
if (is_small(a) && is_small(b)) {
set_i64(c, i64(a) + i64(b));
}
else {
MPZ_BEGIN_CRITICAL();
big_add(a, b, c);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void sub(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz] " << to_string(a) << " - " << to_string(b) << " == ";);
if (is_small(a) && is_small(b)) {
set_i64(c, i64(a) - i64(b));
}
else {
MPZ_BEGIN_CRITICAL();
big_sub(a, b, c);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void inc(mpz & a) { add(a, mpz(1), a); }
void dec(mpz & a) { add(a, mpz(-1), a); }
void mul(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz] " << to_string(a) << " * " << to_string(b) << " == ";);
if (is_small(a) && is_small(b)) {
set_i64(c, i64(a) * i64(b));
}
else {
MPZ_BEGIN_CRITICAL();
big_mul(a, b, c);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
// d <- a + b*c
void addmul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
if (is_one(b)) {
add(a, c, d);
}
else if (is_minus_one(b)) {
sub(a, c, d);
}
else {
mpz tmp;
mul(b,c,tmp);
add(a,tmp,d);
del(tmp);
}
}
// d <- a - b*c
void submul(mpz const & a, mpz const & b, mpz const & c, mpz & d) {
if (is_one(b)) {
sub(a, c, d);
}
else if (is_minus_one(b)) {
add(a, c, d);
}
else {
mpz tmp;
mul(b,c,tmp);
sub(a,tmp,d);
del(tmp);
}
}
void machine_div_rem(mpz const & a, mpz const & b, mpz & q, mpz & r) {
STRACE("mpz", tout << "[mpz-ext] divrem(" << to_string(a) << ", " << to_string(b) << ") == ";);
if (is_small(a) && is_small(b)) {
int64 _a = i64(a);
int64 _b = i64(b);
set_i64(q, _a / _b);
set_i64(r, _a % _b);
}
else {
MPZ_BEGIN_CRITICAL();
big_div_rem(a, b, q, r);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << "(" << to_string(q) << ", " << to_string(r) << ")\n";);
}
void machine_div(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz-ext] machine-div(" << to_string(a) << ", " << to_string(b) << ") == ";);
if (is_small(a) && is_small(b)) {
set_i64(c, i64(a) / i64(b));
}
else {
MPZ_BEGIN_CRITICAL();
big_div(a, b, c);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void rem(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz-ext] rem(" << to_string(a) << ", " << to_string(b) << ") == ";);
if (is_small(a) && is_small(b)) {
set_i64(c, i64(a) % i64(b));
}
else {
MPZ_BEGIN_CRITICAL();
big_rem(a, b, c);
MPZ_END_CRITICAL();
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void div(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz-ext] div(" << to_string(a) << ", " << to_string(b) << ") == ";);
if (is_neg(a)) {
mpz tmp;
machine_div_rem(a, b, c, tmp);
if (!is_zero(tmp)) {
if (is_neg(b))
add(c, mk_z(1), c);
else
sub(c, mk_z(1), c);
}
del(tmp);
}
else {
machine_div(a, b, c);
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void mod(mpz const & a, mpz const & b, mpz & c) {
STRACE("mpz", tout << "[mpz-ext] mod(" << to_string(a) << ", " << to_string(b) << ") == ";);
rem(a, b, c);
if (is_neg(c)) {
if (is_pos(b))
add(c, b, c);
else
sub(c, b, c);
}
STRACE("mpz", tout << to_string(c) << "\n";);
}
void neg(mpz & a) {
STRACE("mpz", tout << "[mpz] 0 - " << to_string(a) << " == ";);
if (is_small(a) && a.m_val == INT_MIN) {
// neg(INT_MIN) is not a small int
MPZ_BEGIN_CRITICAL();
set_big_i64(a, - static_cast<long long>(INT_MIN));
MPZ_END_CRITICAL();
return;
}
#ifndef _MP_GMP
a.m_val = -a.m_val;
#else
if (is_small(a)) {
a.m_val = -a.m_val;
}
else {
mpz_neg(*a.m_ptr, *a.m_ptr);
}
#endif
STRACE("mpz", tout << to_string(a) << "\n";);
}
void abs(mpz & a) {
if (is_small(a)) {
if (a.m_val < 0) {
if (a.m_val == INT_MIN) {
// abs(INT_MIN) is not a small int
MPZ_BEGIN_CRITICAL();
set_big_i64(a, - static_cast<long long>(INT_MIN));
MPZ_END_CRITICAL();
}
else
a.m_val = -a.m_val;
}
}
else {
#ifndef _MP_GMP
a.m_val = 1;
#else
mpz_abs(*a.m_ptr, *a.m_ptr);
#endif
}
}
static bool is_pos(mpz const & a) {
#ifndef _MP_GMP
return a.m_val > 0;
#else
if (is_small(a))
return a.m_val > 0;
else
return mpz_sgn(*a.m_ptr) > 0;
#endif
}
static bool is_neg(mpz const & a) {
#ifndef _MP_GMP
return a.m_val < 0;
#else
if (is_small(a))
return a.m_val < 0;
else
return mpz_sgn(*a.m_ptr) < 0;
#endif
}
static bool is_zero(mpz const & a) {
#ifndef _MP_GMP
return a.m_val == 0;
#else
if (is_small(a))
return a.m_val == 0;
else
return mpz_sgn(*a.m_ptr) == 0;
#endif
}
static int sign(mpz const & a) {
#ifndef _MP_GMP
return a.m_val;
#else
if (is_small(a))
return a.m_val;
else
return mpz_sgn(*a.m_ptr);
#endif
}
static bool is_nonpos(mpz const & a) { return !is_pos(a); }
static bool is_nonneg(mpz const & a) { return !is_neg(a); }
bool eq(mpz const & a, mpz const & b) {
if (is_small(a) && is_small(b)) {
return a.m_val == b.m_val;
}
else {
MPZ_BEGIN_CRITICAL();
bool res = big_compare(a, b) == 0;
MPZ_END_CRITICAL();
return res;
}
}
bool lt(mpz const& a, int b) {
if (is_small(a)) {
return a.m_val < b;
}
else {
return lt(a, mpz(b));
}
}
bool lt(mpz const & a, mpz const & b) {
if (is_small(a) && is_small(b)) {
return a.m_val < b.m_val;
}
else {
MPZ_BEGIN_CRITICAL();
bool res = big_compare(a, b) < 0;
MPZ_END_CRITICAL();
return res;
}
}
bool neq(mpz const & a, mpz const & b) { return !eq(a, b); }
bool gt(mpz const & a, mpz const & b) { return lt(b, a); }
bool ge(mpz const & a, mpz const & b) { return !lt(a, b); }
bool le(mpz const & a, mpz const & b) { return !lt(b, a); }
void gcd(mpz const & a, mpz const & b, mpz & c);
void gcd(unsigned sz, mpz const * as, mpz & g);
/**
\brief Extended Euclid:
r1*a + r2*b = g
*/
void gcd(mpz const & r1, mpz const & r2, mpz & a, mpz & b, mpz & g);
void lcm(mpz const & a, mpz const & b, mpz & c);
/**
\brief Return true if a | b
*/
bool divides(mpz const & a, mpz const & b);
// not a field
void inv(mpz & a) {
SASSERT(false);
}
void bitwise_or(mpz const & a, mpz const & b, mpz & c);
void bitwise_and(mpz const & a, mpz const & b, mpz & c);
void bitwise_xor(mpz const & a, mpz const & b, mpz & c);
void bitwise_not(unsigned sz, mpz const & a, mpz & c);
void set(mpz & target, mpz const & source) {
if (is_small(source)) {
del(target);
target.m_val = source.m_val;
}
else {
MPZ_BEGIN_CRITICAL();
big_set(target, source);
MPZ_END_CRITICAL();
}
}
void set(mpz & a, int val) {
del(a);
a.m_val = val;
}
void set(mpz & a, unsigned val) {
if (val <= INT_MAX)
set(a, static_cast<int>(val));
else
set(a, static_cast<int64>(static_cast<uint64>(val)));
}
void set(mpz & a, char const * val);
void set(mpz & a, int64 val) {
set_i64(a, val);
}
void set(mpz & a, uint64 val) {
if (val < INT_MAX) {
del(a);
a.m_val = static_cast<int>(val);
}
else {
MPZ_BEGIN_CRITICAL();
set_big_ui64(a, val);
MPZ_END_CRITICAL();
}
}
void set(mpz & target, unsigned sz, digit_t const * digits);
void reset(mpz & a) {
del(a);
a.m_val = 0;
}
void swap(mpz & a, mpz & b) {
std::swap(a.m_val, b.m_val);
std::swap(a.m_ptr, b.m_ptr);
}
bool is_uint64(mpz const & a) const;
bool is_int64(mpz const & a) const;
uint64 get_uint64(mpz const & a) const;
int64 get_int64(mpz const & a) const;
bool is_uint(mpz const & a) const { return is_uint64(a) && get_uint64(a) < UINT_MAX; }
unsigned get_uint(mpz const & a) const { SASSERT(is_uint(a)); return static_cast<unsigned>(get_uint64(a)); }
bool is_int(mpz const & a) const { return is_int64(a) && INT_MIN < get_int64(a) && get_int64(a) < INT_MAX; }
int get_int(mpz const & a) const { SASSERT(is_int(a)); return static_cast<int>(get_int64(a)); }
double get_double(mpz const & a) const;
std::string to_string(mpz const & a) const;
void display(std::ostream & out, mpz const & a) const;
/**
\brief Display mpz number in SMT 2.0 format.
If decimal == true, then ".0" is appended.
*/
void display_smt2(std::ostream & out, mpz const & a, bool decimal) const;
static unsigned hash(mpz const & a);
static bool is_one(mpz const & a) {
#ifndef _MP_GMP
return is_small(a) && a.m_val == 1;
#else
if (is_small(a))
return a.m_val == 1;
return mpz_cmp_si(*a.m_ptr, 1) == 0;
#endif
}
static bool is_minus_one(mpz const & a) {
#ifndef _MP_GMP
return is_small(a) && a.m_val == -1;
#else
if (is_small(a))
return a.m_val == -1;
return mpz_cmp_si(*a.m_ptr, -1) == 0;
#endif
}
void power(mpz const & a, unsigned p, mpz & b);
bool is_power_of_two(mpz const & a);
bool is_power_of_two(mpz const & a, unsigned & shift);
void machine_div2k(mpz & a, unsigned k);
void machine_div2k(mpz const & a, unsigned k, mpz & r) { set(r, a); machine_div2k(r, k); }
void mul2k(mpz & a, unsigned k);
void mul2k(mpz const & a, unsigned k, mpz & r) { set(r, a); mul2k(r, k); }
/**
\brief Return largest k s.t. n is a multiple of 2^k
*/
unsigned power_of_two_multiple(mpz const & n);
/**
\brief Return the position of the most significant bit.
Return 0 if the number is negative
*/
unsigned log2(mpz const & n);
/**
\brief log2(-n)
Return 0 if the number is nonegative
*/
unsigned mlog2(mpz const & n);
/**
\brief Return the bit-size of n. This method is mainly used for collecting statistics.
*/
unsigned bitsize(mpz const & n);
/**
\brief Return true if the number is a perfect square, and
store the square root in 'root'.
If the number n is positive and the result is false, then
root will contain the smallest integer r such that r*r > n.
*/
bool is_perfect_square(mpz const & a, mpz & root);
/**
\brief Return the biggest k s.t. 2^k <= a.
\remark Return 0 if a is not positive.
*/
unsigned prev_power_of_two(mpz const & a) { return log2(a); }
/**
\brief Return true if a^{1/n} is an integer, and store the result in a.
Otherwise return false, and update a with the smallest
integer r such that r*r > n.
\remark This method assumes that if n is even, then a is nonegative
*/
bool root(mpz & a, unsigned n);
bool root(mpz const & a, unsigned n, mpz & r) { set(r, a); return root(r, n); }
bool is_even(mpz const & a) {
if (is_small(a))
return !(a.m_val & 0x1);
#ifndef _MP_GMP
return !(0x1 & digits(a)[0]);
#else
return mpz_even_p(*a.m_ptr);
#endif
}
bool is_odd(mpz const & n) { return !is_even(n); }
// Store the digits of n into digits, and return the sign.
bool decompose(mpz const & n, svector<digit_t> & digits);
};
typedef mpz_manager<true> synch_mpz_manager;
typedef mpz_manager<false> unsynch_mpz_manager;
typedef _scoped_numeral<unsynch_mpz_manager> scoped_mpz;
typedef _scoped_numeral<synch_mpz_manager> scoped_synch_mpz;
typedef _scoped_numeral_vector<unsynch_mpz_manager> scoped_mpz_vector;
#endif /* MPZ_H_ */