3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 19:53:34 +00:00
z3/src/sat/smt/euf_solver.cpp
Nikolaj Bjorner a003af494b release nodes
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-08-30 20:09:27 -07:00

435 lines
13 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
euf_solver.cpp
Abstract:
Solver plugin for EUF
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#include "ast/pb_decl_plugin.h"
#include "sat/sat_solver.h"
#include "sat/smt/sat_smt.h"
#include "sat/smt/ba_solver.h"
#include "sat/smt/euf_solver.h"
namespace euf {
void solver::updt_params(params_ref const& p) {
m_config.updt_params(p);
}
/**
* retrieve extension that is associated with Boolean variable.
*/
sat::th_solver* solver::get_solver(sat::bool_var v) {
if (v >= m_var2node.size())
return nullptr;
euf::enode* n = m_var2node[v];
if (!n)
return nullptr;
return get_solver(n->get_owner());
}
sat::th_solver* solver::get_solver(expr* e) {
if (is_app(e))
return get_solver(to_app(e)->get_decl());
return nullptr;
}
sat::th_solver* solver::get_solver(func_decl* f) {
family_id fid = f->get_family_id();
if (fid == null_family_id)
return nullptr;
auto* ext = m_id2solver.get(fid, nullptr);
if (ext)
return ext;
if (fid == m.get_basic_family_id())
return nullptr;
pb_util pb(m);
if (pb.get_family_id() == fid) {
ext = alloc(sat::ba_solver, m, si);
}
if (ext) {
ext->set_solver(m_solver);
ext->push_scopes(s().num_scopes());
add_solver(fid, ext);
}
else {
unhandled_function(f);
}
return ext;
}
void solver::add_solver(family_id fid, sat::th_solver* th) {
m_solvers.push_back(th);
m_id2solver.setx(fid, th, nullptr);
}
void solver::unhandled_function(func_decl* f) {
if (m_unhandled_functions.contains(f))
return;
m_unhandled_functions.push_back(f);
m_trail.push_back(new (m_region) push_back_vector<solver, func_decl_ref_vector>(m_unhandled_functions));
IF_VERBOSE(0, verbose_stream() << mk_pp(f, m) << " not handled\n");
}
bool solver::propagate(literal l, ext_constraint_idx idx) {
force_push();
auto* ext = sat::constraint_base::to_extension(idx);
SASSERT(ext != this);
return ext->propagate(l, idx);
}
void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r) {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext == this)
get_antecedents(l, constraint::from_idx(idx), r);
else
ext->get_antecedents(l, idx, r);
}
void solver::get_antecedents(literal l, constraint& j, literal_vector& r) {
m_explain.reset();
euf::enode* n = nullptr;
// init_ackerman();
switch (j.kind()) {
case constraint::kind_t::conflict:
SASSERT(m_egraph.inconsistent());
m_egraph.explain<unsigned>(m_explain);
break;
case constraint::kind_t::eq:
n = m_var2node[l.var()];
SASSERT(n);
SASSERT(m_egraph.is_equality(n));
SASSERT(!l.sign());
m_egraph.explain_eq<unsigned>(m_explain, n->get_arg(0), n->get_arg(1), n->commutative());
break;
case constraint::kind_t::lit:
n = m_var2node[l.var()];
SASSERT(n);
SASSERT(m.is_bool(n->get_owner()));
m_egraph.explain_eq<unsigned>(m_explain, n, (l.sign() ? mk_false() : mk_true()), false);
break;
default:
IF_VERBOSE(0, verbose_stream() << (unsigned)j.kind() << "\n");
UNREACHABLE();
}
for (unsigned* idx : m_explain)
r.push_back(sat::to_literal((unsigned)(idx - base_ptr())));
}
void solver::asserted(literal l) {
auto* ext = get_solver(l.var());
if (ext) {
ext->asserted(l);
return;
}
bool sign = l.sign();
auto n = m_var2node.get(l.var(), nullptr);
if (!n)
return;
expr* e = n->get_owner();
if (m.is_eq(e) && !sign) {
euf::enode* na = n->get_arg(0);
euf::enode* nb = n->get_arg(1);
TRACE("euf", tout << "merge " << na->get_owner_id() << nb->get_owner_id() << "\n";);
m_egraph.merge(na, nb, base_ptr() + l.index());
}
else {
euf::enode* nb = sign ? mk_false() : mk_true();
TRACE("euf", tout << "merge " << n->get_owner_id() << " " << mk_pp(nb->get_owner(), m) << "\n";);
m_egraph.merge(n, nb, base_ptr() + l.index());
}
// TBD: delay propagation?
propagate();
}
void solver::propagate() {
m_egraph.propagate();
if (m_egraph.inconsistent()) {
s().set_conflict(sat::justification::mk_ext_justification(s().scope_lvl(), conflict_constraint().to_index()));
return;
}
for (euf::enode* eq : m_egraph.new_eqs()) {
bool_var v = m_expr2var.to_bool_var(eq->get_owner());
expr* a = nullptr, *b = nullptr;
if (s().value(v) == l_false && m_ackerman && m.is_eq(eq->get_owner(), a, b))
m_ackerman->cg_conflict_eh(a, b);
s().assign(literal(v, false), sat::justification::mk_ext_justification(s().scope_lvl(), eq_constraint().to_index()));
}
for (euf::enode* p : m_egraph.new_lits()) {
expr* e = p->get_owner();
bool sign = m.is_false(p->get_root()->get_owner());
SASSERT(m.is_bool(e));
SASSERT(m.is_true(p->get_root()->get_owner()) || sign);
bool_var v = m_expr2var.to_bool_var(e);
literal lit(v, sign);
if (s().value(lit) == l_false && m_ackerman)
m_ackerman->cg_conflict_eh(p->get_owner(), p->get_root()->get_owner());
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), lit_constraint().to_index()));
}
}
constraint& solver::mk_constraint(constraint*& c, constraint::kind_t k) {
if (!c) {
void* mem = memory::allocate(sat::constraint_base::obj_size(sizeof(constraint)));
c = new (sat::constraint_base::ptr2mem(mem)) constraint(k);
sat::constraint_base::initialize(mem, this);
}
return *c;
}
enode* solver::mk_true() {
return visit(m.mk_true());
}
enode* solver::mk_false() {
return visit(m.mk_false());
}
sat::check_result solver::check() {
force_push();
bool give_up = false;
bool cont = false;
for (auto* e : m_solvers)
switch (e->check()) {
case sat::CR_CONTINUE: cont = true; break;
case sat::CR_GIVEUP: give_up = true; break;
default: break;
}
if (cont)
return sat::CR_CONTINUE;
if (give_up)
return sat::CR_GIVEUP;
return sat::CR_DONE;
}
void solver::push() {
scope s;
s.m_var_lim = m_var_trail.size();
s.m_trail_lim = m_trail.size();
m_scopes.push_back(s);
m_region.push_scope();
for (auto* e : m_solvers)
e->push();
m_egraph.push();
}
void solver::force_push() {
for (; m_num_scopes > 0; --m_num_scopes) {
}
}
void solver::pop(unsigned n) {
m_egraph.pop(n);
for (auto* e : m_solvers)
e->pop(n);
scope const & s = m_scopes[m_scopes.size() - n];
for (unsigned i = m_var_trail.size(); i-- > s.m_var_lim; )
m_var2node[m_var_trail[i]] = nullptr;
m_var_trail.shrink(s.m_var_lim);
undo_trail_stack(*this, m_trail, s.m_trail_lim);
m_region.pop_scope(n);
m_scopes.shrink(m_scopes.size() - n);
}
void solver::pre_simplify() {
for (auto* e : m_solvers)
e->pre_simplify();
}
void solver::simplify() {
for (auto* e : m_solvers)
e->simplify();
if (m_ackerman)
m_ackerman->propagate();
}
void solver::clauses_modifed() {
for (auto* e : m_solvers)
e->clauses_modifed();
}
lbool solver::get_phase(bool_var v) {
auto* ext = get_solver(v);
if (ext)
return ext->get_phase(v);
return l_undef;
}
std::ostream& solver::display(std::ostream& out) const {
m_egraph.display(out);
out << "bool-vars\n";
for (unsigned v : m_var_trail) {
euf::enode* n = m_var2node[v];
out << v << ": " << m_egraph.pp(n);
}
for (auto* e : m_solvers)
e->display(out);
return out;
}
std::ostream& solver::display_justification(std::ostream& out, ext_justification_idx idx) const {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this)
return ext->display_justification(out, idx);
return out;
}
std::ostream& solver::display_constraint(std::ostream& out, ext_constraint_idx idx) const {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this)
return ext->display_constraint(out, idx);
return out;
}
void solver::collect_statistics(statistics& st) const {
m_egraph.collect_statistics(st);
for (auto* e : m_solvers)
e->collect_statistics(st);
st.update("euf dynack", m_stats.m_num_dynack);
}
sat::extension* solver::copy(sat::solver* s) {
auto* r = alloc(solver, *m_to_m, *m_to_expr2var, *m_to_si);
r->m_config = m_config;
std::function<void* (void*)> copy_justification = [&](void* x) { return (void*)(r->base_ptr() + ((unsigned*)x - base_ptr())); };
r->m_egraph.copy_from(m_egraph, copy_justification);
r->set_solver(s);
for (unsigned i = 0; i < m_id2solver.size(); ++i) {
auto* e = m_id2solver[i];
if (e)
r->add_solver(i, e->fresh(s, *m_to_m, *m_to_si));
}
return r;
}
void solver::find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) {
for (auto* e : m_solvers)
e->find_mutexes(lits, mutexes);
}
void solver::gc() {
for (auto* e : m_solvers)
e->gc();
}
void solver::pop_reinit() {
force_push();
for (auto* e : m_solvers)
e->pop_reinit();
}
bool solver::validate() {
for (auto* e : m_solvers)
if (!e->validate())
return false;
return true;
}
void solver::init_use_list(sat::ext_use_list& ul) {
for (auto* e : m_solvers)
e->init_use_list(ul);
}
bool solver::is_blocked(literal l, ext_constraint_idx idx) {
auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this)
return ext->is_blocked(l, idx);
return false;
}
bool solver::check_model(sat::model const& m) const {
for (auto* e : m_solvers)
if (!e->check_model(m))
return false;
return true;
}
unsigned solver::max_var(unsigned w) const {
for (auto* e : m_solvers)
w = e->max_var(w);
for (unsigned sz = m_var2node.size(); sz-- > 0; ) {
euf::enode* n = m_var2node[sz];
if (n && m.is_bool(n->get_owner())) {
w = std::max(w, sz);
break;
}
}
return w;
}
double solver::get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const {
double r = 0;
for (auto* e : m_solvers) {
r = e->get_reward(l, idx, occs);
if (r != 0)
return r;
}
return r;
}
bool solver::is_extended_binary(ext_justification_idx idx, literal_vector& r) {
for (auto* e : m_solvers) {
if (e->is_extended_binary(idx, r))
return true;
}
return false;
}
void solver::init_ackerman() {
if (m_ackerman)
return;
if (m_config.m_dack == DACK_DISABLED)
return;
m_ackerman = alloc(ackerman, *this, m);
std::function<void(expr*,expr*,expr*)> used_eq = [&](expr* a, expr* b, expr* lca) {
m_ackerman->used_eq_eh(a, b, lca);
};
std::function<void(app*,app*)> used_cc = [&](app* a, app* b) {
m_ackerman->used_cc_eh(a, b);
};
m_egraph.set_used_eq(used_eq);
m_egraph.set_used_cc(used_cc);
}
bool solver::to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) {
for (auto* th : m_solvers) {
if (!th->to_formulas(l2e, fmls))
return false;
}
for (euf::enode* n : m_egraph.nodes()) {
if (!n->is_root())
fmls.push_back(m.mk_eq(n->get_owner(), n->get_root()->get_owner()));
}
return true;
}
bool solver::extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) {
for (auto* e : m_solvers)
if (!e->extract_pb(card, pb))
return false;
return true;
}
}