mirror of
https://github.com/Z3Prover/z3
synced 2025-04-11 03:33:35 +00:00
486 lines
13 KiB
C++
486 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
strategic_solver.h
|
|
|
|
Abstract:
|
|
|
|
Strategies -> Solver
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2011-05-19
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include"strategic_solver.h"
|
|
#include"cmd_context.h"
|
|
#include"scoped_timer.h"
|
|
#include"params2front_end_params.h"
|
|
#include"ast_smt2_pp.h"
|
|
|
|
// minimum verbosity level for portfolio verbose messages
|
|
#define PS_VB_LVL 15
|
|
|
|
strategic_solver::strategic_solver():
|
|
m_manager(0),
|
|
m_fparams(0),
|
|
m_force_tactic(false),
|
|
m_inc_mode(false),
|
|
m_check_sat_executed(false),
|
|
m_inc_solver(0),
|
|
m_inc_solver_timeout(UINT_MAX),
|
|
m_inc_unknown_behavior(IUB_USE_TACTIC_IF_QF),
|
|
m_default_fct(0),
|
|
m_curr_tactic(0),
|
|
m_proof(0),
|
|
m_callback(0) {
|
|
m_use_inc_solver_results = false;
|
|
DEBUG_CODE(m_num_scopes = 0;);
|
|
m_produce_proofs = false;
|
|
m_produce_models = false;
|
|
m_produce_unsat_cores = false;
|
|
}
|
|
|
|
strategic_solver::~strategic_solver() {
|
|
SASSERT(!m_curr_tactic);
|
|
dictionary<tactic_factory*>::iterator it = m_logic2fct.begin();
|
|
dictionary<tactic_factory*>::iterator end = m_logic2fct.end();
|
|
for (; it != end; ++it) {
|
|
dealloc(it->m_value);
|
|
}
|
|
if (m_proof)
|
|
m().dec_ref(m_proof);
|
|
}
|
|
|
|
bool strategic_solver::has_quantifiers() const {
|
|
unsigned sz = get_num_assertions();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
if (::has_quantifiers(get_assertion(i)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
\brief Return true if a tactic should be used when the incremental solver returns unknown.
|
|
*/
|
|
bool strategic_solver::use_tactic_when_undef() const {
|
|
switch (m_inc_unknown_behavior) {
|
|
case IUB_RETURN_UNDEF: return false;
|
|
case IUB_USE_TACTIC_IF_QF: return !has_quantifiers();
|
|
case IUB_USE_TACTIC: return true;
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void strategic_solver::set_inc_solver(solver * s) {
|
|
SASSERT(m_inc_solver == 0);
|
|
SASSERT(m_num_scopes == 0);
|
|
m_inc_solver = s;
|
|
if (m_callback)
|
|
m_inc_solver->set_progress_callback(m_callback);
|
|
}
|
|
|
|
void strategic_solver::updt_params(params_ref const & p) {
|
|
if (m_inc_solver)
|
|
m_inc_solver->updt_params(p);
|
|
if (m_fparams)
|
|
params2front_end_params(p, *m_fparams);
|
|
}
|
|
|
|
|
|
void strategic_solver::collect_param_descrs(param_descrs & r) {
|
|
if (m_inc_solver)
|
|
m_inc_solver->collect_param_descrs(r);
|
|
}
|
|
|
|
/**
|
|
\brief Set a timeout for each check_sat query that is processed by the inc_solver.
|
|
timeout == UINT_MAX means infinite
|
|
After the timeout a strategy is used.
|
|
*/
|
|
void strategic_solver::set_inc_solver_timeout(unsigned timeout) {
|
|
m_inc_solver_timeout = timeout;
|
|
}
|
|
|
|
/**
|
|
\brief Set the default tactic factory.
|
|
It is used if there is no tactic for a given logic.
|
|
*/
|
|
void strategic_solver::set_default_tactic(tactic_factory * fct) {
|
|
m_default_fct = fct;
|
|
}
|
|
|
|
/**
|
|
\brief Set a tactic factory for a given logic.
|
|
*/
|
|
void strategic_solver::set_tactic_for(symbol const & logic, tactic_factory * fct) {
|
|
tactic_factory * old_fct;
|
|
if (m_logic2fct.find(logic, old_fct)) {
|
|
dealloc(old_fct);
|
|
}
|
|
m_logic2fct.insert(logic, fct);
|
|
}
|
|
|
|
void strategic_solver::init(ast_manager & m, symbol const & logic) {
|
|
m_manager = &m;
|
|
m_logic = logic;
|
|
if (m_inc_mode) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->init(m, logic);
|
|
}
|
|
}
|
|
|
|
// delayed inc solver initialization
|
|
void strategic_solver::init_inc_solver() {
|
|
if (m_inc_mode)
|
|
return; // solver was already initialized
|
|
if (!m_inc_solver)
|
|
return; // inc solver was not installed
|
|
m_inc_mode = true;
|
|
m_inc_solver->set_front_end_params(*m_fparams);
|
|
m_inc_solver->init(m(), m_logic);
|
|
unsigned sz = get_num_assertions();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
m_inc_solver->assert_expr(get_assertion(i));
|
|
}
|
|
}
|
|
|
|
void strategic_solver::collect_statistics(statistics & st) const {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->collect_statistics(st);
|
|
}
|
|
else {
|
|
if (m_curr_tactic)
|
|
m_curr_tactic->collect_statistics(st); // m_curr_tactic is still being executed.
|
|
else
|
|
st.copy(m_stats);
|
|
}
|
|
}
|
|
|
|
void strategic_solver::reset() {
|
|
m_logic = symbol::null;
|
|
m_inc_mode = false;
|
|
m_check_sat_executed = false;
|
|
if (m_inc_solver)
|
|
m_inc_solver->reset();
|
|
SASSERT(!m_curr_tactic);
|
|
m_use_inc_solver_results = false;
|
|
reset_results();
|
|
}
|
|
|
|
void strategic_solver::reset_results() {
|
|
m_use_inc_solver_results = false;
|
|
m_model = 0;
|
|
if (m_proof) {
|
|
m().dec_ref(m_proof);
|
|
m_proof = 0;
|
|
}
|
|
m_reason_unknown.clear();
|
|
m_stats.reset();
|
|
}
|
|
|
|
void strategic_solver::assert_expr(expr * t) {
|
|
if (m_check_sat_executed && !m_inc_mode) {
|
|
// a check sat was already executed --> switch to incremental mode
|
|
init_inc_solver();
|
|
SASSERT(m_inc_solver == 0 || m_inc_mode);
|
|
}
|
|
if (m_inc_mode) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->assert_expr(t);
|
|
}
|
|
}
|
|
|
|
void strategic_solver::push() {
|
|
DEBUG_CODE(m_num_scopes++;);
|
|
init_inc_solver();
|
|
if (m_inc_solver)
|
|
m_inc_solver->push();
|
|
}
|
|
|
|
void strategic_solver::pop(unsigned n) {
|
|
DEBUG_CODE({
|
|
SASSERT(n <= m_num_scopes);
|
|
m_num_scopes -= n;
|
|
});
|
|
init_inc_solver();
|
|
if (m_inc_solver)
|
|
m_inc_solver->pop(n);
|
|
}
|
|
|
|
unsigned strategic_solver::get_scope_level() const {
|
|
if (m_inc_solver)
|
|
return m_inc_solver->get_scope_level();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
struct aux_timeout_eh : public event_handler {
|
|
solver * m_solver;
|
|
volatile bool m_canceled;
|
|
aux_timeout_eh(solver * s):m_solver(s), m_canceled(false) {}
|
|
virtual void operator()() {
|
|
m_solver->cancel();
|
|
m_canceled = true;
|
|
}
|
|
};
|
|
|
|
struct strategic_solver::mk_tactic {
|
|
strategic_solver * m_solver;
|
|
|
|
mk_tactic(strategic_solver * s, tactic_factory * f):m_solver(s) {
|
|
ast_manager & m = s->m();
|
|
params_ref p;
|
|
front_end_params2params(*s->m_fparams, p);
|
|
tactic * tct = (*f)(m, p);
|
|
tct->set_front_end_params(*s->m_fparams);
|
|
tct->set_logic(s->m_logic);
|
|
if (s->m_callback)
|
|
tct->set_progress_callback(s->m_callback);
|
|
#pragma omp critical (strategic_solver)
|
|
{
|
|
s->m_curr_tactic = tct;
|
|
}
|
|
}
|
|
|
|
~mk_tactic() {
|
|
#pragma omp critical (strategic_solver)
|
|
{
|
|
m_solver->m_curr_tactic = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
tactic_factory * strategic_solver::get_tactic_factory() const {
|
|
tactic_factory * f = 0;
|
|
if (m_logic2fct.find(m_logic, f))
|
|
return f;
|
|
return m_default_fct.get();
|
|
}
|
|
|
|
lbool strategic_solver::check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions) {
|
|
if (!m_inc_solver) {
|
|
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver was not installed, returning unknown...\n";);
|
|
m_use_inc_solver_results = false;
|
|
m_reason_unknown = "incomplete";
|
|
return l_undef;
|
|
}
|
|
init_inc_solver();
|
|
m_use_inc_solver_results = true;
|
|
return m_inc_solver->check_sat(num_assumptions, assumptions);
|
|
}
|
|
|
|
lbool strategic_solver::check_sat(unsigned num_assumptions, expr * const * assumptions) {
|
|
reset_results();
|
|
m_check_sat_executed = true;
|
|
if (num_assumptions > 0 || // assumptions were provided
|
|
(!m_fparams->m_auto_config && !m_force_tactic) // auto config and force_tactic are turned off
|
|
) {
|
|
// must use incremental solver
|
|
return check_sat_with_assumptions(num_assumptions, assumptions);
|
|
}
|
|
|
|
tactic_factory * factory = get_tactic_factory();
|
|
if (factory == 0)
|
|
init_inc_solver(); // try to switch to incremental solver
|
|
|
|
if (m_inc_mode) {
|
|
SASSERT(m_inc_solver);
|
|
unsigned timeout = m_inc_solver_timeout;
|
|
if (factory == 0)
|
|
timeout = UINT_MAX; // there is no tactic available
|
|
if (timeout == UINT_MAX) {
|
|
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (without a timeout).\n";);
|
|
m_use_inc_solver_results = true;
|
|
lbool r = m_inc_solver->check_sat(0, 0);
|
|
if (r != l_undef || factory == 0 || !use_tactic_when_undef()) {
|
|
m_use_inc_solver_results = true;
|
|
return r;
|
|
}
|
|
}
|
|
else {
|
|
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (with timeout).\n";);
|
|
SASSERT(factory != 0);
|
|
aux_timeout_eh eh(m_inc_solver.get());
|
|
lbool r;
|
|
{
|
|
scoped_timer timer(m_inc_solver_timeout, &eh);
|
|
r = m_inc_solver->check_sat(0, 0);
|
|
}
|
|
if ((r != l_undef || !use_tactic_when_undef()) && !eh.m_canceled) {
|
|
m_use_inc_solver_results = true;
|
|
return r;
|
|
}
|
|
}
|
|
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver failed, trying tactic.\n";);
|
|
}
|
|
|
|
m_use_inc_solver_results = false;
|
|
|
|
if (factory == 0) {
|
|
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "there is no tactic available for the current logic.\n";);
|
|
m_reason_unknown = "incomplete";
|
|
return l_undef;
|
|
}
|
|
|
|
goal_ref g = alloc(goal, m(), m_produce_proofs, m_produce_models, m_produce_unsat_cores);
|
|
unsigned sz = get_num_assertions();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
g->assert_expr(get_assertion(i));
|
|
}
|
|
expr_dependency_ref core(m());
|
|
|
|
mk_tactic tct_maker(this, factory);
|
|
SASSERT(m_curr_tactic);
|
|
|
|
proof_ref pr(m());
|
|
lbool r = ::check_sat(*(m_curr_tactic.get()), g, m_model, pr, core, m_reason_unknown);
|
|
m_curr_tactic->collect_statistics(m_stats);
|
|
if (pr) {
|
|
m_proof = pr;
|
|
m().inc_ref(m_proof);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void strategic_solver::set_cancel(bool f) {
|
|
if (m_inc_solver)
|
|
m_inc_solver->set_cancel(f);
|
|
#pragma omp critical (strategic_solver)
|
|
{
|
|
if (m_curr_tactic)
|
|
m_curr_tactic->set_cancel(f);
|
|
}
|
|
}
|
|
|
|
void strategic_solver::get_unsat_core(ptr_vector<expr> & r) {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->get_unsat_core(r);
|
|
}
|
|
}
|
|
|
|
void strategic_solver::get_model(model_ref & m) {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->get_model(m);
|
|
}
|
|
else {
|
|
m = m_model;
|
|
}
|
|
}
|
|
|
|
proof * strategic_solver::get_proof() {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
return m_inc_solver->get_proof();
|
|
}
|
|
else {
|
|
return m_proof;
|
|
}
|
|
}
|
|
|
|
std::string strategic_solver::reason_unknown() const {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
return m_inc_solver->reason_unknown();
|
|
}
|
|
return m_reason_unknown;
|
|
}
|
|
|
|
void strategic_solver::get_labels(svector<symbol> & r) {
|
|
if (m_use_inc_solver_results) {
|
|
SASSERT(m_inc_solver);
|
|
m_inc_solver->get_labels(r);
|
|
}
|
|
}
|
|
|
|
void strategic_solver::set_progress_callback(progress_callback * callback) {
|
|
m_callback = callback;
|
|
if (m_inc_solver)
|
|
m_inc_solver->set_progress_callback(callback);
|
|
}
|
|
|
|
void strategic_solver::display(std::ostream & out) const {
|
|
if (m_manager) {
|
|
unsigned num = get_num_assertions();
|
|
out << "(solver";
|
|
for (unsigned i = 0; i < num; i++) {
|
|
out << "\n " << mk_ismt2_pp(get_assertion(i), m(), 2);
|
|
}
|
|
out << ")";
|
|
}
|
|
else {
|
|
out << "(solver)";
|
|
}
|
|
}
|
|
|
|
strategic_solver_cmd::strategic_solver_cmd(cmd_context & ctx):
|
|
m_ctx(ctx) {
|
|
}
|
|
|
|
unsigned strategic_solver_cmd::get_num_assertions() const {
|
|
return static_cast<unsigned>(m_ctx.end_assertions() - m_ctx.begin_assertions());
|
|
}
|
|
|
|
expr * strategic_solver_cmd::get_assertion(unsigned idx) const {
|
|
SASSERT(idx < get_num_assertions());
|
|
return m_ctx.begin_assertions()[idx];
|
|
}
|
|
|
|
strategic_solver_api::ctx::ctx(ast_manager & m):m_assertions(m) {
|
|
}
|
|
|
|
void strategic_solver_api::init(ast_manager & m, symbol const & logic) {
|
|
strategic_solver::init(m, logic);
|
|
m_ctx = alloc(ctx, m);
|
|
}
|
|
|
|
unsigned strategic_solver_api::get_num_assertions() const {
|
|
if (m_ctx == 0)
|
|
return 0;
|
|
return m_ctx->m_assertions.size();
|
|
}
|
|
|
|
expr * strategic_solver_api::get_assertion(unsigned idx) const {
|
|
SASSERT(m_ctx);
|
|
return m_ctx->m_assertions.get(idx);
|
|
}
|
|
|
|
void strategic_solver_api::assert_expr(expr * t) {
|
|
SASSERT(m_ctx);
|
|
strategic_solver::assert_expr(t);
|
|
m_ctx->m_assertions.push_back(t);
|
|
}
|
|
|
|
void strategic_solver_api::push() {
|
|
SASSERT(m_ctx);
|
|
strategic_solver::push();
|
|
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
|
|
}
|
|
|
|
void strategic_solver_api::pop(unsigned n) {
|
|
SASSERT(m_ctx);
|
|
unsigned new_lvl = m_ctx->m_scopes.size() - n;
|
|
unsigned old_sz = m_ctx->m_scopes[new_lvl];
|
|
m_ctx->m_assertions.shrink(old_sz);
|
|
m_ctx->m_scopes.shrink(new_lvl);
|
|
strategic_solver::pop(n);
|
|
}
|
|
|
|
void strategic_solver_api::reset() {
|
|
m_ctx = 0;
|
|
strategic_solver::reset();
|
|
}
|
|
|
|
|
|
|