mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 01:54:08 +00:00
1756 lines
50 KiB
C++
1756 lines
50 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
nla_core.cpp
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
--*/
|
|
#include "util/uint_set.h"
|
|
#include "math/lp/nla_core.h"
|
|
#include "math/lp/factorization_factory_imp.h"
|
|
#include "math/lp/nex.h"
|
|
#include "math/grobner/pdd_solver.h"
|
|
#include "math/dd/pdd_interval.h"
|
|
#include "math/dd/pdd_eval.h"
|
|
using namespace nla;
|
|
|
|
typedef lp::lar_term term;
|
|
|
|
core::core(lp::lar_solver& s, params_ref const& p, reslimit & lim) :
|
|
m_evars(),
|
|
lra(s),
|
|
m_reslim(lim),
|
|
m_params(p),
|
|
m_tangents(this),
|
|
m_basics(this),
|
|
m_order(this),
|
|
m_monotone(this),
|
|
m_powers(*this),
|
|
m_divisions(*this),
|
|
m_intervals(this, lim),
|
|
m_monomial_bounds(this),
|
|
m_horner(this),
|
|
m_grobner(this),
|
|
m_emons(m_evars),
|
|
m_use_nra_model(false),
|
|
m_nra(s, m_nra_lim, *this)
|
|
{
|
|
m_nlsat_delay_bound = lp_settings().nlsat_delay();
|
|
lra.m_find_monics_with_changed_bounds_func = [&](const indexed_uint_set& columns_with_changed_bounds) {
|
|
for (lpvar j : columns_with_changed_bounds) {
|
|
if (is_monic_var(j))
|
|
m_monics_with_changed_bounds.insert(j);
|
|
for (const auto & m: m_emons.get_use_list(j))
|
|
m_monics_with_changed_bounds.insert(m.var());
|
|
}
|
|
};
|
|
}
|
|
|
|
bool core::compare_holds(const rational& ls, llc cmp, const rational& rs) const {
|
|
switch(cmp) {
|
|
case llc::LE: return ls <= rs;
|
|
case llc::LT: return ls < rs;
|
|
case llc::GE: return ls >= rs;
|
|
case llc::GT: return ls > rs;
|
|
case llc::EQ: return ls == rs;
|
|
case llc::NE: return ls != rs;
|
|
default: SASSERT(false);
|
|
};
|
|
|
|
return false;
|
|
}
|
|
|
|
rational core::value(const lp::lar_term& r) const {
|
|
rational ret(0);
|
|
for (lp::lar_term::ival t : r)
|
|
ret += t.coeff() * val(t.j());
|
|
return ret;
|
|
}
|
|
|
|
bool core::ineq_holds(const ineq& n) const {
|
|
return compare_holds(value(n.term()), n.cmp(), n.rs());
|
|
}
|
|
|
|
bool core::lemma_holds(const lemma& l) const {
|
|
for (const ineq &i : l.ineqs())
|
|
if (ineq_holds(i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
lpvar core::map_to_root(lpvar j) const {
|
|
return m_evars.find(j).var();
|
|
}
|
|
|
|
svector<lpvar> core::sorted_rvars(const factor& f) const {
|
|
if (f.is_var()) {
|
|
svector<lpvar> r; r.push_back(map_to_root(f.var()));
|
|
return r;
|
|
}
|
|
return m_emons[f.var()].rvars();
|
|
}
|
|
|
|
// the value of the factor is equal to the value of the variable multiplied
|
|
// by the canonize_sign
|
|
bool core::canonize_sign(const factor& f) const {
|
|
return f.sign() ^ (f.is_var()? canonize_sign(f.var()) : canonize_sign(m_emons[f.var()]));
|
|
}
|
|
|
|
bool core::canonize_sign(lpvar j) const {
|
|
return m_evars.find(j).sign();
|
|
}
|
|
|
|
bool core::canonize_sign_is_correct(const monic& m) const {
|
|
bool r = false;
|
|
for (lpvar j : m.vars()) {
|
|
r ^= canonize_sign(j);
|
|
}
|
|
return r == m.rsign();
|
|
}
|
|
|
|
bool core::canonize_sign(const monic& m) const {
|
|
SASSERT(canonize_sign_is_correct(m));
|
|
return m.rsign();
|
|
}
|
|
|
|
bool core::canonize_sign(const factorization& f) const {
|
|
bool r = false;
|
|
for (const factor & a : f)
|
|
r ^= canonize_sign(a);
|
|
return r;
|
|
}
|
|
|
|
void core::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
|
|
m_add_buffer.resize(sz);
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
m_add_buffer[i] = vs[i];
|
|
}
|
|
m_emons.add(v, m_add_buffer);
|
|
m_monics_with_changed_bounds.insert(v);
|
|
}
|
|
|
|
void core::push() {
|
|
TRACE("nla_solver_verbose", tout << "\n";);
|
|
m_emons.push();
|
|
}
|
|
|
|
|
|
void core::pop(unsigned n) {
|
|
TRACE("nla_solver_verbose", tout << "n = " << n << "\n";);
|
|
m_emons.pop(n);
|
|
SASSERT(elists_are_consistent(false));
|
|
}
|
|
|
|
rational core::product_value(const monic& m) const {
|
|
rational r(1);
|
|
for (auto j : m.vars()) {
|
|
r *= lra.get_column_value(j).x;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// return true iff the monic value is equal to the product of the values of the factors
|
|
// or if the variable associated with the monomial is not relevant.
|
|
bool core::check_monic(const monic& m) const {
|
|
#if 0
|
|
// TODO test this
|
|
if (!is_relevant(m.var()))
|
|
return true;
|
|
#endif
|
|
if (lra.column_is_int(m.var()) && !lra.get_column_value(m.var()).is_int())
|
|
return true;
|
|
|
|
bool ret = product_value(m) == lra.get_column_value(m.var()).x;
|
|
CTRACE("nla_solver_check_monic", !ret, print_monic(m, tout) << '\n';);
|
|
return ret;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
std::ostream& core::print_product(const T & m, std::ostream& out) const {
|
|
bool first = true;
|
|
for (lpvar v : m) {
|
|
if (!first) out << "*"; else first = false;
|
|
if (lp_settings().print_external_var_name())
|
|
out << "(" << lra.get_variable_name(v) << "=" << val(v) << ")";
|
|
else
|
|
out << "(j" << v << " = " << val(v) << ")";
|
|
|
|
}
|
|
return out;
|
|
}
|
|
template <typename T>
|
|
std::string core::product_indices_str(const T & m) const {
|
|
std::stringstream out;
|
|
bool first = true;
|
|
for (lpvar v : m) {
|
|
if (!first)
|
|
out << "*";
|
|
else
|
|
first = false;
|
|
out << "j" << v;;
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
|
if (f.sign())
|
|
out << "- ";
|
|
if (f.is_var()) {
|
|
out << "VAR, " << pp(f.var());
|
|
} else {
|
|
out << "MON, v" << m_emons[f.var()] << " = ";
|
|
print_product(m_emons[f.var()].rvars(), out);
|
|
}
|
|
out << "\n";
|
|
return out;
|
|
}
|
|
|
|
std::ostream & core::print_factor_with_vars(const factor& f, std::ostream& out) const {
|
|
if (f.is_var()) {
|
|
out << pp(f.var());
|
|
}
|
|
else {
|
|
out << " MON = " << pp_mon_with_vars(*this, m_emons[f.var()]);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& core::print_monic(const monic& m, std::ostream& out) const {
|
|
if (lp_settings().print_external_var_name())
|
|
out << "([" << m.var() << "] = " << lra.get_variable_name(m.var()) << " = " << val(m.var()) << " = ";
|
|
else
|
|
out << "(j" << m.var() << " = " << val(m.var()) << " = ";
|
|
print_product(m.vars(), out) << ")\n";
|
|
return out;
|
|
}
|
|
|
|
|
|
std::ostream& core::print_bfc(const factorization& m, std::ostream& out) const {
|
|
SASSERT(m.size() == 2);
|
|
out << "( x = " << pp(m[0]) << "* y = " << pp(m[1]) << ")";
|
|
return out;
|
|
}
|
|
|
|
std::ostream& core::print_monic_with_vars(lpvar v, std::ostream& out) const {
|
|
return print_monic_with_vars(m_emons[v], out);
|
|
}
|
|
template <typename T>
|
|
std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const {
|
|
print_product(m, out) << "\n";
|
|
for (unsigned k = 0; k < m.size(); k++) {
|
|
print_var(m[k], out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& core::print_monic_with_vars(const monic& m, std::ostream& out) const {
|
|
out << "[" << pp(m.var()) << "]\n";
|
|
out << "vars:"; print_product_with_vars(m.vars(), out) << "\n";
|
|
if (m.vars() == m.rvars())
|
|
out << "same rvars, and m.rsign = " << m.rsign() << " of course\n";
|
|
else {
|
|
out << "rvars:"; print_product_with_vars(m.rvars(), out) << "\n";
|
|
out << "rsign:" << m.rsign() << "\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& core::print_explanation(const lp::explanation& exp, std::ostream& out) const {
|
|
out << "expl: ";
|
|
unsigned i = 0;
|
|
for (auto p : exp) {
|
|
out << "(" << p.ci() << ")";
|
|
lra.constraints().display(out, [this](lpvar j) { return var_str(j);}, p.ci());
|
|
if (++i < exp.size())
|
|
out << " ";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool core::explain_upper_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const {
|
|
rational b(0); // the bound
|
|
for (lp::lar_term::ival p : t) {
|
|
rational pb;
|
|
if (explain_coeff_upper_bound(p, pb, e)) {
|
|
b += pb;
|
|
} else {
|
|
e.clear();
|
|
return false;
|
|
}
|
|
}
|
|
if (b > rs ) {
|
|
e.clear();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool core::explain_lower_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const {
|
|
rational b(0); // the bound
|
|
for (lp::lar_term::ival p : t) {
|
|
rational pb;
|
|
if (explain_coeff_lower_bound(p, pb, e)) {
|
|
b += pb;
|
|
} else {
|
|
e.clear();
|
|
return false;
|
|
}
|
|
}
|
|
if (b < rs ) {
|
|
e.clear();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool core::explain_coeff_lower_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const {
|
|
const rational& a = p.coeff();
|
|
SASSERT(!a.is_zero());
|
|
if (a.is_pos()) {
|
|
auto* dep = lra.get_column_lower_bound_witness(p.j());
|
|
if (!dep)
|
|
return false;
|
|
bound = a * lra.get_lower_bound(p.j()).x;
|
|
lra.push_explanation(dep, e);
|
|
return true;
|
|
}
|
|
// a.is_neg()
|
|
auto* dep = lra.get_column_upper_bound_witness(p.j());
|
|
if (!dep)
|
|
return false;
|
|
bound = a * lra.get_upper_bound(p.j()).x;
|
|
lra.push_explanation(dep, e);
|
|
return true;
|
|
}
|
|
|
|
bool core::explain_coeff_upper_bound(const lp::lar_term::ival& p, rational& bound, lp::explanation& e) const {
|
|
const rational& a = p.coeff();
|
|
lpvar j = p.j();
|
|
SASSERT(!a.is_zero());
|
|
if (a.is_neg()) {
|
|
auto *dep = lra.get_column_lower_bound_witness(j);
|
|
if (!dep)
|
|
return false;
|
|
bound = a * lra.get_lower_bound(j).x;
|
|
lra.push_explanation(dep, e);
|
|
return true;
|
|
}
|
|
// a.is_pos()
|
|
auto* dep = lra.get_column_upper_bound_witness(j);
|
|
if (!dep)
|
|
return false;
|
|
bound = a * lra.get_upper_bound(j).x;
|
|
lra.push_explanation(dep, e);
|
|
return true;
|
|
}
|
|
|
|
// return true iff the negation of the ineq can be derived from the constraints
|
|
bool core::explain_ineq(new_lemma& lemma, const lp::lar_term& t, llc cmp, const rational& rs) {
|
|
// check that we have something like 0 < 0, which is always false and can be safely
|
|
// removed from the lemma
|
|
|
|
if (t.is_empty() && rs.is_zero() &&
|
|
(cmp == llc::LT || cmp == llc::GT || cmp == llc::NE)) return true;
|
|
lp::explanation exp;
|
|
bool r;
|
|
switch (negate(cmp)) {
|
|
case llc::LE:
|
|
r = explain_upper_bound(t, rs, exp);
|
|
break;
|
|
case llc::LT:
|
|
r = explain_upper_bound(t, rs - rational(1), exp);
|
|
break;
|
|
case llc::GE:
|
|
r = explain_lower_bound(t, rs, exp);
|
|
break;
|
|
case llc::GT:
|
|
r = explain_lower_bound(t, rs + rational(1), exp);
|
|
break;
|
|
|
|
case llc::EQ:
|
|
r = (explain_lower_bound(t, rs, exp) && explain_upper_bound(t, rs, exp)) ||
|
|
(rs.is_zero() && explain_by_equiv(t, exp));
|
|
break;
|
|
case llc::NE:
|
|
// TBD - NB: does this work for Reals?
|
|
r = explain_lower_bound(t, rs + rational(1), exp) || explain_upper_bound(t, rs - rational(1), exp);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
if (r) {
|
|
lemma &= exp;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
if t is an octagon term -+x -+ y try to explain why the term always is
|
|
equal zero
|
|
*/
|
|
bool core::explain_by_equiv(const lp::lar_term& t, lp::explanation& e) const {
|
|
lpvar i,j;
|
|
bool sign;
|
|
if (!is_octagon_term(t, sign, i, j))
|
|
return false;
|
|
if (m_evars.find(signed_var(i, false)) != m_evars.find(signed_var(j, sign)))
|
|
return false;
|
|
|
|
m_evars.explain(signed_var(i, false), signed_var(j, sign), e);
|
|
TRACE("nla_solver", tout << "explained :"; lra.print_term_as_indices(t, tout););
|
|
return true;
|
|
}
|
|
|
|
void core::mk_ineq_no_expl_check(new_lemma& lemma, lp::lar_term& t, llc cmp, const rational& rs) {
|
|
TRACE("nla_solver_details", lra.print_term_as_indices(t, tout << "t = "););
|
|
lemma |= ineq(cmp, t, rs);
|
|
CTRACE("nla_solver", ineq_holds(ineq(cmp, t, rs)), print_ineq(ineq(cmp, t, rs), tout) << "\n";);
|
|
SASSERT(!ineq_holds(ineq(cmp, t, rs)));
|
|
}
|
|
|
|
llc apply_minus(llc cmp) {
|
|
switch(cmp) {
|
|
case llc::LE: return llc::GE;
|
|
case llc::LT: return llc::GT;
|
|
case llc::GE: return llc::LE;
|
|
case llc::GT: return llc::LT;
|
|
default: break;
|
|
}
|
|
return cmp;
|
|
}
|
|
|
|
// the monics should be equal by modulo sign but this is not so in the model
|
|
void core::fill_explanation_and_lemma_sign(new_lemma& lemma, const monic& a, const monic & b, rational const& sign) {
|
|
SASSERT(sign == 1 || sign == -1);
|
|
lemma &= a;
|
|
lemma &= b;
|
|
TRACE("nla_solver", tout << "used constraints: " << lemma;);
|
|
SASSERT(lemma.num_ineqs() == 0);
|
|
lemma |= ineq(term(rational(1), a.var(), -sign, b.var()), llc::EQ, 0);
|
|
}
|
|
|
|
// Replaces each variable index by the root in the tree and flips the sign if the var comes with a minus.
|
|
// Also sorts the result.
|
|
//
|
|
svector<lpvar> core::reduce_monic_to_rooted(const svector<lpvar> & vars, rational & sign) const {
|
|
svector<lpvar> ret;
|
|
bool s = false;
|
|
for (lpvar v : vars) {
|
|
auto root = m_evars.find(v);
|
|
s ^= root.sign();
|
|
TRACE("nla_solver_eq",
|
|
tout << pp(v) << " mapped to " << pp(root.var()) << "\n";);
|
|
ret.push_back(root.var());
|
|
}
|
|
sign = rational(s? -1: 1);
|
|
std::sort(ret.begin(), ret.end());
|
|
return ret;
|
|
}
|
|
|
|
|
|
// Replaces definition m_v = v1* .. * vn by
|
|
// m_v = coeff * w1 * ... * wn, where w1, .., wn are canonical
|
|
// representatives, which are the roots of the equivalence tree, under current equations.
|
|
//
|
|
monic_coeff core::canonize_monic(monic const& m) const {
|
|
rational sign = rational(1);
|
|
svector<lpvar> vars = reduce_monic_to_rooted(m.vars(), sign);
|
|
return monic_coeff(vars, sign);
|
|
}
|
|
|
|
int core::vars_sign(const svector<lpvar>& v) {
|
|
int sign = 1;
|
|
for (lpvar j : v) {
|
|
sign *= nla::rat_sign(val(j));
|
|
if (sign == 0)
|
|
return 0;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
bool core::has_upper_bound(lpvar j) const {
|
|
return lra.column_has_upper_bound(j);
|
|
}
|
|
|
|
bool core::has_lower_bound(lpvar j) const {
|
|
return lra.column_has_lower_bound(j);
|
|
}
|
|
const rational& core::get_upper_bound(unsigned j) const {
|
|
return lra.get_upper_bound(j).x;
|
|
}
|
|
|
|
const rational& core::get_lower_bound(unsigned j) const {
|
|
return lra.get_lower_bound(j).x;
|
|
}
|
|
|
|
bool core::zero_is_an_inner_point_of_bounds(lpvar j) const {
|
|
if (has_upper_bound(j) && get_upper_bound(j) <= rational(0))
|
|
return false;
|
|
if (has_lower_bound(j) && get_lower_bound(j) >= rational(0))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
int core::rat_sign(const monic& m) const {
|
|
int sign = 1;
|
|
for (lpvar j : m.vars()) {
|
|
auto v = val(j);
|
|
if (v.is_neg()) {
|
|
sign = - sign;
|
|
continue;
|
|
}
|
|
if (v.is_pos()) {
|
|
continue;
|
|
}
|
|
sign = 0;
|
|
break;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
// Returns true if the monic sign is incorrect
|
|
bool core::sign_contradiction(const monic& m) const {
|
|
return nla::rat_sign(var_val(m)) != rat_sign(m);
|
|
}
|
|
|
|
/*
|
|
unsigned_vector eq_vars(lpvar j) const {
|
|
TRACE("nla_solver_eq", tout << "j = " << pp(j) << "eqs = ";
|
|
for(auto jj : m_evars.eq_vars(j)) tout << pp(jj) << " ";
|
|
});
|
|
return m_evars.eq_vars(j);
|
|
}
|
|
*/
|
|
|
|
bool core::var_is_fixed_to_zero(lpvar j) const {
|
|
return
|
|
lra.column_is_fixed(j) &&
|
|
lra.get_lower_bound(j) == lp::zero_of_type<lp::impq>();
|
|
}
|
|
bool core::var_is_fixed_to_val(lpvar j, const rational& v) const {
|
|
return
|
|
lra.column_is_fixed(j) &&
|
|
lra.get_lower_bound(j) == lp::impq(v);
|
|
}
|
|
|
|
bool core::var_is_fixed(lpvar j) const {
|
|
return lra.column_is_fixed(j);
|
|
}
|
|
|
|
bool core::var_is_free(lpvar j) const {
|
|
return lra.column_is_free(j);
|
|
}
|
|
|
|
std::ostream & core::print_ineq(const ineq & in, std::ostream & out) const {
|
|
lra.print_term_as_indices(in.term(), out);
|
|
return out << " " << lconstraint_kind_string(in.cmp()) << " " << in.rs();
|
|
}
|
|
|
|
std::ostream & core::print_var(lpvar j, std::ostream & out) const {
|
|
if (is_monic_var(j))
|
|
print_monic(m_emons[j], out);
|
|
|
|
lra.print_column_info(j, out);
|
|
signed_var jr = m_evars.find(j);
|
|
out << "root=";
|
|
if (jr.sign()) {
|
|
out << "-";
|
|
}
|
|
|
|
out << lra.get_variable_name(jr.var()) << "\n";
|
|
return out;
|
|
}
|
|
|
|
std::ostream & core::print_monics(std::ostream & out) const {
|
|
for (auto &m : m_emons) {
|
|
print_monic_with_vars(m, out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream & core::print_ineqs(const lemma& l, std::ostream & out) const {
|
|
std::unordered_set<lpvar> vars;
|
|
out << "ineqs: ";
|
|
if (l.ineqs().size() == 0) {
|
|
out << "conflict\n";
|
|
} else {
|
|
for (unsigned i = 0; i < l.ineqs().size(); i++) {
|
|
auto & in = l.ineqs()[i];
|
|
print_ineq(in, out);
|
|
if (i + 1 < l.ineqs().size()) out << " or ";
|
|
for (lp::lar_term::ival p: in.term())
|
|
vars.insert(p.j());
|
|
}
|
|
out << std::endl;
|
|
for (lpvar j : vars) {
|
|
print_var(j, out);
|
|
}
|
|
out << "\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream & core::print_factorization(const factorization& f, std::ostream& out) const {
|
|
if (f.is_mon()){
|
|
out << "is_mon " << pp_mon(*this, f.mon());
|
|
}
|
|
else {
|
|
for (unsigned k = 0; k < f.size(); k++ ) {
|
|
out << "(" << pp(f[k]) << ")";
|
|
if (k < f.size() - 1)
|
|
out << "*";
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool core::find_canonical_monic_of_vars(const svector<lpvar>& vars, lpvar & i) const {
|
|
monic const* sv = m_emons.find_canonical(vars);
|
|
return sv && (i = sv->var(), true);
|
|
}
|
|
|
|
bool core::is_canonical_monic(lpvar j) const {
|
|
return m_emons.is_canonical_monic(j);
|
|
}
|
|
|
|
|
|
void core::trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const {
|
|
out << "rooted vars: ";
|
|
print_product(rm.rvars(), out) << "\n";
|
|
out << "mon: " << pp_mon(*this, rm.var()) << "\n";
|
|
out << "value: " << var_val(rm) << "\n";
|
|
print_factorization(f, out << "fact: ") << "\n";
|
|
}
|
|
|
|
|
|
bool core::var_has_positive_lower_bound(lpvar j) const {
|
|
return lra.column_has_lower_bound(j) && lra.get_lower_bound(j) > lp::zero_of_type<lp::impq>();
|
|
}
|
|
|
|
bool core::var_has_negative_upper_bound(lpvar j) const {
|
|
return lra.column_has_upper_bound(j) && lra.get_upper_bound(j) < lp::zero_of_type<lp::impq>();
|
|
}
|
|
|
|
bool core::var_is_separated_from_zero(lpvar j) const {
|
|
return
|
|
var_has_negative_upper_bound(j) ||
|
|
var_has_positive_lower_bound(j);
|
|
}
|
|
|
|
|
|
bool core::vars_are_equiv(lpvar a, lpvar b) const {
|
|
SASSERT(abs(val(a)) == abs(val(b)));
|
|
return m_evars.vars_are_equiv(a, b);
|
|
}
|
|
|
|
bool core::has_zero_factor(const factorization& factorization) const {
|
|
for (factor f : factorization) {
|
|
if (val(f).is_zero())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool core::mon_has_zero(const T& product) const {
|
|
for (lpvar j: product) {
|
|
if (val(j).is_zero())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template bool core::mon_has_zero<unsigned_vector>(const unsigned_vector& product) const;
|
|
|
|
|
|
lp::lp_settings& core::lp_settings() {
|
|
return lra.settings();
|
|
}
|
|
const lp::lp_settings& core::lp_settings() const {
|
|
return lra.settings();
|
|
}
|
|
|
|
unsigned core::random() { return lp_settings().random_next(); }
|
|
|
|
|
|
// we look for octagon constraints here, with a left part +-x +- y
|
|
void core::collect_equivs() {
|
|
const lp::lar_solver& s = lra;
|
|
|
|
for (const auto * t : s.terms()) {
|
|
if (!s.column_associated_with_row(t->j()))
|
|
continue;
|
|
lpvar j = t->j();
|
|
if (var_is_fixed_to_zero(j)) {
|
|
TRACE("nla_solver_mons", s.print_term_as_indices(*t, tout << "term = ") << "\n";);
|
|
add_equivalence_maybe(t, s.get_column_upper_bound_witness(j), s.get_column_lower_bound_witness(j));
|
|
}
|
|
}
|
|
m_emons.ensure_canonized();
|
|
}
|
|
|
|
|
|
// returns true iff the term is in a form +-x-+y.
|
|
// the sign is true iff the term is x+y, -x-y.
|
|
bool core::is_octagon_term(const lp::lar_term& t, bool & sign, lpvar& i, lpvar &j) const {
|
|
if (t.size() != 2)
|
|
return false;
|
|
bool seen_minus = false;
|
|
bool seen_plus = false;
|
|
i = null_lpvar;
|
|
for(lp::lar_term::ival p : t) {
|
|
const auto & c = p.coeff();
|
|
if (c == 1) {
|
|
seen_plus = true;
|
|
} else if (c == - 1) {
|
|
seen_minus = true;
|
|
} else {
|
|
return false;
|
|
}
|
|
if (i == null_lpvar)
|
|
i = p.j();
|
|
else
|
|
j = p.j();
|
|
}
|
|
SASSERT(j != null_lpvar);
|
|
sign = (seen_minus && seen_plus)? false : true;
|
|
return true;
|
|
}
|
|
|
|
void core::add_equivalence_maybe(const lp::lar_term* t, u_dependency* c0, u_dependency* c1) {
|
|
bool sign;
|
|
lpvar i, j;
|
|
if (!is_octagon_term(*t, sign, i, j))
|
|
return;
|
|
if (sign)
|
|
m_evars.merge_minus(i, j, eq_justification({c0, c1}));
|
|
else
|
|
m_evars.merge_plus(i, j, eq_justification({c0, c1}));
|
|
}
|
|
|
|
// x is equivalent to y if x = +- y
|
|
void core::init_vars_equivalence() {
|
|
collect_equivs();
|
|
// SASSERT(tables_are_ok());
|
|
}
|
|
|
|
bool core::vars_table_is_ok() const {
|
|
// return m_var_eqs.is_ok();
|
|
return true;
|
|
}
|
|
|
|
bool core::rm_table_is_ok() const {
|
|
// return m_emons.is_ok();
|
|
return true;
|
|
}
|
|
|
|
bool core::tables_are_ok() const {
|
|
return vars_table_is_ok() && rm_table_is_ok();
|
|
}
|
|
|
|
bool core::var_is_a_root(lpvar j) const { return m_evars.is_root(j); }
|
|
|
|
template <typename T>
|
|
bool core::vars_are_roots(const T& v) const {
|
|
for (lpvar j: v) {
|
|
if (!var_is_a_root(j))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
void core::trace_print_rms(const T& p, std::ostream& out) {
|
|
out << "p = {\n";
|
|
for (auto j : p) {
|
|
out << "j = " << j << ", rm = " << m_emons[j] << "\n";
|
|
}
|
|
out << "}";
|
|
}
|
|
|
|
void core::print_monic_stats(const monic& m, std::ostream& out) {
|
|
if (m.size() == 2) return;
|
|
monic_coeff mc = canonize_monic(m);
|
|
for(unsigned i = 0; i < mc.vars().size(); i++){
|
|
if (abs(val(mc.vars()[i])) == rational(1)) {
|
|
auto vv = mc.vars();
|
|
vv.erase(vv.begin()+i);
|
|
monic const* sv = m_emons.find_canonical(vv);
|
|
if (!sv) {
|
|
out << "nf length" << vv.size() << "\n"; ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void core::print_stats(std::ostream& out) {
|
|
}
|
|
|
|
|
|
void core::clear() {
|
|
m_lemmas.clear();
|
|
m_literals.clear();
|
|
m_fixed_equalities.clear();
|
|
m_equalities.clear();
|
|
m_conflicts = 0;
|
|
m_check_feasible = false;
|
|
}
|
|
|
|
void core::init_search() {
|
|
TRACE("nla_solver_mons", tout << "init\n";);
|
|
SASSERT(m_emons.invariant());
|
|
clear();
|
|
init_vars_equivalence();
|
|
SASSERT(m_emons.invariant());
|
|
SASSERT(elists_are_consistent(false));
|
|
}
|
|
|
|
void core::insert_to_refine(lpvar j) {
|
|
TRACE("lar_solver", tout << "j=" << j << '\n';);
|
|
m_to_refine.insert(j);
|
|
}
|
|
|
|
void core::erase_from_to_refine(lpvar j) {
|
|
TRACE("lar_solver", tout << "j=" << j << '\n';);
|
|
if (m_to_refine.contains(j))
|
|
m_to_refine.remove(j);
|
|
}
|
|
|
|
|
|
void core::init_to_refine() {
|
|
TRACE("nla_solver_details", tout << "emons:" << pp_emons(*this, m_emons););
|
|
m_to_refine.reset();
|
|
unsigned r = random(), sz = m_emons.number_of_monics();
|
|
for (unsigned k = 0; k < sz; k++) {
|
|
auto const & m = *(m_emons.begin() + (k + r)% sz);
|
|
if (!check_monic(m))
|
|
insert_to_refine(m.var());
|
|
}
|
|
|
|
TRACE("nla_solver",
|
|
tout << m_to_refine.size() << " mons to refine:\n";
|
|
for (lpvar v : m_to_refine) tout << pp_mon(*this, m_emons[v]) << ":error = " <<
|
|
(val(v) - mul_val(m_emons[v])).get_double() << "\n";);
|
|
}
|
|
|
|
std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|
std::unordered_set<lpvar> vars;
|
|
auto insert_j = [&](lpvar j) {
|
|
vars.insert(j);
|
|
if (is_monic_var(j)) {
|
|
for (lpvar k : m_emons[j].vars())
|
|
vars.insert(k);
|
|
}
|
|
};
|
|
|
|
for (const auto& i : l.ineqs()) {
|
|
for (lp::lar_term::ival p : i.term()) {
|
|
insert_j(p.j());
|
|
}
|
|
}
|
|
for (auto p : l.expl()) {
|
|
const auto& c = lra.constraints()[p.ci()];
|
|
for (const auto& r : c.coeffs()) {
|
|
insert_j(r.second);
|
|
}
|
|
}
|
|
return vars;
|
|
}
|
|
|
|
// divides bc by c, so bc = b*c
|
|
bool core::divide(const monic& bc, const factor& c, factor & b) const {
|
|
svector<lpvar> c_rvars = sorted_rvars(c);
|
|
TRACE("nla_solver_div", tout << "c_rvars = "; print_product(c_rvars, tout); tout << "\nbc_rvars = "; print_product(bc.rvars(), tout););
|
|
if (!lp::is_proper_factor(c_rvars, bc.rvars()))
|
|
return false;
|
|
|
|
auto b_rvars = lp::vector_div(bc.rvars(), c_rvars);
|
|
TRACE("nla_solver_div", tout << "b_rvars = "; print_product(b_rvars, tout););
|
|
SASSERT(b_rvars.size() > 0);
|
|
if (b_rvars.size() == 1) {
|
|
b = factor(b_rvars[0], factor_type::VAR);
|
|
} else {
|
|
monic const* sv = m_emons.find_canonical(b_rvars);
|
|
if (sv == nullptr) {
|
|
TRACE("nla_solver_div", tout << "not in rooted";);
|
|
return false;
|
|
}
|
|
b = factor(sv->var(), factor_type::MON);
|
|
}
|
|
SASSERT(!b.sign());
|
|
// We have bc = canonize_sign(bc)*bc.rvars() = canonize_sign(b)*b.rvars()*canonize_sign(c)*c.rvars().
|
|
// Dividing by bc.rvars() we get canonize_sign(bc) = canonize_sign(b)*canonize_sign(c)
|
|
// Currently, canonize_sign(b) is 1, we might need to adjust it
|
|
b.sign() = canonize_sign(b) ^ canonize_sign(c) ^ canonize_sign(bc);
|
|
TRACE("nla_solver", tout << "success div:" << pp(b) << "\n";);
|
|
return true;
|
|
}
|
|
|
|
|
|
void core::negate_factor_equality(new_lemma& lemma, const factor& c,
|
|
const factor& d) {
|
|
if (c == d)
|
|
return;
|
|
lpvar i = var(c);
|
|
lpvar j = var(d);
|
|
auto iv = val(i), jv = val(j);
|
|
SASSERT(abs(iv) == abs(jv));
|
|
lemma |= ineq(term(i, rational(iv == jv ? -1 : 1), j), llc::NE, 0);
|
|
}
|
|
|
|
void core::negate_factor_relation(new_lemma& lemma, const rational& a_sign, const factor& a, const rational& b_sign, const factor& b) {
|
|
rational a_fs = sign_to_rat(canonize_sign(a));
|
|
rational b_fs = sign_to_rat(canonize_sign(b));
|
|
llc cmp = a_sign*val(a) < b_sign*val(b)? llc::GE : llc::LE;
|
|
lemma |= ineq(term(a_fs*a_sign, var(a), - b_fs*b_sign, var(b)), cmp, 0);
|
|
}
|
|
|
|
std::ostream& core::print_lemma(const lemma& l, std::ostream& out) const {
|
|
static int n = 0;
|
|
out << "lemma:" << ++n << " ";
|
|
print_ineqs(l, out);
|
|
print_explanation(l.expl(), out);
|
|
for (lpvar j : collect_vars(l)) {
|
|
print_var(j, out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
void core::trace_print_ol(const monic& ac,
|
|
const factor& a,
|
|
const factor& c,
|
|
const monic& bc,
|
|
const factor& b,
|
|
std::ostream& out) {
|
|
out << "ac = " << pp_mon(*this, ac) << "\n";
|
|
out << "bc = " << pp_mon(*this, bc) << "\n";
|
|
out << "a = ";
|
|
print_factor_with_vars(a, out);
|
|
out << ", \nb = ";
|
|
print_factor_with_vars(b, out);
|
|
out << "\nc = ";
|
|
print_factor_with_vars(c, out);
|
|
}
|
|
|
|
void core::maybe_add_a_factor(lpvar i,
|
|
const factor& c,
|
|
std::unordered_set<lpvar>& found_vars,
|
|
std::unordered_set<unsigned>& found_rm,
|
|
vector<factor> & r) const {
|
|
SASSERT(abs(val(i)) == abs(val(c)));
|
|
if (!is_monic_var(i)) {
|
|
i = m_evars.find(i).var();
|
|
if (try_insert(i, found_vars)) {
|
|
r.push_back(factor(i, factor_type::VAR));
|
|
}
|
|
} else {
|
|
if (try_insert(i, found_rm)) {
|
|
r.push_back(factor(i, factor_type::MON));
|
|
TRACE("nla_solver", tout << "inserting factor = "; print_factor_with_vars(factor(i, factor_type::MON), tout); );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Returns rooted monics by arity
|
|
std::unordered_map<unsigned, unsigned_vector> core::get_rm_by_arity() {
|
|
std::unordered_map<unsigned, unsigned_vector> m;
|
|
for (auto const& mon : m_emons) {
|
|
unsigned arity = mon.vars().size();
|
|
auto it = m.find(arity);
|
|
if (it == m.end()) {
|
|
it = m.insert(it, std::make_pair(arity, unsigned_vector()));
|
|
}
|
|
it->second.push_back(mon.var());
|
|
}
|
|
return m;
|
|
}
|
|
|
|
bool core::rm_check(const monic& rm) const {
|
|
return check_monic(m_emons[rm.var()]);
|
|
}
|
|
|
|
bool core::has_relevant_monomial() const {
|
|
return any_of(emons(), [&](auto const& m) { return is_relevant(m.var()); });
|
|
}
|
|
|
|
bool core::find_bfc_to_refine_on_monic(const monic& m, factorization & bf) {
|
|
for (auto f : factorization_factory_imp(m, *this)) {
|
|
if (f.size() == 2) {
|
|
auto a = f[0];
|
|
auto b = f[1];
|
|
if (var_val(m) != val(a) * val(b)) {
|
|
bf = f;
|
|
TRACE("nla_solver", tout << "found bf";
|
|
tout << ":m:" << pp_mon_with_vars(*this, m) << "\n";
|
|
tout << "bf:"; print_bfc(bf, tout););
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// finds a monic to refine with its binary factorization
|
|
bool core::find_bfc_to_refine(const monic* & m, factorization & bf){
|
|
m = nullptr;
|
|
unsigned r = random(), sz = m_to_refine.size();
|
|
for (unsigned k = 0; k < sz; k++) {
|
|
lpvar i = m_to_refine[(k + r) % sz];
|
|
m = &m_emons[i];
|
|
SASSERT (!check_monic(*m));
|
|
if (has_real(m))
|
|
continue;
|
|
if (m->size() == 2) {
|
|
bf.set_mon(m);
|
|
bf.push_back(factor(m->vars()[0], factor_type::VAR));
|
|
bf.push_back(factor(m->vars()[1], factor_type::VAR));
|
|
return true;
|
|
}
|
|
|
|
if (find_bfc_to_refine_on_monic(*m, bf)) {
|
|
TRACE("nla_solver",
|
|
tout << "bf = "; print_factorization(bf, tout);
|
|
tout << "\nval(*m) = " << var_val(*m) << ", should be = (val(bf[0])=" << val(bf[0]) << ")*(val(bf[1]) = " << val(bf[1]) << ") = " << val(bf[0])*val(bf[1]) << "\n";);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
rational core::val(const factorization& f) const {
|
|
rational r(1);
|
|
for (const factor &p : f) {
|
|
r *= val(p);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
new_lemma::new_lemma(core& c, char const* name):name(name), c(c) {
|
|
c.m_lemmas.push_back(lemma());
|
|
}
|
|
|
|
new_lemma& new_lemma::operator|=(ineq const& ineq) {
|
|
if (!c.explain_ineq(*this, ineq.term(), ineq.cmp(), ineq.rs())) {
|
|
CTRACE("nla_solver", c.ineq_holds(ineq), c.print_ineq(ineq, tout) << "\n";);
|
|
SASSERT(!c.ineq_holds(ineq));
|
|
current().push_back(ineq);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
new_lemma::~new_lemma() {
|
|
static int i = 0;
|
|
(void)i;
|
|
(void)name;
|
|
// code for checking lemma can be added here
|
|
if (current().is_conflict()) {
|
|
c.m_conflicts++;
|
|
}
|
|
IF_VERBOSE(4, verbose_stream() << name << "\n");
|
|
IF_VERBOSE(4, verbose_stream() << *this << "\n");
|
|
TRACE("nla_solver", tout << name << " " << (++i) << "\n" << *this; );
|
|
}
|
|
|
|
lemma& new_lemma::current() const {
|
|
return c.m_lemmas.back();
|
|
}
|
|
|
|
new_lemma& new_lemma::operator&=(lp::explanation const& e) {
|
|
expl().add_expl(e);
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::operator&=(const monic& m) {
|
|
for (lpvar j : m.vars())
|
|
*this &= j;
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::operator&=(const factor& f) {
|
|
if (f.type() == factor_type::VAR)
|
|
*this &= f.var();
|
|
else
|
|
*this &= c.m_emons[f.var()];
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::operator&=(const factorization& f) {
|
|
if (f.is_mon())
|
|
return *this;
|
|
for (const auto& fc : f) {
|
|
*this &= fc;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::operator&=(lpvar j) {
|
|
c.m_evars.explain(j, expl());
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::explain_fixed(lpvar j) {
|
|
SASSERT(c.var_is_fixed(j));
|
|
explain_existing_lower_bound(j);
|
|
explain_existing_upper_bound(j);
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::explain_equiv(lpvar a, lpvar b) {
|
|
SASSERT(abs(c.val(a)) == abs(c.val(b)));
|
|
if (c.vars_are_equiv(a, b)) {
|
|
*this &= a;
|
|
*this &= b;
|
|
} else {
|
|
explain_fixed(a);
|
|
explain_fixed(b);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::explain_var_separated_from_zero(lpvar j) {
|
|
SASSERT(c.var_is_separated_from_zero(j));
|
|
if (c.lra.column_has_upper_bound(j) &&
|
|
(c.lra.get_upper_bound(j)< lp::zero_of_type<lp::impq>()))
|
|
explain_existing_upper_bound(j);
|
|
else
|
|
explain_existing_lower_bound(j);
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::explain_existing_lower_bound(lpvar j) {
|
|
SASSERT(c.has_lower_bound(j));
|
|
lp::explanation ex;
|
|
c.lra.push_explanation(c.lra.get_column_lower_bound_witness(j), ex);
|
|
*this &= ex;
|
|
TRACE("nla_solver", tout << j << ": " << *this << "\n";);
|
|
return *this;
|
|
}
|
|
|
|
new_lemma& new_lemma::explain_existing_upper_bound(lpvar j) {
|
|
SASSERT(c.has_upper_bound(j));
|
|
lp::explanation ex;
|
|
c.lra.push_explanation(c.lra.get_column_upper_bound_witness(j), ex);
|
|
*this &= ex;
|
|
return *this;
|
|
}
|
|
|
|
std::ostream& new_lemma::display(std::ostream & out) const {
|
|
auto const& lemma = current();
|
|
|
|
for (auto p : lemma.expl()) {
|
|
out << "(" << p.ci() << ") ";
|
|
c.lra.constraints().display(out, [this](lpvar j) { return c.var_str(j);}, p.ci());
|
|
}
|
|
out << " ==> ";
|
|
if (lemma.ineqs().empty()) {
|
|
out << "false";
|
|
}
|
|
else {
|
|
bool first = true;
|
|
for (auto & in : lemma.ineqs()) {
|
|
if (first) first = false; else out << " or ";
|
|
c.print_ineq(in, out);
|
|
}
|
|
}
|
|
out << "\n";
|
|
for (lpvar j : c.collect_vars(lemma)) {
|
|
c.print_var(j, out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void core::negate_relation(new_lemma& lemma, unsigned j, const rational& a) {
|
|
SASSERT(val(j) != a);
|
|
lemma |= ineq(j, val(j) < a ? llc::GE : llc::LE, a);
|
|
}
|
|
|
|
bool core::conflict_found() const {
|
|
return any_of(m_lemmas, [&](const auto& l) { return l.is_conflict(); });
|
|
}
|
|
|
|
bool core::done() const {
|
|
return m_lemmas.size() >= 10 ||
|
|
conflict_found() ||
|
|
lp_settings().get_cancel_flag();
|
|
}
|
|
|
|
bool core::elist_is_consistent(const std::unordered_set<lpvar> & list) const {
|
|
bool first = true;
|
|
bool p;
|
|
for (lpvar j : list) {
|
|
if (first) {
|
|
p = check_monic(m_emons[j]);
|
|
first = false;
|
|
} else
|
|
if (check_monic(m_emons[j]) != p)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool core::elists_are_consistent(bool check_in_model) const {
|
|
std::unordered_map<unsigned_vector, std::unordered_set<lpvar>, hash_svector> lists;
|
|
if (!m_emons.elists_are_consistent(lists))
|
|
return false;
|
|
|
|
if (!check_in_model)
|
|
return true;
|
|
for (const auto & p : lists) {
|
|
if (! elist_is_consistent(p.second))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool core::var_breaks_correct_monic_as_factor(lpvar j, const monic& m) const {
|
|
if (!val(var(m)).is_zero())
|
|
return true;
|
|
|
|
if (!val(j).is_zero()) // j was not zero: the new value does not matter - m must have another zero factor
|
|
return false;
|
|
// do we have another zero in m?
|
|
for (lpvar k : m) {
|
|
if (k != j && val(k).is_zero()) {
|
|
return false; // not breaking
|
|
}
|
|
}
|
|
// j was the only zero in m
|
|
return true;
|
|
}
|
|
|
|
bool core::var_breaks_correct_monic(lpvar j) const {
|
|
if (is_monic_var(j) && !m_to_refine.contains(j)) {
|
|
TRACE("nla_solver", tout << "j = " << j << ", m = "; print_monic(emon(j), tout) << "\n";);
|
|
return true; // changing the value of a correct monic
|
|
}
|
|
|
|
for (const monic & m : emons().get_use_list(j)) {
|
|
if (m_to_refine.contains(m.var()))
|
|
continue;
|
|
if (var_breaks_correct_monic_as_factor(j, m))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void core::update_to_refine_of_var(lpvar j) {
|
|
for (const monic & m : emons().get_use_list(j)) {
|
|
if (var_val(m) == mul_val(m))
|
|
erase_from_to_refine(var(m));
|
|
else
|
|
insert_to_refine(var(m));
|
|
}
|
|
if (is_monic_var(j)) {
|
|
const monic& m = emon(j);
|
|
if (var_val(m) == mul_val(m))
|
|
erase_from_to_refine(j);
|
|
else
|
|
insert_to_refine(j);
|
|
}
|
|
}
|
|
|
|
bool core::var_is_big(lpvar j) const {
|
|
return !var_is_int(j) && val(j).is_big();
|
|
}
|
|
|
|
bool core::has_big_num(const monic& m) const {
|
|
if (var_is_big(var(m)))
|
|
return true;
|
|
for (lpvar j : m.vars())
|
|
if (var_is_big(j))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool core::has_real(const factorization& f) const {
|
|
for (const factor& fc: f) {
|
|
lpvar j = var(fc);
|
|
if (!var_is_int(j))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool core::has_real(const monic& m) const {
|
|
for (lpvar j : m.vars())
|
|
if (!var_is_int(j))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// returns true if the patching is blocking
|
|
bool core::is_patch_blocked(lpvar u, const lp::impq& ival) const {
|
|
TRACE("nla_solver", tout << "u = " << u << '\n';);
|
|
if (m_cautious_patching &&
|
|
(!lra.inside_bounds(u, ival) || (var_is_int(u) && ival.is_int() == false))) {
|
|
TRACE("nla_solver", tout << "u = " << u << " blocked, for feas or integr\n";);
|
|
return true; // block
|
|
}
|
|
|
|
if (u == m_patched_var) {
|
|
TRACE("nla_solver", tout << "u == m_patched_var, no block\n";);
|
|
|
|
return false; // do not block
|
|
}
|
|
// we can change only one variable in variables of m_patched_var
|
|
if (m_patched_monic->contains_var(u) || u == var(*m_patched_monic)) {
|
|
TRACE("nla_solver", tout << "u = " << u << " blocked as contained\n";);
|
|
return true; // block
|
|
}
|
|
|
|
if (var_breaks_correct_monic(u)) {
|
|
TRACE("nla_solver", tout << "u = " << u << " blocked as used in a correct monomial\n";);
|
|
return true;
|
|
}
|
|
|
|
TRACE("nla_solver", tout << "u = " << u << ", m_patched_m = "; print_monic(*m_patched_monic, tout) <<
|
|
", not blocked\n";);
|
|
|
|
return false;
|
|
}
|
|
|
|
// it tries to patch m_patched_var
|
|
bool core::try_to_patch(const rational& v) {
|
|
auto is_blocked = [this](lpvar u, const lp::impq& iv) { return is_patch_blocked(u, iv); };
|
|
auto change_report = [this](lpvar u) { update_to_refine_of_var(u); };
|
|
return lra.try_to_patch(m_patched_var, v, is_blocked, change_report);
|
|
}
|
|
|
|
bool in_power(const svector<lpvar>& vs, unsigned l) {
|
|
unsigned k = vs[l];
|
|
return (l != 0 && vs[l - 1] == k) || (l + 1 < vs.size() && k == vs[l + 1]);
|
|
}
|
|
|
|
bool core::to_refine_is_correct() const {
|
|
for (unsigned j = 0; j < lra.number_of_vars(); j++) {
|
|
if (!is_monic_var(j)) continue;
|
|
bool valid = check_monic(emon(j));
|
|
if (valid == m_to_refine.contains(j)) {
|
|
TRACE("nla_solver", tout << "inconstency in m_to_refine : ";
|
|
print_monic(emon(j), tout) << "\n";
|
|
if (valid) tout << "should NOT be in to_refine\n";
|
|
else tout << "should be in to_refine\n";);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void core::patch_monomial(lpvar j) {
|
|
m_patched_monic =& (emon(j));
|
|
m_patched_var = j;
|
|
TRACE("nla_solver", tout << "m = "; print_monic(*m_patched_monic, tout) << "\n";);
|
|
rational v = mul_val(*m_patched_monic);
|
|
if (val(j) == v) {
|
|
erase_from_to_refine(j);
|
|
return;
|
|
}
|
|
if (!var_breaks_correct_monic(j) && try_to_patch(v)) {
|
|
SASSERT(to_refine_is_correct());
|
|
return;
|
|
}
|
|
|
|
// We could not patch j, now we try patching the factor variables.
|
|
TRACE("nla_solver", tout << " trying squares\n";);
|
|
// handle perfect squares
|
|
if ((*m_patched_monic).vars().size() == 2 && (*m_patched_monic).vars()[0] == (*m_patched_monic).vars()[1]) {
|
|
rational root;
|
|
if (v.is_perfect_square(root)) {
|
|
m_patched_var = (*m_patched_monic).vars()[0];
|
|
if (!var_breaks_correct_monic(m_patched_var) && (try_to_patch(root) || try_to_patch(-root))) {
|
|
TRACE("nla_solver", tout << "patched square\n";);
|
|
return;
|
|
}
|
|
}
|
|
TRACE("nla_solver", tout << " cannot patch\n";);
|
|
return;
|
|
}
|
|
|
|
// We have v != abc, but we need to have v = abc.
|
|
// If we patch b then b should be equal to v/ac = v/(abc/b) = b(v/abc)
|
|
if (!v.is_zero()) {
|
|
rational r = val(j) / v;
|
|
SASSERT((*m_patched_monic).is_sorted());
|
|
TRACE("nla_solver", tout << "r = " << r << ", v = " << v << "\n";);
|
|
for (unsigned l = 0; l < (*m_patched_monic).size(); l++) {
|
|
m_patched_var = (*m_patched_monic).vars()[l];
|
|
if (!in_power((*m_patched_monic).vars(), l) &&
|
|
!var_breaks_correct_monic(m_patched_var) &&
|
|
try_to_patch(r * val(m_patched_var))) { // r * val(k) gives the right value of k
|
|
TRACE("nla_solver", tout << "patched " << m_patched_var << "\n";);
|
|
SASSERT(mul_val((*m_patched_monic)) == val(j));
|
|
erase_from_to_refine(j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void core::patch_monomials_on_to_refine() {
|
|
// the rest of the function might change m_to_refine, so have to copy
|
|
unsigned_vector to_refine;
|
|
for (unsigned j : m_to_refine)
|
|
to_refine.push_back(j);
|
|
|
|
unsigned sz = to_refine.size();
|
|
|
|
unsigned start = random();
|
|
for (unsigned i = 0; i < sz && !m_to_refine.empty(); i++)
|
|
patch_monomial(to_refine[(start + i) % sz]);
|
|
|
|
TRACE("nla_solver", tout << "sz = " << sz << ", m_to_refine = " << m_to_refine.size() <<
|
|
(sz > m_to_refine.size()? " less" : " same" ) << "\n";);
|
|
}
|
|
|
|
void core::patch_monomials() {
|
|
m_cautious_patching = true;
|
|
patch_monomials_on_to_refine();
|
|
}
|
|
|
|
/**
|
|
* Cycle through different end-game solvers weighted by probability.
|
|
*/
|
|
void core::check_weighted(unsigned sz, std::pair<unsigned, std::function<void(void)>>* checks) {
|
|
unsigned bound = 0;
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
bound += checks[i].first;
|
|
uint_set seen;
|
|
while (bound > 0 && !done() && m_lemmas.empty()) {
|
|
unsigned n = random() % bound;
|
|
for (unsigned i = 0; i < sz; ++i) {
|
|
if (seen.contains(i))
|
|
continue;
|
|
if (n < checks[i].first) {
|
|
seen.insert(i);
|
|
checks[i].second();
|
|
bound -= checks[i].first;
|
|
break;
|
|
}
|
|
n -= checks[i].first;
|
|
}
|
|
}
|
|
}
|
|
|
|
lbool core::check_power(lpvar r, lpvar x, lpvar y) {
|
|
clear();
|
|
return m_powers.check(r, x, y, m_lemmas);
|
|
}
|
|
|
|
void core::check_bounded_divisions() {
|
|
clear();
|
|
m_divisions.check_bounded_divisions();
|
|
}
|
|
// looking for a free variable inside of a monic to split
|
|
void core::add_bounds() {
|
|
unsigned r = random(), sz = m_to_refine.size();
|
|
for (unsigned k = 0; k < sz; k++) {
|
|
lpvar i = m_to_refine[(k + r) % sz];
|
|
auto const& m = m_emons[i];
|
|
for (lpvar j : m.vars()) {
|
|
if (!var_is_free(j))
|
|
continue;
|
|
if (m.is_bound_propagated())
|
|
continue;
|
|
m_emons.set_bound_propagated(m);
|
|
// split the free variable (j <= 0, or j > 0), and return
|
|
m_literals.push_back(ineq(j, lp::lconstraint_kind::EQ, rational::zero()));
|
|
TRACE("nla_solver", print_ineq(m_literals.back(), tout) << "\n");
|
|
++lp_settings().stats().m_nla_add_bounds;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
lbool core::check() {
|
|
lp_settings().stats().m_nla_calls++;
|
|
TRACE("nla_solver", tout << "calls = " << lp_settings().stats().m_nla_calls << "\n";);
|
|
lra.get_rid_of_inf_eps();
|
|
if (!(lra.get_status() == lp::lp_status::OPTIMAL ||
|
|
lra.get_status() == lp::lp_status::FEASIBLE)) {
|
|
TRACE("nla_solver", tout << "unknown because of the lra.m_status = " << lra.get_status() << "\n";);
|
|
return l_undef;
|
|
}
|
|
|
|
init_to_refine();
|
|
patch_monomials();
|
|
set_use_nra_model(false);
|
|
if (m_to_refine.empty())
|
|
return l_true;
|
|
init_search();
|
|
|
|
lbool ret = l_undef;
|
|
bool run_grobner = need_run_grobner();
|
|
bool run_horner = need_run_horner();
|
|
bool run_bounds = params().arith_nl_branching();
|
|
|
|
auto no_effect = [&]() { return ret == l_undef && !done() && m_lemmas.empty() && m_literals.empty() && !m_check_feasible; };
|
|
|
|
if (no_effect())
|
|
m_monomial_bounds.propagate();
|
|
|
|
{
|
|
std::function<void(void)> check1 = [&]() { if (no_effect() && run_horner) m_horner.horner_lemmas(); };
|
|
std::function<void(void)> check2 = [&]() { if (no_effect() && run_grobner) m_grobner(); };
|
|
std::function<void(void)> check3 = [&]() { if (no_effect() && run_bounds) add_bounds(); };
|
|
|
|
std::pair<unsigned, std::function<void(void)>> checks[] =
|
|
{ {1, check1},
|
|
{1, check2},
|
|
{1, check3} };
|
|
check_weighted(3, checks);
|
|
|
|
if (lp_settings().get_cancel_flag())
|
|
return l_undef;
|
|
if (!m_lemmas.empty() || !m_literals.empty() || m_check_feasible)
|
|
return l_false;
|
|
}
|
|
|
|
if (no_effect() && params().arith_nl_nra()) {
|
|
ret = m_nra.check();
|
|
lp_settings().stats().m_nra_calls++;
|
|
}
|
|
|
|
|
|
if (no_effect() && should_run_bounded_nlsat())
|
|
ret = bounded_nlsat();
|
|
|
|
if (no_effect())
|
|
m_basics.basic_lemma(true);
|
|
|
|
if (no_effect())
|
|
m_basics.basic_lemma(false);
|
|
|
|
if (no_effect())
|
|
m_divisions.check();
|
|
|
|
|
|
if (false && no_effect()) {
|
|
std::function<void(void)> check1 = [&]() { m_order.order_lemma();
|
|
};
|
|
std::function<void(void)> check2 = [&]() { m_monotone.monotonicity_lemma();
|
|
};
|
|
std::function<void(void)> check3 = [&]() { m_tangents.tangent_lemma();
|
|
};
|
|
|
|
std::pair<unsigned, std::function<void(void)>> checks[] =
|
|
{ { 6, check1 },
|
|
{ 2, check2 },
|
|
{ 1, check3 }};
|
|
check_weighted(3, checks);
|
|
|
|
unsigned num_calls = lp_settings().stats().m_nla_calls;
|
|
if (!conflict_found() && params().arith_nl_nra() && num_calls % 50 == 0 && num_calls > 500)
|
|
ret = bounded_nlsat();
|
|
}
|
|
|
|
if (no_effect() && params().arith_nl_nra()) {
|
|
ret = m_nra.check();
|
|
lp_settings().stats().m_nra_calls++;
|
|
}
|
|
|
|
if (ret == l_undef && !no_effect() && m_reslim.inc())
|
|
ret = l_false;
|
|
|
|
lp_settings().stats().m_nla_lemmas += m_lemmas.size();
|
|
|
|
TRACE("nla_solver", tout << "ret = " << ret << ", lemmas count = " << m_lemmas.size() << "\n";);
|
|
IF_VERBOSE(5, if(ret == l_undef) {verbose_stream() << "Monomials\n"; print_monics(verbose_stream());});
|
|
CTRACE("nla_solver", ret == l_undef, tout << "Monomials\n"; print_monics(tout););
|
|
return ret;
|
|
}
|
|
|
|
bool core::should_run_bounded_nlsat() {
|
|
if (!params().arith_nl_nra())
|
|
return false;
|
|
if (m_nlsat_delay > 0)
|
|
--m_nlsat_delay;
|
|
return m_nlsat_delay < 2;
|
|
}
|
|
|
|
lbool core::bounded_nlsat() {
|
|
params_ref p;
|
|
lbool ret;
|
|
p.set_uint("max_conflicts", 100);
|
|
m_nra.updt_params(p);
|
|
{
|
|
scoped_limits sl(m_reslim);
|
|
sl.push_child(&m_nra_lim);
|
|
scoped_rlimit sr(m_nra_lim, 100000);
|
|
ret = m_nra.check();
|
|
}
|
|
p.set_uint("max_conflicts", UINT_MAX);
|
|
m_nra.updt_params(p);
|
|
lp_settings().stats().m_nra_calls++;
|
|
if (ret == l_undef)
|
|
++m_nlsat_delay_bound;
|
|
else if (m_nlsat_delay_bound > 0)
|
|
m_nlsat_delay_bound /= 2;
|
|
|
|
m_nlsat_delay = m_nlsat_delay_bound;
|
|
|
|
if (ret == l_true)
|
|
clear();
|
|
return ret;
|
|
}
|
|
|
|
bool core::no_lemmas_hold() const {
|
|
for (auto & l : m_lemmas) {
|
|
if (lemma_holds(l)) {
|
|
TRACE("nla_solver", print_lemma(l, tout););
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
lbool core::test_check() {
|
|
lra.set_status(lp::lp_status::OPTIMAL);
|
|
return check();
|
|
}
|
|
|
|
std::ostream& core::print_terms(std::ostream& out) const {
|
|
for (const auto * t: lra.terms()) {
|
|
out << "term:"; print_term(*t, out) << std::endl;
|
|
print_var(t->j(), out);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::string core::var_str(lpvar j) const {
|
|
std::string result;
|
|
if (is_monic_var(j))
|
|
result += product_indices_str(m_emons[j].vars()) + (check_monic(m_emons[j])? "": "_");
|
|
else
|
|
result += std::string("j") + lp::T_to_string(j);
|
|
// result += ":w" + lp::T_to_string(get_var_weight(j));
|
|
return result;
|
|
}
|
|
|
|
std::ostream& core::print_term( const lp::lar_term& t, std::ostream& out) const {
|
|
return lp::print_linear_combination_customized(
|
|
t.coeffs_as_vector(),
|
|
[this](lpvar j) { return var_str(j); },
|
|
out);
|
|
}
|
|
|
|
|
|
|
|
|
|
std::unordered_set<lpvar> core::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
|
auto ret = get_vars_of_expr(e);
|
|
auto & ls = lra;
|
|
svector<lpvar> added;
|
|
for (auto j : ret) {
|
|
added.push_back(j);
|
|
}
|
|
for (unsigned i = 0; i < added.size(); ++i) {
|
|
lpvar j = added[i];
|
|
if (ls.column_has_term(j)) {
|
|
const auto& t = lra.get_term(j);
|
|
for (auto p : t) {
|
|
if (ret.find(p.j()) == ret.end()) {
|
|
added.push_back(p.j());
|
|
ret.insert(p.j());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
bool core::is_nl_var(lpvar j) const {
|
|
return is_monic_var(j) || m_emons.is_used_in_monic(j);
|
|
}
|
|
|
|
|
|
unsigned core::get_var_weight(lpvar j) const {
|
|
unsigned k;
|
|
switch (lra.get_column_type(j)) {
|
|
|
|
case lp::column_type::fixed:
|
|
k = 0;
|
|
break;
|
|
case lp::column_type::boxed:
|
|
k = 3;
|
|
break;
|
|
case lp::column_type::lower_bound:
|
|
case lp::column_type::upper_bound:
|
|
k = 6;
|
|
break;
|
|
case lp::column_type::free_column:
|
|
k = 9;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
if (is_monic_var(j)) {
|
|
k++;
|
|
if (m_to_refine.contains(j))
|
|
k++;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
|
|
void core::set_active_vars_weights(nex_creator& nc) {
|
|
nc.set_number_of_vars(lra.column_count());
|
|
for (lpvar j : active_var_set())
|
|
nc.set_var_weight(j, get_var_weight(j));
|
|
}
|
|
|
|
bool core::influences_nl_var(lpvar j) const {
|
|
if (is_nl_var(j))
|
|
return true;
|
|
for (const auto & c : lra.A_r().m_columns[j]) {
|
|
lpvar basic_in_row = lra.r_basis()[c.var()];
|
|
if (is_nl_var(basic_in_row))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void core::set_use_nra_model(bool m) {
|
|
if (m != m_use_nra_model) {
|
|
trail().push(value_trail(m_use_nra_model));
|
|
m_use_nra_model = m;
|
|
}
|
|
}
|
|
|
|
void core::propagate() {
|
|
#if Z3DEBUG
|
|
flet f(lra.validate_blocker(), true);
|
|
#endif
|
|
clear();
|
|
m_monomial_bounds.unit_propagate();
|
|
m_monics_with_changed_bounds.reset();
|
|
}
|
|
|
|
void core::simplify() {
|
|
// in-processing simplifiation can go here, such as bounds improvements.
|
|
|
|
}
|
|
|
|
|
|
|
|
|