3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00
z3/src/math/lp/numeric_pair.h
Lev Nachmanson 33cbd29ed0 mv util/lp to math/lp
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

394 lines
13 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#define lp_for_z3
#include <string>
#include <cmath>
#include <algorithm>
#ifdef lp_for_z3
#include "util/rational.h"
#include "util/sstream.h"
#include "util/z3_exception.h"
#else
// include "util/numerics/mpq.h"
// include "util/numerics/numeric_traits.h"
#endif
namespace lp {
#ifdef lp_for_z3 // rename rationals
typedef rational mpq;
#else
typedef lp::mpq mpq;
#endif
template <typename T>
std::string T_to_string(const T & t); // forward definition
#ifdef lp_for_z3
template <typename T> class numeric_traits {};
template <> class numeric_traits<unsigned> {
public:
static bool precise() { return true; }
static unsigned zero() { return 0; }
static unsigned one() { return 1; }
static bool is_zero(unsigned v) { return v == 0; }
static double get_double(unsigned const & d) { return d; }
static bool is_int(unsigned) {return true;}
static bool is_pos(unsigned) {return true;}
};
template <> class numeric_traits<int> {
public:
static bool precise() { return true; }
static int zero() { return 0; }
static int one() { return 1; }
static bool is_zero(int v) { return v == 0; }
static double get_double(int const & d) { return d; }
static bool is_int(int) {return true;}
static bool is_pos(int j) {return j > 0;}
static bool is_neg(int j) {return j < 0;}
static int ceil_ratio(int a, int b) { return static_cast<int>(ceil(mpq(a, b)).get_int32());}
static int floor_ratio(int a, int b) { return static_cast<int>(floor(mpq(a, b)).get_int32());}
};
template <> class numeric_traits<double> {
public:
static bool precise() { return false; }
static double g_zero;
static double const &zero() { return g_zero; }
static double g_one;
static double const &one() { return g_one; }
static bool is_zero(double v) { return v == 0.0; }
static double const & get_double(double const & d) { return d;}
static double log(double const & d) { NOT_IMPLEMENTED_YET(); return d;}
static double from_string(std::string const & str) { return atof(str.c_str()); }
static bool is_pos(const double & d) {return d > 0.0;}
static bool is_neg(const double & d) {return d < 0.0;}
};
template<>
class numeric_traits<rational> {
public:
static bool precise() { return true; }
static rational const & zero() { return rational::zero(); }
static rational const & one() { return rational::one(); }
static bool is_zero(const rational & v) { return v.is_zero(); }
static double get_double(const rational & d) { return d.get_double();}
static rational log(rational const& r) { UNREACHABLE(); return r; }
static rational from_string(std::string const & str) { return rational(str.c_str()); }
static bool is_pos(const rational & d) {return d.is_pos();}
static bool is_neg(const rational & d) {return d.is_neg();}
static bool is_int(const rational & d) {return d.is_int();}
static mpq ceil_ratio(const mpq & a, const mpq & b) {
return ceil(a / b);
}
static mpq floor_ratio(const mpq & a, const mpq & b) {
return floor(a / b);
}
};
#endif
template <typename X, typename Y>
struct convert_struct {
static X convert(const Y & y){ return X(y);}
static bool is_epsilon_small(const X & x, const double & y) { return std::abs(numeric_traits<X>::get_double(x)) < y; }
static bool below_bound_numeric(const X &, const X &, const Y &) { /*lp_unreachable();*/ return false;}
static bool above_bound_numeric(const X &, const X &, const Y &) { /*lp_unreachable();*/ return false; }
};
template <>
struct convert_struct<double, mpq> {
static double convert(const mpq & q) {return q.get_double();}
};
template <>
struct convert_struct<mpq, unsigned> {
static mpq convert(unsigned q) {return mpq(q);}
};
template <typename T>
struct numeric_pair {
T x;
T y;
// empty constructor
numeric_pair() {}
// another constructor
numeric_pair(T xp, T yp) : x(xp), y(yp) {}
template <typename X>
explicit numeric_pair(const X & n) : x(n), y(0) {
}
numeric_pair(const numeric_pair<T> & n) : x(n.x), y(n.y) {}
template <typename X, typename Y>
numeric_pair(X xp, Y yp) : x(convert_struct<T, X>::convert(xp)), y(convert_struct<T, Y>::convert(yp)) {}
bool operator<(const numeric_pair& a) const {
return x < a.x || (x == a.x && y < a.y);
}
bool operator>(const numeric_pair& a) const {
return x > a.x || (x == a.x && y > a.y);
}
bool operator==(const numeric_pair& a) const {
return a.x == x && a.y == y;
}
bool operator!=(const numeric_pair& a) const {
return !(*this == a);
}
bool operator<=(const numeric_pair& a) const {
return *this < a || *this == a;
}
bool operator>=(const numeric_pair& a) const {
return *this > a || a == *this;
}
numeric_pair operator*(const T & a) const {
return numeric_pair(a * x, a * y);
}
numeric_pair operator/(const T & a) const {
T a_as_T(a);
return numeric_pair(x / a_as_T, y / a_as_T);
}
numeric_pair operator/(const numeric_pair &) const {
// lp_unreachable();
}
numeric_pair operator+(const numeric_pair & a) const {
return numeric_pair(a.x + x, a.y + y);
}
numeric_pair operator*(const numeric_pair & /*a*/) const {
// lp_unreachable();
}
numeric_pair& operator+=(const numeric_pair & a) {
x += a.x;
y += a.y;
return *this;
}
numeric_pair& operator-=(const numeric_pair & a) {
x -= a.x;
y -= a.y;
return *this;
}
numeric_pair& operator/=(const T & a) {
x /= a;
y /= a;
return *this;
}
numeric_pair& operator*=(const T & a) {
x *= a;
y *= a;
return *this;
}
numeric_pair operator-(const numeric_pair & a) const {
return numeric_pair(x - a.x, y - a.y);
}
numeric_pair operator-() const {
return numeric_pair(-x, -y);
}
static bool precize() { return lp::numeric_traits<T>::precize();}
bool is_zero() const { return x.is_zero() && y.is_zero(); }
bool is_pos() const { return x.is_pos() || (x.is_zero() && y.is_pos());}
bool is_neg() const { return x.is_neg() || (x.is_zero() && y.is_neg());}
std::string to_string() const {
return std::string("(") + T_to_string(x) + ", " + T_to_string(y) + ")";
}
bool is_int() const {
return x.is_int() && y.is_zero();
}
};
template <typename T>
std::ostream& operator<<(std::ostream& os, numeric_pair<T> const & obj) {
os << obj.to_string();
return os;
}
template <typename T, typename X>
numeric_pair<T> operator*(const X & a, const numeric_pair<T> & r) {
return numeric_pair<T>(a * r.x, a * r.y);
}
template <typename T, typename X>
numeric_pair<T> operator*(const numeric_pair<T> & r, const X & a) {
return numeric_pair<T>(a * r.x, a * r.y);
}
template <typename T, typename X>
numeric_pair<T> operator/(const numeric_pair<T> & r, const X & a) {
return numeric_pair<T>(r.x / a, r.y / a);
}
// template <numeric_pair, typename T> bool precise() { return numeric_traits<T>::precise();}
template <typename T> double get_double(const lp::numeric_pair<T> & ) { /* lp_unreachable(); */ return 0;}
template <typename T>
class numeric_traits<lp::numeric_pair<T>> {
public:
static bool precise() { return numeric_traits<T>::precise();}
static lp::numeric_pair<T> zero() { return lp::numeric_pair<T>(numeric_traits<T>::zero(), numeric_traits<T>::zero()); }
static bool is_zero(const lp::numeric_pair<T> & v) { return numeric_traits<T>::is_zero(v.x) && numeric_traits<T>::is_zero(v.y); }
static double get_double(const lp::numeric_pair<T> & v){ return numeric_traits<T>::get_double(v.x); } // just return the double of the first coordinate
static double one() { /*lp_unreachable();*/ return 0;}
static bool is_pos(const numeric_pair<T> &p) {
return numeric_traits<T>::is_pos(p.x) ||
(numeric_traits<T>::is_zero(p.x) && numeric_traits<T>::is_pos(p.y));
}
static bool is_neg(const numeric_pair<T> &p) {
return numeric_traits<T>::is_neg(p.x) ||
(numeric_traits<T>::is_zero(p.x) && numeric_traits<T>::is_neg(p.y));
}
static bool is_int(const numeric_pair<T> & p) {
return numeric_traits<T>::is_int(p.x) && numeric_traits<T>::is_zero(p.y);
}
};
template <>
struct convert_struct<double, numeric_pair<double>> {
static double convert(const numeric_pair<double> & q) {return q.x;}
};
typedef numeric_pair<mpq> impq;
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition { return convert_struct<X, double>::is_epsilon_small(v, eps);}
template <typename T>
struct convert_struct<numeric_pair<T>, double> {
static numeric_pair<T> convert(const double & q) {
return numeric_pair<T>(convert_struct<T, double>::convert(q), numeric_traits<T>::zero());
}
static bool is_epsilon_small(const numeric_pair<T> & p, const double & eps) {
return convert_struct<T, double>::is_epsilon_small(p.x, eps) && convert_struct<T, double>::is_epsilon_small(p.y, eps);
}
static bool below_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
// lp_unreachable();
return false;
}
static bool above_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
// lp_unreachable();
return false;
}
};
template <>
struct convert_struct<numeric_pair<double>, double> {
static numeric_pair<double> convert(const double & q) {
return numeric_pair<double>(q, 0.0);
}
static bool is_epsilon_small(const numeric_pair<double> & p, const double & eps) {
return std::abs(p.x) < eps && std::abs(p.y) < eps;
}
static int compare_on_coord(const double & x, const double & bound, const double eps) {
if (bound == 0) return (x < - eps)? -1: (x > eps? 1 : 0); // it is an important special case
double relative = (bound > 0)? - eps: eps;
return (x < bound * (1.0 + relative) - eps)? -1 : ((x > bound * (1.0 - relative) + eps)? 1 : 0);
}
static bool below_bound_numeric(const numeric_pair<double> & x, const numeric_pair<double> & bound, const double & eps) {
int r = compare_on_coord(x.x, bound.x, eps);
if (r == 1) return false;
if (r == -1) return true;
// the first coordinates are almost the same
return compare_on_coord(x.y, bound.y, eps) == -1;
}
static bool above_bound_numeric(const numeric_pair<double> & x, const numeric_pair<double> & bound, const double & eps) {
int r = compare_on_coord(x.x, bound.x, eps);
if (r == -1) return false;
if (r == 1) return true;
// the first coordinates are almost the same
return compare_on_coord(x.y, bound.y, eps) == 1;
}
};
template <>
struct convert_struct<double, double> {
static bool is_epsilon_small(const double& x, const double & eps) {
return x < eps && x > -eps;
}
static double convert(const double & y){ return y;}
static bool below_bound_numeric(const double & x, const double & bound, const double & eps) {
if (bound == 0) return x < - eps;
double relative = (bound > 0)? - eps: eps;
return x < bound * (1.0 + relative) - eps;
}
static bool above_bound_numeric(const double & x, const double & bound, const double & eps) {
if (bound == 0) return x > eps;
double relative = (bound > 0)? eps: - eps;
return x > bound * (1.0 + relative) + eps;
}
};
template <typename X> bool is_epsilon_small(const X & v, const double &eps) { return convert_struct<X, double>::is_epsilon_small(v, eps);}
template <typename X> bool below_bound_numeric(const X & x, const X & bound, const double& eps) { return convert_struct<X, double>::below_bound_numeric(x, bound, eps);}
template <typename X> bool above_bound_numeric(const X & x, const X & bound, const double& eps) { return convert_struct<X, double>::above_bound_numeric(x, bound, eps);}
template <typename T> T floor(const numeric_pair<T> & r) {
if (r.x.is_int()) {
if (r.y.is_nonneg()) {
return r.x;
}
return r.x - mpq::one();
}
return floor(r.x);
}
template <typename T> T ceil(const numeric_pair<T> & r) {
if (r.x.is_int()) {
if (r.y.is_nonpos()) {
return r.x;
}
return r.x + mpq::one();
}
return ceil(r.x);
}
}