3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 03:15:50 +00:00
z3/src/math/lp/nla_monotone_lemmas.cpp
Nikolaj Bjorner 34cc60410f additional str/re operators, remove encoding option from zstring
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-05-17 05:08:36 -07:00

90 lines
2.4 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Author:
Lev Nachmanson (levnach)
Nikolaj Bjorner (nbjorner)
--*/
#include "math/lp/nla_basics_lemmas.h"
#include "math/lp/nla_core.h"
namespace nla {
monotone::monotone(core * c) : common(c) {}
void monotone::monotonicity_lemma() {
unsigned shift = random();
unsigned size = c().m_to_refine.size();
for (unsigned i = 0; i < size && !done(); i++) {
lpvar v = c().m_to_refine[(i + shift) % size];
monotonicity_lemma(c().emons()[v]);
}
}
void monotone::monotonicity_lemma(monic const& m) {
SASSERT(!check_monic(m));
if (c().mon_has_zero(m.vars()))
return;
if (c().has_big_num(m))
return;
const rational prod_val = abs(c().product_value(m));
const rational m_val = abs(var_val(m));
if (m_val < prod_val)
monotonicity_lemma_lt(m);
else if (m_val > prod_val)
monotonicity_lemma_gt(m);
}
/** \brief enforce the inequality |m| <= product |m[i]| .
/\_i |m[i]| <= |val(m[i])| => |m| <= |product_i val(m[i])|
<=>
\/_i |m[i]| > |val(m[i])| or |m| <= |product_i val(m[i])|
implied by
m[i] > val(m[i]) for val(m[i]) > 0
m[i] < val(m[i]) for val(m[i]) < 0
m >= product m[i] for product m[i] < 0
m <= product m[i] for product m[i] > 0
Example:
0 >= x >= -2 & 0 <= y <= 3 => x*y >= -6
0 >= x >= -2 & 0 <= y <= 3 => x*x*y <= 12
*/
void monotone::monotonicity_lemma_gt(const monic& m) {
new_lemma lemma(c(), "monotonicity > ");
rational product(1);
for (lpvar j : m.vars()) {
auto v = c().val(j);
lemma |= ineq(j, v.is_neg() ? llc::LT : llc::GT, v);
lemma |= ineq(j, v.is_neg() ? llc::GT : llc::LT, 0);
product *= v;
}
lemma |= ineq(m.var(), product.is_neg() ? llc::GE : llc::LE, product);
}
/** \brief enforce the inequality |m| >= product |m[i]| .
/\_i |m[i]| >= |val(m[i])| => |m| >= |product_i val(m[i])|
<=>
\/_i |m[i]| < |val(m[i])| or |m| >= |product_i val(m[i])|
Example:
x <= -2 & y >= 3 => x*y <= -6
*/
void monotone::monotonicity_lemma_lt(const monic& m) {
new_lemma lemma(c(), "monotonicity <");
rational product(1);
for (lpvar j : m.vars()) {
auto v = c().val(j);
lemma |= ineq(j, v.is_neg() ? llc::GT : llc::LT, v);
product *= v;
}
lemma |= ineq(m.var(), product.is_neg() ? llc::LE : llc::GE, product);
}
}