mirror of
https://github.com/Z3Prover/z3
synced 2025-10-08 00:41:56 +00:00
189 lines
6.3 KiB
C++
189 lines
6.3 KiB
C++
/*++
|
|
Copyright (c) 2025 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
finite_sets_decl_plugin.h
|
|
|
|
Abstract:
|
|
Declaration plugin for finite sets signatures
|
|
|
|
Sort:
|
|
FiniteSet(S)
|
|
|
|
Operators:
|
|
set.empty : (FiniteSet S)
|
|
set.singleton : S -> (FiniteSet S)
|
|
set.union : (FiniteSet S) (FiniteSet S) -> (FiniteSet S)
|
|
set.intersect : (FiniteSet S) (FiniteSet S) -> (FiniteSet S)
|
|
set.difference : (FiniteSet S) (FiniteSet S) -> (FiniteSet S)
|
|
set.in : S (FiniteSet S) -> Bool
|
|
set.size : (FiniteSet S) -> Int
|
|
set.subset : (FiniteSet S) (FiniteSet S) -> Bool
|
|
set.map : (S -> T) (FiniteSet S) -> (FiniteSet T)
|
|
set.filter : (S -> Bool) (FiniteSet S) -> (FiniteSet S)
|
|
set.range : Int Int -> (FiniteSet Int)
|
|
|
|
--*/
|
|
#pragma once
|
|
|
|
#include "ast/ast.h"
|
|
|
|
enum finite_sets_sort_kind {
|
|
FINITE_SET_SORT
|
|
};
|
|
|
|
enum finite_sets_op_kind {
|
|
OP_FINITE_SET_EMPTY,
|
|
OP_FINITE_SET_SINGLETON,
|
|
OP_FINITE_SET_UNION,
|
|
OP_FINITE_SET_INTERSECT,
|
|
OP_FINITE_SET_DIFFERENCE,
|
|
OP_FINITE_SET_IN,
|
|
OP_FINITE_SET_SIZE,
|
|
OP_FINITE_SET_SUBSET,
|
|
OP_FINITE_SET_MAP,
|
|
OP_FINITE_SET_FILTER,
|
|
OP_FINITE_SET_RANGE,
|
|
LAST_FINITE_SET_OP
|
|
};
|
|
|
|
class finite_sets_decl_plugin : public decl_plugin {
|
|
symbol m_empty_sym;
|
|
symbol m_singleton_sym;
|
|
symbol m_union_sym;
|
|
symbol m_intersect_sym;
|
|
symbol m_difference_sym;
|
|
symbol m_in_sym;
|
|
symbol m_size_sym;
|
|
symbol m_subset_sym;
|
|
symbol m_map_sym;
|
|
symbol m_filter_sym;
|
|
symbol m_range_sym;
|
|
|
|
func_decl * mk_empty(sort* element_sort);
|
|
func_decl * mk_singleton(unsigned arity, sort * const * domain);
|
|
func_decl * mk_union(unsigned arity, sort * const * domain);
|
|
func_decl * mk_intersect(unsigned arity, sort * const * domain);
|
|
func_decl * mk_difference(unsigned arity, sort * const * domain);
|
|
func_decl * mk_in(unsigned arity, sort * const * domain);
|
|
func_decl * mk_size(unsigned arity, sort * const * domain);
|
|
func_decl * mk_subset(unsigned arity, sort * const * domain);
|
|
func_decl * mk_map(func_decl* f, unsigned arity, sort* const* domain);
|
|
func_decl * mk_filter(func_decl* f, unsigned arity, sort* const* domain);
|
|
func_decl * mk_range(unsigned arity, sort * const * domain);
|
|
|
|
bool check_finite_set_arguments(unsigned arity, sort * const * domain);
|
|
sort * get_element_sort(sort* finite_set_sort) const;
|
|
|
|
public:
|
|
finite_sets_decl_plugin();
|
|
|
|
decl_plugin * mk_fresh() override {
|
|
return alloc(finite_sets_decl_plugin);
|
|
}
|
|
|
|
//
|
|
// Contract for sort:
|
|
// parameters[0] - element sort
|
|
//
|
|
sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) override;
|
|
|
|
//
|
|
// Contract for func_decl:
|
|
// For OP_FINITE_SET_MAP and OP_FINITE_SET_FILTER:
|
|
// parameters[0] - function declaration
|
|
// For others:
|
|
// no parameters
|
|
func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
|
|
unsigned arity, sort * const * domain, sort * range) override;
|
|
|
|
void get_op_names(svector<builtin_name> & op_names, symbol const & logic) override;
|
|
|
|
void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic) override;
|
|
|
|
expr * get_some_value(sort * s) override;
|
|
|
|
bool is_fully_interp(sort * s) const override;
|
|
|
|
bool is_value(app * e) const override;
|
|
|
|
bool is_unique_value(app* e) const override;
|
|
};
|
|
|
|
class finite_sets_recognizers {
|
|
protected:
|
|
family_id m_fid;
|
|
public:
|
|
finite_sets_recognizers(family_id fid):m_fid(fid) {}
|
|
family_id get_family_id() const { return m_fid; }
|
|
bool is_finite_set(sort* s) const { return is_sort_of(s, m_fid, FINITE_SET_SORT); }
|
|
bool is_finite_set(expr* n) const { return is_finite_set(n->get_sort()); }
|
|
bool is_empty(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_EMPTY); }
|
|
bool is_singleton(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_SINGLETON); }
|
|
bool is_union(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_UNION); }
|
|
bool is_intersect(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_INTERSECT); }
|
|
bool is_difference(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_DIFFERENCE); }
|
|
bool is_in(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_IN); }
|
|
bool is_size(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_SIZE); }
|
|
bool is_subset(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_SUBSET); }
|
|
bool is_map(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_MAP); }
|
|
bool is_filter(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_FILTER); }
|
|
bool is_range(expr* n) const { return is_app_of(n, m_fid, OP_FINITE_SET_RANGE); }
|
|
};
|
|
|
|
class finite_sets_util : public finite_sets_recognizers {
|
|
ast_manager& m_manager;
|
|
public:
|
|
finite_sets_util(ast_manager& m):
|
|
finite_sets_recognizers(m.mk_family_id("finite_sets")), m_manager(m) {}
|
|
|
|
ast_manager& get_manager() const { return m_manager; }
|
|
|
|
app * mk_empty(sort* element_sort) {
|
|
parameter param(element_sort);
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_EMPTY, 1, ¶m, 0, nullptr);
|
|
}
|
|
|
|
app * mk_singleton(expr* elem) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_SINGLETON, elem);
|
|
}
|
|
|
|
app * mk_union(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_UNION, s1, s2);
|
|
}
|
|
|
|
app * mk_intersect(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_INTERSECT, s1, s2);
|
|
}
|
|
|
|
app * mk_difference(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_DIFFERENCE, s1, s2);
|
|
}
|
|
|
|
app * mk_in(expr* elem, expr* set) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_IN, elem, set);
|
|
}
|
|
|
|
app * mk_size(expr* set) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_SIZE, set);
|
|
}
|
|
|
|
app * mk_subset(expr* s1, expr* s2) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_SUBSET, s1, s2);
|
|
}
|
|
|
|
app * mk_map(func_decl* f, expr* set) {
|
|
parameter param(f);
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_MAP, 1, ¶m, 1, &set);
|
|
}
|
|
|
|
app * mk_filter(func_decl* f, expr* set) {
|
|
parameter param(f);
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_FILTER, 1, ¶m, 1, &set);
|
|
}
|
|
|
|
app * mk_range(expr* low, expr* high) {
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_RANGE, low, high);
|
|
}
|
|
};
|