3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 09:55:19 +00:00
z3/src/sat/sat_solver/inc_sat_solver.cpp
Nikolaj Bjorner 949c21ca08 enable incremental sat for QF_BV
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2015-06-21 02:23:56 -07:00

438 lines
14 KiB
C++

/*++
Copyright (c) 2014 Microsoft Corporation
Module Name:
inc_sat_solver.cpp
Abstract:
incremental solver based on SAT core.
Author:
Nikolaj Bjorner (nbjorner) 2014-7-30
Notes:
--*/
#include "solver.h"
#include "tactical.h"
#include "sat_solver.h"
#include "tactic2solver.h"
#include "aig_tactic.h"
#include "propagate_values_tactic.h"
#include "max_bv_sharing_tactic.h"
#include "card2bv_tactic.h"
#include "bit_blaster_tactic.h"
#include "simplify_tactic.h"
#include "goal2sat.h"
#include "ast_pp.h"
#include "model_smt2_pp.h"
// incremental SAT solver.
class inc_sat_solver : public solver {
ast_manager& m;
sat::solver m_solver;
goal2sat m_goal2sat;
params_ref m_params;
bool m_optimize_model; // parameter
expr_ref_vector m_fmls;
expr_ref_vector m_asmsf;
unsigned_vector m_fmls_lim;
unsigned_vector m_asms_lim;
unsigned_vector m_fmls_head_lim;
unsigned m_fmls_head;
expr_ref_vector m_core;
atom2bool_var m_map;
model_ref m_model;
model_converter_ref m_mc;
tactic_ref m_preprocess;
unsigned m_num_scopes;
sat::literal_vector m_asms;
goal_ref_buffer m_subgoals;
proof_converter_ref m_pc;
model_converter_ref m_mc2;
expr_dependency_ref m_dep_core;
expr_ref_vector m_soft;
vector<rational> m_weights;
bool m_soft_assumptions;
typedef obj_map<expr, sat::literal> dep2asm_t;
public:
inc_sat_solver(ast_manager& m, params_ref const& p):
m(m), m_solver(p,0),
m_params(p), m_optimize_model(false),
m_fmls(m),
m_asmsf(m),
m_fmls_head(0),
m_core(m),
m_map(m),
m_num_scopes(0),
m_dep_core(m),
m_soft(m),
m_soft_assumptions(false) {
m_params.set_bool("elim_vars", false);
m_solver.updt_params(m_params);
params_ref simp2_p = p;
simp2_p.set_bool("som", true);
simp2_p.set_bool("pull_cheap_ite", true);
simp2_p.set_bool("push_ite_bv", false);
simp2_p.set_bool("local_ctx", true);
simp2_p.set_uint("local_ctx_limit", 10000000);
simp2_p.set_bool("flat", true); // required by som
simp2_p.set_bool("hoist_mul", false); // required by som
m_preprocess =
and_then(mk_card2bv_tactic(m, m_params),
//mk_simplify_tactic(m),
//mk_propagate_values_tactic(m),
using_params(mk_simplify_tactic(m), simp2_p),
mk_max_bv_sharing_tactic(m),
mk_bit_blaster_tactic(m),
mk_aig_tactic(),
using_params(mk_simplify_tactic(m), simp2_p));
}
virtual ~inc_sat_solver() {}
virtual void set_progress_callback(progress_callback * callback) {}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
m_solver.pop_to_base_level();
dep2asm_t dep2asm;
m_model = 0;
lbool r = internalize_formulas();
if (r != l_true) return r;
r = internalize_assumptions(num_assumptions, assumptions, dep2asm);
if (r != l_true) return r;
extract_assumptions(dep2asm, m_asms);
r = initialize_soft_constraints();
if (r != l_true) return r;
r = m_solver.check(m_asms.size(), m_asms.c_ptr());
switch (r) {
case l_true:
if (num_assumptions > 0) {
check_assumptions(dep2asm);
}
break;
case l_false:
// TBD: expr_dependency core is not accounted for.
if (num_assumptions > 0) {
extract_core(dep2asm);
}
break;
default:
break;
}
return r;
}
virtual void set_cancel(bool f) {
m_goal2sat.set_cancel(f);
m_solver.set_cancel(f);
if (f) m_preprocess->cancel(); else m_preprocess->reset_cancel();
}
virtual void push() {
internalize_formulas();
m_solver.user_push();
++m_num_scopes;
m_fmls_lim.push_back(m_fmls.size());
m_asms_lim.push_back(m_asmsf.size());
m_fmls_head_lim.push_back(m_fmls_head);
}
virtual void pop(unsigned n) {
if (n < m_num_scopes) { // allow inc_sat_solver to
n = m_num_scopes; // take over for another solver.
}
SASSERT(n >= m_num_scopes);
m_solver.user_pop(n);
m_num_scopes -= n;
while (n > 0) {
m_fmls_head = m_fmls_head_lim.back();
m_fmls.resize(m_fmls_lim.back());
m_fmls_lim.pop_back();
m_fmls_head_lim.pop_back();
m_asmsf.resize(m_asms_lim.back());
m_asms_lim.pop_back();
--n;
}
}
virtual unsigned get_scope_level() const {
return m_num_scopes;
}
virtual void assert_expr(expr * t, expr * a) {
if (a) {
m_asmsf.push_back(a);
assert_expr(m.mk_implies(a, t));
}
else {
assert_expr(t);
}
}
virtual void assert_expr(expr * t) {
TRACE("opt", tout << mk_pp(t, m) << "\n";);
m_fmls.push_back(t);
}
virtual void set_produce_models(bool f) {}
virtual void collect_param_descrs(param_descrs & r) {
goal2sat::collect_param_descrs(r);
sat::solver::collect_param_descrs(r);
}
virtual void updt_params(params_ref const & p) {
m_params = p;
m_params.set_bool("elim_vars", false);
m_solver.updt_params(m_params);
m_soft_assumptions = m_params.get_bool("soft_assumptions", false);
m_optimize_model = m_params.get_bool("optimize_model", false);
}
virtual void collect_statistics(statistics & st) const {
m_preprocess->collect_statistics(st);
m_solver.collect_statistics(st);
}
virtual void get_unsat_core(ptr_vector<expr> & r) {
r.reset();
r.append(m_core.size(), m_core.c_ptr());
}
virtual void get_model(model_ref & mdl) {
if (!m_model.get()) {
extract_model();
}
mdl = m_model;
}
virtual proof * get_proof() {
UNREACHABLE();
return 0;
}
virtual std::string reason_unknown() const {
return "no reason given";
}
virtual void get_labels(svector<symbol> & r) {
UNREACHABLE();
}
virtual unsigned get_num_assertions() const {
return m_fmls.size();
}
virtual expr * get_assertion(unsigned idx) const {
return m_fmls[idx];
}
virtual unsigned get_num_assumptions() const {
return m_asmsf.size();
}
virtual expr * get_assumption(unsigned idx) const {
return m_asmsf[idx];
}
void set_soft(unsigned sz, expr*const* soft, rational const* weights) {
m_soft.reset();
m_weights.reset();
m_soft.append(sz, soft);
m_weights.append(sz, weights);
}
private:
lbool initialize_soft_constraints() {
dep2asm_t dep2asm;
if (m_soft.empty()) {
return l_true;
}
expr_ref_vector soft(m_soft);
for (unsigned i = 0; i < soft.size(); ++i) {
expr* e = soft[i].get(), *e1;
if (is_uninterp_const(e) || (m.is_not(e, e1) && is_uninterp_const(e1))) {
continue;
}
expr_ref asum(m), fml(m);
asum = m.mk_fresh_const("soft", m.mk_bool_sort());
fml = m.mk_iff(asum, e);
m_fmls.push_back(fml);
soft[i] = asum;
}
m_soft.reset();
lbool r = internalize_formulas();
if (r != l_true) return r;
r = internalize_assumptions(soft.size(), soft.c_ptr(), dep2asm);
if (r != l_true) return r;
sat::literal_vector lits;
svector<double> weights;
sat::literal lit;
for (unsigned i = 0; i < soft.size(); ++i) {
weights.push_back(m_weights[i].get_double());
expr* s = soft[i].get();
if (!dep2asm.find(s, lit)) {
IF_VERBOSE(0,
verbose_stream() << "not found: " << mk_pp(s, m) << "\n";
dep2asm_t::iterator it = dep2asm.begin();
dep2asm_t::iterator end = dep2asm.end();
for (; it != end; ++it) {
verbose_stream() << mk_pp(it->m_key, m) << " " << it->m_value << "\n";
}
UNREACHABLE(););
}
lits.push_back(lit);
}
m_solver.initialize_soft(lits.size(), lits.c_ptr(), weights.c_ptr());
return r;
}
lbool internalize_goal(goal_ref& g, dep2asm_t& dep2asm) {
m_mc2.reset();
m_pc.reset();
m_dep_core.reset();
m_subgoals.reset();
SASSERT(g->models_enabled());
SASSERT(!g->proofs_enabled());
TRACE("opt", g->display(tout););
try {
(*m_preprocess)(g, m_subgoals, m_mc2, m_pc, m_dep_core);
}
catch (tactic_exception & ex) {
IF_VERBOSE(0, verbose_stream() << "exception in tactic " << ex.msg() << "\n";);
return l_undef;
}
m_mc = concat(m_mc.get(), m_mc2.get());
if (m_subgoals.size() != 1) {
IF_VERBOSE(0, verbose_stream() << "size of subgoals is not 1, it is: " << m_subgoals.size() << "\n";);
return l_undef;
}
g = m_subgoals[0];
TRACE("opt", g->display_with_dependencies(tout););
m_goal2sat(*g, m_params, m_solver, m_map, dep2asm, true);
return l_true;
}
lbool internalize_assumptions(unsigned sz, expr* const* asms, dep2asm_t& dep2asm) {
if (sz == 0) {
return l_true;
}
goal_ref g = alloc(goal, m, true, true); // models and cores are enabled.
for (unsigned i = 0; i < sz; ++i) {
g->assert_expr(asms[i], m.mk_leaf(asms[i]));
}
return internalize_goal(g, dep2asm);
}
lbool internalize_formulas() {
if (m_fmls_head == m_fmls.size()) {
return l_true;
}
dep2asm_t dep2asm;
goal_ref g = alloc(goal, m, true, false); // models, maybe cores are enabled
for (; m_fmls_head < m_fmls.size(); ++m_fmls_head) {
g->assert_expr(m_fmls[m_fmls_head].get());
}
return internalize_goal(g, dep2asm);
}
void extract_assumptions(dep2asm_t& dep2asm, sat::literal_vector& asms) {
asms.reset();
dep2asm_t::iterator it = dep2asm.begin(), end = dep2asm.end();
for (; it != end; ++it) {
asms.push_back(it->m_value);
}
//IF_VERBOSE(0, verbose_stream() << asms << "\n";);
}
void extract_core(dep2asm_t& dep2asm) {
u_map<expr*> asm2dep;
dep2asm_t::iterator it = dep2asm.begin(), end = dep2asm.end();
for (; it != end; ++it) {
asm2dep.insert(it->m_value.index(), it->m_key);
}
sat::literal_vector const& core = m_solver.get_core();
TRACE("opt",
dep2asm_t::iterator it2 = dep2asm.begin();
dep2asm_t::iterator end2 = dep2asm.end();
for (; it2 != end2; ++it2) {
tout << mk_pp(it2->m_key, m) << " |-> " << sat::literal(it2->m_value) << "\n";
}
tout << "core: ";
for (unsigned i = 0; i < core.size(); ++i) {
tout << core[i] << " ";
}
tout << "\n";
);
m_core.reset();
for (unsigned i = 0; i < core.size(); ++i) {
expr* e;
VERIFY(asm2dep.find(core[i].index(), e));
m_core.push_back(e);
}
}
void check_assumptions(dep2asm_t& dep2asm) {
sat::model const & ll_m = m_solver.get_model();
dep2asm_t::iterator it = dep2asm.begin(), end = dep2asm.end();
for (; it != end; ++it) {
sat::literal lit = it->m_value;
if (!m_soft_assumptions && sat::value_at(lit, ll_m) != l_true) {
IF_VERBOSE(0, verbose_stream() << mk_pp(it->m_key, m) << " does not evaluate to true\n";
verbose_stream() << m_asms << "\n";
m_solver.display_assignment(verbose_stream());
m_solver.display(verbose_stream()););
throw default_exception("bad state");
}
}
}
void extract_model() {
TRACE("sat", tout << "retrieve model\n";);
if (!m_solver.model_is_current()) {
m_model = 0;
return;
}
sat::model const & ll_m = m_solver.get_model();
model_ref md = alloc(model, m);
atom2bool_var::iterator it = m_map.begin();
atom2bool_var::iterator end = m_map.end();
for (; it != end; ++it) {
expr * n = it->m_key;
if (is_app(n) && to_app(n)->get_num_args() > 0) {
continue;
}
sat::bool_var v = it->m_value;
switch (sat::value_at(v, ll_m)) {
case l_true:
md->register_decl(to_app(n)->get_decl(), m.mk_true());
break;
case l_false:
md->register_decl(to_app(n)->get_decl(), m.mk_false());
break;
default:
break;
}
}
m_model = md;
if (m_mc) {
(*m_mc)(m_model);
}
SASSERT(m_model);
DEBUG_CODE(
for (unsigned i = 0; i < m_fmls.size(); ++i) {
expr_ref tmp(m);
VERIFY(m_model->eval(m_fmls[i].get(), tmp));
CTRACE("opt", !m.is_true(tmp),
tout << "Evaluation failed: " << mk_pp(m_fmls[i].get(), m)
<< " to " << tmp << "\n";
model_smt2_pp(tout, m, *(m_model.get()), 0););
SASSERT(m.is_true(tmp));
});
}
};
solver* mk_inc_sat_solver(ast_manager& m, params_ref const& p) {
return alloc(inc_sat_solver, m, p);
}
void set_soft_inc_sat(solver* _s, unsigned sz, expr*const* soft, rational const* weights) {
inc_sat_solver* s = dynamic_cast<inc_sat_solver*>(_s);
s->set_soft(sz, soft, weights);
}