3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 03:45:51 +00:00
z3/src/sat/smt/polysat_model.cpp

127 lines
3.9 KiB
C++

/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
polysat_model.cpp
Abstract:
PolySAT model generation
Author:
Nikolaj Bjorner (nbjorner) 2022-01-26
--*/
#include "params/bv_rewriter_params.hpp"
#include "sat/smt/polysat_solver.h"
#include "sat/smt/euf_solver.h"
#include "ast/rewriter/bv_rewriter.h"
namespace polysat {
void solver::add_value(euf::enode* n, model& mdl, expr_ref_vector& values) {
expr_ref value(m);
if (n->interpreted())
value = n->get_expr();
else if (n->get_decl() && n->get_decl()->get_family_id() == bv.get_family_id()) {
bv_rewriter rw(m);
expr_ref_vector args(m);
for (auto arg : euf::enode_args(n))
args.push_back(values.get(arg->get_root_id()));
rw.mk_app(n->get_decl(), args.size(), args.data(), value);
}
else {
auto p = expr2pdd(n->get_expr());
rational val;
if (!m_core.try_eval(p, val)) {
ctx.s().display(verbose_stream());
verbose_stream() << ctx.bpp(n) << " := " << p << "\n";
UNREACHABLE();
}
VERIFY(m_core.try_eval(p, val));
value = bv.mk_numeral(val, get_bv_size(n));
}
values.set(n->get_root_id(), value);
}
bool solver::add_dep(euf::enode* n, top_sort<euf::enode>& dep) {
if (!is_app(n->get_expr()))
return false;
app* e = to_app(n->get_expr());
if (n->num_args() == 0) {
dep.insert(n, nullptr);
return true;
}
if (e->get_family_id() != bv.get_family_id())
return false;
for (euf::enode* arg : euf::enode_args(n))
dep.add(n, arg->get_root());
return true;
}
bool solver::check_model(sat::model const& m) const {
return true;
}
void solver::finalize_model(model& mdl) {
}
void solver::collect_statistics(statistics& st) const {
m_intblast.collect_statistics(st);
m_core.collect_statistics(st);
st.update("polysat-conflicts", m_stats.m_num_conflicts);
st.update("polysat-axioms", m_stats.m_num_axioms);
st.update("polysat-propagations", m_stats.m_num_propagations);
}
std::ostream& solver::display_justification(std::ostream& out, sat::ext_justification_idx idx) const {
return out;
}
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
return out;
}
std::ostream& solver::display(std::ostream& out) const {
for (unsigned v = 0; v < get_num_vars(); ++v)
if (m_var2pdd_valid.get(v, false))
out << ctx.bpp(var2enode(v)) << " := " << m_var2pdd[v] << "\n";
m_core.display(out);
m_intblast.display(out);
return out;
}
void solver::validate_propagate(sat::literal lit, sat::literal_vector const& core, euf::enode_pair_vector const& eqs) {
if (!ctx.get_config().m_core_validate)
return;
auto r = m_intblast.check_propagation(lit, core, eqs);
VERIFY (r != l_true);
}
void solver::validate_conflict(sat::literal_vector const& core, euf::enode_pair_vector const& eqs) {
if (!ctx.get_config().m_core_validate)
return;
auto r = m_intblast.check_core(core, eqs);
VERIFY (r != l_true);
}
void solver::validate_axiom(sat::literal_vector const& clause) {
if (!ctx.get_config().m_core_validate)
return;
auto r = m_intblast.check_axiom(clause);
VERIFY (r != l_true);
}
std::ostream& solver::display_clause(char const* name, std::ostream& out, sat::literal_vector const& lits) const {
out << name << ":\n";
for (auto lit : lits)
out << ctx.literal2expr(lit) << "\n";
return out;
}
}