3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00
z3/src/math/lp/nla_intervals.cpp
Lev Nachmanson 3b61f0b874 enable interval multiplication without dependencies
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

515 lines
16 KiB
C++

#include "math/lp/nla_core.h"
#include "math/interval/interval_def.h"
#include "math/lp/nla_intervals.h"
#include "util/mpq.h"
namespace nla {
typedef intervals::interval interv;
typedef enum intervals::with_deps_t e_with_deps;
void intervals::set_interval_for_scalar(interv& a, const rational& v) {
set_lower(a, v);
set_upper(a, v);
set_lower_is_open(a, false);
set_lower_is_inf(a, false);
set_upper_is_open(a, false);
set_upper_is_inf(a, false);
}
const nex* intervals::get_inf_interval_child(const nex_sum& e) const {
for (auto * c : e) {
if (has_inf_interval(*c))
return c;
}
return nullptr;
}
bool intervals::mul_has_inf_interval(const nex_mul& e) const {
bool has_inf = false;
for (const auto & p : e) {
const nex &c = *p.e();
if (!c.is_elementary())
return false;
if (has_zero_interval(c))
return false;
has_inf |= has_inf_interval(c);
}
return has_inf;
}
bool intervals::has_inf_interval(const nex& e) const {
if (e.is_var())
return m_core->no_bounds(e.to_var().var());
if (e.is_mul())
return mul_has_inf_interval(e.to_mul());
if (e.is_scalar())
return false;
for (auto * c : e.to_sum())
if (has_inf_interval(*c))
return true;
return false;
}
bool intervals::has_zero_interval(const nex& e) const {
SASSERT(!e.is_scalar() || !e.to_scalar().value().is_zero());
return e.is_var() && m_core->var_is_fixed_to_zero(e.to_var().var());
}
const nex* intervals::get_zero_interval_child(const nex_mul& e) const {
for (const auto & p : e) {
const nex * c = p.e();
if (has_zero_interval(*c))
return c;
}
return nullptr;
}
std::ostream & intervals::print_dependencies(ci_dependency* deps , std::ostream& out) const {
svector<lp::constraint_index> expl;
m_dep_manager.linearize(deps, expl);
{
lp::explanation e(expl);
if (!expl.empty()) {
m_core->print_explanation(e, out);
expl.clear();
} else {
out << "\nno constraints\n";
}
}
return out;
}
// return true iff the interval of n is does not contain 0
bool intervals::check_nex(const nex* n, ci_dependency* initial_deps) {
m_core->lp_settings().stats().m_cross_nested_forms++;
auto i = interval_of_expr<without_deps>(n, 1);
if (!separated_from_zero(i)) {
reset();
return false;
}
auto interv_wd = interval_of_expr<with_deps>(n, 1);
TRACE("grobner", tout << "conflict: interv_wd = "; display(tout, interv_wd ) <<"expr = " << *n << "\n, initial deps\n"; print_dependencies(initial_deps, tout););
check_interval_for_conflict_on_zero(interv_wd, initial_deps);
reset(); // clean the memory allocated by the interval bound dependencies
return true;
}
void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) {
TRACE("nla_horner_details", tout << *e << "\n";);
SASSERT(e->size() == 1);
SASSERT((*e)[0].pow() == 1);
const nex *ev = (*e)[0].e();
lpvar j = to_var(ev)->var();
v.push_back(std::make_pair(e->coeff(), j));
}
void intervals::add_linear_to_vector(const nex* e, vector<std::pair<rational, lpvar>> &v) {
TRACE("nla_horner_details", tout << *e << "\n";);
switch (e->type()) {
case expr_type::MUL:
add_mul_of_degree_one_to_vector(to_mul(e), v);
break;
case expr_type::VAR:
v.push_back(std::make_pair(rational(1), to_var(e)->var()));
break;
default:
SASSERT(!e->is_sum());
// noop
}
}
// e = a * can_t + b
lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational& a, rational& b) {
TRACE("nla_horner_details", tout << *e << "\n";);
lpvar smallest_j;
vector<std::pair<rational, lpvar>> v;
b = rational(0);
unsigned a_index;
for (const nex* c : *e) {
if (c->is_scalar()) {
b += c->to_scalar().value();
} else {
add_linear_to_vector(c, v);
if (v.empty())
continue;
if (v.size() == 1 || smallest_j > v.back().second) {
smallest_j = v.back().second;
a_index = v.size() - 1;
}
}
}
TRACE("nla_horner_details", tout << "a_index = " << a_index << ", v="; print_vector(v, tout) << "\n";);
a = v[a_index].first;
lp::lar_term t;
if (a.is_one()) {
for (auto& p : v) {
t.add_coeff_var(p.first, p.second);
}
} else {
for (unsigned k = 0; k < v.size(); k++) {
auto& p = v[k];
if (k != a_index)
t.add_coeff_var(p.first/a, p.second);
else
t.add_var(p.second);
}
}
TRACE("nla_horner_details", tout << a << "* (";
lp::lar_solver::print_term_as_indices(t, tout) << ") + " << b << std::endl;);
SASSERT(t.is_normalized());
return t;
}
// we should have in the case of found a * m_terms[k] + b = e,
// where m_terms[k] corresponds to the returned lpvar
lpvar intervals::find_term_column(const lp::lar_term & norm_t, rational& a) const {
std::pair<rational, lpvar> a_j;
if (m_core->m_lar_solver.fetch_normalized_term_column(norm_t, a_j)) {
a /= a_j.first;
return a_j.second;
}
return -1;
}
void intervals::set_zero_interval_with_explanation(interval& i, const lp::explanation& exp) const {
auto val = rational(0);
m_config.set_lower(i, val);
m_config.set_lower_is_open(i, false);
m_config.set_lower_is_inf(i, false);
m_config.set_upper(i, val);
m_config.set_upper_is_open(i, false);
m_config.set_upper_is_inf(i, false);
i.m_lower_dep = i.m_upper_dep = mk_dep(exp);
}
void intervals::set_zero_interval(interval& i) const {
auto val = rational(0);
m_config.set_lower(i, val);
m_config.set_lower_is_open(i, false);
m_config.set_lower_is_inf(i, false);
m_config.set_upper(i, val);
m_config.set_upper_is_open(i, false);
m_config.set_upper_is_inf(i, false);
}
void intervals::set_zero_interval_deps_for_mult(interval& a) {
a.m_lower_dep = m_dep_manager.mk_join(a.m_lower_dep, a.m_upper_dep);
a.m_upper_dep = a.m_lower_dep;
}
bool intervals::separated_from_zero_on_lower(const interval& i) const {
if (lower_is_inf(i))
return false;
if (unsynch_mpq_manager::is_neg(lower(i)))
return false;
if (unsynch_mpq_manager::is_zero(lower(i)) && !m_config.lower_is_open(i))
return false;
return true;
}
bool intervals::separated_from_zero_on_upper(const interval& i) const {
if (upper_is_inf(i))
return false;
if (unsynch_mpq_manager::is_pos(upper(i)))
return false;
if (unsynch_mpq_manager::is_zero(upper(i)) && !m_config.upper_is_open(i))
return false;
return true;
}
bool intervals::check_interval_for_conflict_on_zero(const interval & i, ci_dependency* dep) {
return check_interval_for_conflict_on_zero_lower(i, dep) || check_interval_for_conflict_on_zero_upper(i, dep);
}
bool intervals::check_interval_for_conflict_on_zero_upper(
const interval & i,
ci_dependency* dep) {
if (!separated_from_zero_on_upper(i))
return false;
TRACE("grobner", display(tout, i););
m_core->add_empty_lemma();
svector<lp::constraint_index> expl;
dep = m_dep_manager.mk_join(dep, i.m_upper_dep);
m_dep_manager.linearize(dep, expl);
m_core->current_expl().add_expl(expl);
TRACE("nla_solver", m_core->print_lemma(tout););
return true;
}
bool intervals::check_interval_for_conflict_on_zero_lower(const interval & i, ci_dependency* dep) {
if (!separated_from_zero_on_lower(i)) {
return false;
}
TRACE("grobner", display(tout, i););
m_core->add_empty_lemma();
svector<lp::constraint_index> expl;
dep = m_dep_manager.mk_join(dep, i.m_lower_dep);
m_dep_manager.linearize(dep, expl);
m_core->current_expl().add_expl(expl);
TRACE("nla_solver", m_core->print_lemma(tout););
return true;
}
common::ci_dependency *intervals::mk_dep(lp::constraint_index ci) const {
return m_dep_manager.mk_leaf(ci);
}
common::ci_dependency *intervals::mk_dep(const lp::explanation& expl) const {
intervals::ci_dependency * r = nullptr;
for (auto p : expl) {
if (r == nullptr) {
r = m_dep_manager.mk_leaf(p.second);
} else {
r = m_dep_manager.mk_join(r, m_dep_manager.mk_leaf(p.second));
}
}
return r;
}
std::ostream& intervals::display(std::ostream& out, const interval& i) const {
if (m_imanager.lower_is_inf(i)) {
out << "(-oo";
} else {
out << (m_imanager.lower_is_open(i)? "(":"[") << rational(m_imanager.lower(i));
}
out << ",";
if (m_imanager.upper_is_inf(i)) {
out << "oo)";
} else {
out << rational(m_imanager.upper(i)) << (m_imanager.upper_is_open(i)? ")":"]");
}
svector<lp::constraint_index> expl;
if (i.m_lower_dep) {
out << "\nlower deps\n";
print_dependencies(i.m_lower_dep, out);
}
if (i.m_upper_dep) {
out << "\nupper deps\n";
print_dependencies(i.m_upper_dep, out);
}
return out;
}
template <e_with_deps wd>
void intervals::set_var_interval(lpvar v, interval& b) const {
TRACE("nla_intervals_details", m_core->print_var(v, tout) << "\n";);
lp::constraint_index ci;
rational val;
bool is_strict;
if (ls().has_lower_bound(v, ci, val, is_strict)) {
m_config.set_lower(b, val);
m_config.set_lower_is_open(b, is_strict);
m_config.set_lower_is_inf(b, false);
if (wd == with_deps) b.m_lower_dep = mk_dep(ci);
}
else {
m_config.set_lower_is_open(b, true);
m_config.set_lower_is_inf(b, true);
if (wd == with_deps) b.m_lower_dep = nullptr;
}
if (ls().has_upper_bound(v, ci, val, is_strict)) {
m_config.set_upper(b, val);
m_config.set_upper_is_open(b, is_strict);
m_config.set_upper_is_inf(b, false);
if (wd == with_deps) b.m_upper_dep = mk_dep(ci);
}
else {
m_config.set_upper_is_open(b, true);
m_config.set_upper_is_inf(b, true);
if (wd == with_deps) b.m_upper_dep = nullptr;
}
}
template <e_with_deps wd>
bool intervals::interval_from_term(const nex& e, interv& i) const {
rational a, b;
lp::lar_term norm_t = expression_to_normalized_term(&e.to_sum(), a, b);
lp::explanation exp;
if (m_core->explain_by_equiv(norm_t, exp)) {
set_zero_interval(i);
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
return true;
}
lpvar j = find_term_column(norm_t, a);
if (j + 1 == 0)
return false;
set_var_interval<without_deps>(j, i);
interv bi;
mul<wd>(a, i, bi);
add(b, bi);
set<wd>(i, bi);
TRACE("nla_intervals",
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
tout << "a=" << a << ", b=" << b << "\n";
tout << e << ", interval = "; display(tout, i););
return true;
}
template <e_with_deps wd>
interv intervals::interval_of_sum_no_term(const nex_sum& e) {
const nex* inf_e = get_inf_interval_child(e);
if (inf_e) {
return interv();
}
interv a = interval_of_expr<wd>(e[0], 1);
for (unsigned k = 1; k < e.size(); k++) {
TRACE("nla_intervals_details_sum", tout << "e[" << k << "]= " << *e[k] << "\n";);
interv b = interval_of_expr<wd>(e[k], 1);
interv c;
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
if (wd == with_deps) {
interval_deps_combine_rule combine_rule;
add(a, b, c, combine_rule);
combine_deps(a, b, combine_rule, c);
}
else {
add(a, b, c);
}
set<wd>(a, c);
TRACE("nla_intervals_details_sum", tout << *e[k] << ", ";
display(tout, a); tout << "\n";);
}
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
tout << " interv = "; display(tout, a););
return a;
}
template <e_with_deps wd>
void intervals::update_upper_for_intersection(const interval& a, const interval& b, interval& i) const {
if (a.m_upper_inf) {
if (b.m_upper_inf)
return;
copy_upper_bound<wd>(b, i);
return;
}
if (b.m_upper_inf) {
SASSERT(!a.m_upper_inf);
copy_upper_bound<wd>(a, i);
return;
}
if (m_num_manager.gt(a.m_upper, b.m_upper)) {
copy_upper_bound<wd>(b, i);
return;
}
if (m_num_manager.lt(a.m_upper, b.m_upper)) {
copy_upper_bound<wd>(a, i);
return;
}
SASSERT(m_num_manager.eq(a.m_upper, b.m_upper));
if (a.m_upper_open) { // we might consider to look at b.m_upper_open too here
copy_upper_bound<wd>(a, i);
return;
}
copy_upper_bound<wd>(b, i);
}
template <e_with_deps wd>
interv intervals::interval_of_sum(const nex_sum& e) {
TRACE("nla_intervals_details", tout << "e=" << e << "\n";);
interv i_e = interval_of_sum_no_term<wd>(e);
if (e.is_a_linear_term()) {
SASSERT(e.is_sum() && e.size() > 1);
interv i_from_term;
if (interval_from_term<wd>(e, i_from_term)) {
interv r = intersect<wd>(i_e, i_from_term);
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
if (is_empty(r)) {
SASSERT(false); // not implemented
}
return r;
}
}
return i_e;
}
template <e_with_deps wd>
interv intervals::interval_of_mul(const nex_mul& e) {
TRACE("nla_intervals_details", tout << "e = " << e << "\n";);
const nex* zero_interval_child = get_zero_interval_child(e);
if (zero_interval_child) {
interv a = interval_of_expr<wd>(zero_interval_child, 1);
if(wd == with_deps)
set_zero_interval_deps_for_mult(a);
TRACE("nla_intervals_details", tout << "zero_interval_child = " << *zero_interval_child << std::endl << "a = "; display(tout, a); );
return a;
}
interv a;
set_interval_for_scalar(a, e.coeff());
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
for (const auto& ep : e) {
interv b = interval_of_expr<wd>(ep.e(), ep.pow());
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
interv c;
if (wd == with_deps) {
interval_deps_combine_rule comb_rule;
mul_two_intervals(a, b, c, comb_rule);
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
combine_deps(a, b, comb_rule, c);
} else {
mul_two_intervals(a, b, c);
}
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
set<wd>(a, c);
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
}
TRACE("nla_intervals_details", tout << "e=" << e << "\n";
tout << " return "; display(tout, a););
return a;
}
template <e_with_deps wd>
interv intervals::interval_of_expr(const nex* e, unsigned p) {
interv a;
switch (e->type()) {
case expr_type::SCALAR:
set_interval_for_scalar(a, to_scalar(e)->value());
if (p != 1) {
return power<wd>(a, p);
}
return a;
case expr_type::SUM: {
interv b = interval_of_sum<wd>(e->to_sum());
if (p != 1)
return power<wd>(b, p);
return b;
}
case expr_type::MUL: {
interv b = interval_of_mul<with_deps>(e->to_mul());
if (p != 1)
return power<wd>(b, p);
return b;
}
case expr_type::VAR:
set_var_interval<wd>(e->to_var().var(), a);
if (p != 1)
return power<wd>(a, p);;
return a;
default:
TRACE("nla_intervals_details", tout << e->type() << "\n";);
UNREACHABLE();
return interval();
}
}
lp::lar_solver& intervals::ls() { return m_core->m_lar_solver; }
const lp::lar_solver& intervals::ls() const { return m_core->m_lar_solver; }
} // end of nla namespace
// instantiate the template
template class interval_manager<nla::intervals::im_config>;