3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
z3/src/muz/spacer/spacer_context.cpp
Arie Gurfinkel 9109968e55 Cleanup fixedpoint options
Replace pdr options with spacer
Repace fixedpoint module with fp
2018-06-14 16:08:52 -07:00

4019 lines
130 KiB
C++

/**
Copyright (c) 2017 Microsoft Corporation and Arie Gurfinkel
Module Name:
spacer_context.cpp
Abstract:
SPACER predicate transformers and search context.
Author:
Arie Gurfinkel
Anvesh Komuravelli
Based on muz/pdr/pdr_context.cpp by Nikolaj Bjorner (nbjorner)
Notes:
--*/
#include <sstream>
#include <iomanip>
#include "muz/base/dl_util.h"
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/rewriter/var_subst.h"
#include "util/util.h"
#include "muz/spacer/spacer_prop_solver.h"
#include "muz/spacer/spacer_context.h"
#include "muz/spacer/spacer_generalizers.h"
#include "ast/for_each_expr.h"
#include "muz/base/dl_rule_set.h"
#include "smt/tactic/unit_subsumption_tactic.h"
#include "model/model_smt2_pp.h"
#include "model/model_evaluator.h"
#include "muz/transforms/dl_mk_rule_inliner.h"
#include "ast/ast_smt2_pp.h"
#include "ast/ast_ll_pp.h"
#include "ast/ast_util.h"
#include "ast/proofs/proof_checker.h"
#include "smt/smt_value_sort.h"
#include "ast/scoped_proof.h"
#include "muz/spacer/spacer_qe_project.h"
#include "tactic/core/blast_term_ite_tactic.h"
#include "util/timeit.h"
#include "util/luby.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/expr_abstract.h"
#include "smt/smt_solver.h"
#include "muz/spacer/spacer_sat_answer.h"
namespace spacer {
/// pob -- proof obligation
pob::pob (pob* parent, pred_transformer& pt,
unsigned level, unsigned depth, bool add_to_parent):
m_ref_count (0),
m_parent (parent), m_pt (pt),
m_post (m_pt.get_ast_manager ()),
m_binding(m_pt.get_ast_manager()),
m_new_post (m_pt.get_ast_manager ()),
m_level (level), m_depth (depth),
m_open (true), m_use_farkas (true), m_weakness(0),
m_blocked_lvl(0) {
if(add_to_parent && m_parent) {
m_parent->add_child(*this);
}
}
void pob::set_post(expr* post) {
app_ref_vector empty_binding(get_ast_manager());
set_post(post, empty_binding);
}
void pob::set_post(expr* post, app_ref_vector const &binding) {
normalize(post, m_post,
m_pt.get_context().simplify_pob(),
m_pt.get_context().use_euf_gen());
m_binding.reset();
if (!binding.empty()) {m_binding.append(binding);}
}
void pob::inherit(pob const &p) {
SASSERT(m_parent == p.m_parent);
SASSERT(&m_pt == &p.m_pt);
SASSERT(m_post == p.m_post);
SASSERT(!m_new_post);
m_binding.reset();
m_binding.append(p.m_binding);
m_level = p.m_level;
m_depth = p.m_depth;
m_open = p.m_open;
m_use_farkas = p.m_use_farkas;
m_weakness = p.m_weakness;
m_derivation = nullptr;
}
void pob::clean () {
if(m_new_post) {
m_post = m_new_post;
m_new_post.reset();
}
}
void pob::close () {
if(!m_open) { return; }
reset ();
m_open = false;
for (unsigned i = 0, sz = m_kids.size (); i < sz; ++i)
{ m_kids [i]->close(); }
}
void pob::get_skolems(app_ref_vector &v) {
for (unsigned i = 0, sz = m_binding.size(); i < sz; ++i) {
expr* e;
e = m_binding.get(i);
v.push_back (mk_zk_const (get_ast_manager(), i, get_sort(e)));
}
}
// ----------------
// pob_queue
pob* pob_queue::top ()
{
/// nothing in the queue
if (m_obligations.empty()) { return nullptr; }
/// top queue element is above max level
if (m_obligations.top()->level() > m_max_level) { return nullptr; }
/// top queue element is at the max level, but at a higher than base depth
if (m_obligations.top ()->level () == m_max_level &&
m_obligations.top()->depth() > m_min_depth) { return nullptr; }
/// there is something good in the queue
return m_obligations.top ().get ();
}
void pob_queue::set_root(pob& root)
{
m_root = &root;
m_max_level = root.level ();
m_min_depth = root.depth ();
reset();
}
pob_queue::~pob_queue() {}
void pob_queue::reset()
{
while (!m_obligations.empty()) { m_obligations.pop(); }
if (m_root) { m_obligations.push(m_root); }
}
void pob_queue::push(pob &n) {
TRACE("pob_queue",
tout << "pob_queue::push(" << n.post()->get_id() << ")\n";);
m_obligations.push (&n);
n.get_context().new_pob_eh(&n);
}
// ----------------
// derivation
derivation::derivation (pob& parent, datalog::rule const& rule,
expr *trans, app_ref_vector const &evars) :
m_parent (parent),
m_rule (rule),
m_premises (),
m_active (0),
m_trans (trans, m_parent.get_ast_manager ()),
m_evars (evars) {}
void derivation::add_premise (pred_transformer &pt,
unsigned oidx,
expr* summary,
bool must,
const ptr_vector<app> *aux_vars)
{m_premises.push_back (premise (pt, oidx, summary, must, aux_vars));}
pob *derivation::create_first_child (model_evaluator_util &mev) {
if (m_premises.empty()) { return nullptr; }
m_active = 0;
return create_next_child(mev);
}
void derivation::exist_skolemize(expr* fml, app_ref_vector &vars, expr_ref &res) {
ast_manager &m = get_ast_manager();
if (vars.empty()) {res = fml; return;}
if (m.is_true(fml) || m.is_false(fml)) {res = fml; return;}
{
std::stable_sort (vars.c_ptr(), vars.c_ptr() + vars.size(), sk_lt_proc());
unsigned i, j, end;
app_ref v(m);
for (i = 1, j = 1, end = vars.size(); i < end; ++i) {
if (vars.get(j-1) != vars.get(i)) {
v = vars.get(i); // keep ref
vars.set(j++, v);
}
}
vars.shrink(j);
}
TRACE("spacer", tout << "Skolemizing: ";
for (auto v : vars) tout << " " << mk_pp(v, m) << " ";
tout << "\nfrom " << mk_pp(fml, m) << "\n";
);
app_ref_vector pinned(m);
expr_safe_replace sub(m);
for (unsigned i = 0, sz = vars.size(); i < sz; ++i) {
expr* e;
e = vars.get(i);
pinned.push_back (mk_zk_const (m, i, get_sort(e)));
sub.insert (e, pinned.back());
}
sub(fml, res);
}
pob *derivation::create_next_child (model_evaluator_util &mev)
{
timeit _timer (is_trace_enabled("spacer_timeit"),
"spacer::derivation::create_next_child",
verbose_stream ());
ast_manager &m = get_ast_manager ();
expr_ref_vector summaries (m);
app_ref_vector vars(m);
// -- find first may premise
while (m_active < m_premises.size() && m_premises[m_active].is_must()) {
summaries.push_back (m_premises[m_active].get_summary ());
vars.append (m_premises[m_active].get_ovars ());
++m_active;
}
if (m_active >= m_premises.size()) { return nullptr; }
// -- update m_trans with the pre-image of m_trans over the must summaries
summaries.push_back (m_trans);
m_trans = mk_and (summaries);
summaries.reset ();
if (!vars.empty()) {
timeit _timer1 (is_trace_enabled("spacer_timeit"),
"create_next_child::qproject1",
verbose_stream ());
vars.append(m_evars);
m_evars.reset();
pt().mbp(vars, m_trans, mev.get_model(),
true, pt().get_context().use_ground_pob());
m_evars.append (vars);
vars.reset();
}
if (!mev.is_true (m_premises[m_active].get_summary())) {
IF_VERBOSE(1, verbose_stream() << "Summary unexpectendly not true\n";);
return nullptr;
}
// create the post-condition by computing a post-image over summaries
// that precede currently active premise
for (unsigned i = m_active + 1; i < m_premises.size(); ++i) {
summaries.push_back (m_premises [i].get_summary ());
vars.append (m_premises [i].get_ovars ());
}
summaries.push_back (m_trans);
expr_ref post(m);
post = mk_and(summaries);
summaries.reset ();
if (!vars.empty()) {
timeit _timer2(is_trace_enabled("spacer_timeit"),
"create_next_child::qproject2",
verbose_stream ());
// include m_evars in case they can eliminated now as well
vars.append(m_evars);
pt().mbp(vars, post, mev.get_model(),
true, pt().get_context().use_ground_pob());
//qe::reduce_array_selects (*mev.get_model (), post);
}
else {
// if no variables to eliminate, don't forget about m_evars
// that occur in m_trans
vars.append(m_evars);
}
if (!vars.empty()) {
// existentially quantify out vars from post and skolemize the result
exist_skolemize(post.get(), vars, post);
}
get_manager ().formula_o2n (post.get (), post,
m_premises [m_active].get_oidx (),
vars.empty());
/* The level and depth are taken from the parent, not the sibling.
The reasoning is that the sibling has not been checked before,
and lower level is a better starting point. */
pob *n = m_premises[m_active].pt().mk_pob(&m_parent,
prev_level (m_parent.level ()),
m_parent.depth (), post, vars);
IF_VERBOSE (1, verbose_stream ()
<< "\n\tcreate_child: " << n->pt ().head ()->get_name ()
<< " (" << n->level () << ", " << n->depth () << ") "
<< (n->use_farkas_generalizer () ? "FAR " : "SUB ")
<< n->post ()->get_id ();
verbose_stream().flush (););
return n;
}
pob *derivation::create_next_child ()
{
if (m_active + 1 >= m_premises.size()) { return nullptr; }
// update the summary of the active node to some must summary
// construct a new model consistent with the must summary of m_active premise
pred_transformer &pt = m_premises[m_active].pt ();
model_ref model;
ast_manager &m = get_ast_manager ();
manager &pm = get_manager ();
expr_ref_vector summaries (m);
for (unsigned i = m_active + 1; i < m_premises.size (); ++i)
{ summaries.push_back(m_premises [i].get_summary()); }
// -- orient transition relation towards m_active premise
expr_ref active_trans (m);
pm.formula_o2n (m_trans, active_trans,
m_premises[m_active].get_oidx (), false);
summaries.push_back (active_trans);
// if not true, bail out, the must summary of m_active is not strong enough
// this is possible if m_post was weakened for some reason
if (!pt.is_must_reachable(mk_and(summaries), &model)) { return nullptr; }
model_evaluator_util mev (m);
mev.set_model (*model);
// find must summary used
reach_fact *rf = pt.get_used_rf (mev, true);
// get an implicant of the summary
expr_ref_vector u(m), lits (m);
u.push_back (rf->get ());
compute_implicant_literals (mev, u, lits);
expr_ref v(m);
v = mk_and (lits);
// XXX The summary is not used by anyone after this point
m_premises[m_active].set_summary (v, true, &(rf->aux_vars ()));
/** HACK: needs a rewrite
* compute post over the new must summary this must be done here
* because the must summary is currently described over new
* variables. However, we store it over old-variables, but we do
* not update the model. So we must get rid of all of the
* new-variables at this point.
*/
{
pred_transformer &pt = m_premises[m_active].pt ();
app_ref_vector vars (m);
summaries.reset ();
summaries.push_back (v);
summaries.push_back (active_trans);
m_trans = mk_and (summaries);
// variables to eliminate
vars.append (rf->aux_vars ().size (), rf->aux_vars ().c_ptr ());
for (unsigned i = 0, sz = pt.head ()->get_arity (); i < sz; ++i)
{ vars.push_back(m.mk_const(pm.o2n(pt.sig(i), 0))); }
if (!vars.empty ()) {
vars.append(m_evars);
m_evars.reset();
this->pt().mbp(vars, m_trans, mev.get_model(),
true, this->pt().get_context().use_ground_pob());
// keep track of implicitly quantified variables
m_evars.append (vars);
vars.reset();
}
}
m_active++;
return create_next_child (mev);
}
/// derivation::premise
derivation::premise::premise (pred_transformer &pt, unsigned oidx,
expr *summary, bool must,
const ptr_vector<app> *aux_vars) :
m_pt (pt), m_oidx (oidx),
m_summary (summary, pt.get_ast_manager ()), m_must (must),
m_ovars (pt.get_ast_manager ())
{
ast_manager &m = m_pt.get_ast_manager ();
manager &sm = m_pt.get_manager ();
unsigned sig_sz = m_pt.head ()->get_arity ();
for (unsigned i = 0; i < sig_sz; ++i)
{ m_ovars.push_back(m.mk_const(sm.o2o(pt.sig(i), 0, m_oidx))); }
if (aux_vars)
for (unsigned i = 0, sz = aux_vars->size (); i < sz; ++i)
{ m_ovars.push_back(m.mk_const(sm.n2o(aux_vars->get(i)->get_decl(), m_oidx))); }
}
derivation::premise::premise (const derivation::premise &p) :
m_pt (p.m_pt), m_oidx (p.m_oidx), m_summary (p.m_summary), m_must (p.m_must),
m_ovars (p.m_ovars) {}
/// \brief Updated the summary.
/// The new summary is over n-variables.
void derivation::premise::set_summary (expr * summary, bool must,
const ptr_vector<app> *aux_vars)
{
ast_manager &m = m_pt.get_ast_manager ();
manager &sm = m_pt.get_manager ();
unsigned sig_sz = m_pt.head ()->get_arity ();
m_must = must;
sm.formula_n2o (summary, m_summary, m_oidx);
m_ovars.reset ();
for (unsigned i = 0; i < sig_sz; ++i)
{ m_ovars.push_back(m.mk_const(sm.o2o(m_pt.sig(i), 0, m_oidx))); }
if (aux_vars)
for (unsigned i = 0, sz = aux_vars->size (); i < sz; ++i)
m_ovars.push_back (m.mk_const (sm.n2o (aux_vars->get (i)->get_decl (),
m_oidx)));
}
/// Lemma
lemma::lemma (ast_manager &manager, expr * body, unsigned lvl) :
m_ref_count(0), m(manager),
m_body(body, m), m_cube(m),
m_zks(m), m_bindings(m), m_lvl(lvl), m_init_lvl(m_lvl),
m_pob(nullptr), m_ctp(nullptr), m_external(false), m_bumped(0) {
SASSERT(m_body);
normalize(m_body, m_body);
}
lemma::lemma(pob_ref const &p) :
m_ref_count(0), m(p->get_ast_manager()),
m_body(m), m_cube(m),
m_zks(m), m_bindings(m), m_lvl(p->level()), m_init_lvl(m_lvl),
m_pob(p), m_ctp(nullptr), m_external(false), m_bumped(0) {
SASSERT(m_pob);
m_pob->get_skolems(m_zks);
add_binding(m_pob->get_binding());
}
lemma::lemma(pob_ref const &p, expr_ref_vector &cube, unsigned lvl) :
m_ref_count(0),
m(p->get_ast_manager()),
m_body(m), m_cube(m),
m_zks(m), m_bindings(m), m_lvl(p->level()), m_init_lvl(m_lvl),
m_pob(p), m_ctp(nullptr), m_external(false), m_bumped(0)
{
if (m_pob) {
m_pob->get_skolems(m_zks);
add_binding(m_pob->get_binding());
}
update_cube(p, cube);
set_level(lvl);
}
void lemma::add_skolem(app *zk, app *b) {
SASSERT(m_bindings.size() == m_zks.size());
// extend bindings
m_bindings.push_back(b);
// extend skolems
m_zks.push_back(zk);
}
void lemma::mk_expr_core() {
if (m_body) {return;}
if (m_pob) {mk_cube_core();}
SASSERT(!m_cube.empty());
m_body = ::mk_and(m_cube);
// normalize works better with a cube
normalize(m_body, m_body);
m_body = ::push_not(m_body);
if (!m_zks.empty() && has_zk_const(m_body)) {
app_ref_vector zks(m);
zks.append(m_zks);
zks.reverse();
expr_abstract(m, 0,
zks.size(), (expr* const*)zks.c_ptr(), m_body,
m_body);
ptr_buffer<sort> sorts;
svector<symbol> names;
for (unsigned i=0, sz=zks.size(); i < sz; ++i) {
sorts.push_back(get_sort(zks.get(i)));
names.push_back(zks.get(i)->get_decl()->get_name());
}
m_body = m.mk_quantifier(true, zks.size(),
sorts.c_ptr(),
names.c_ptr(),
m_body, 15, symbol(m_body->get_id()));
}
SASSERT(m_body);
}
void lemma::mk_cube_core() {
if (!m_cube.empty()) {return;}
expr_ref cube(m);
if (m_pob || m_body) {
if(m_pob) {cube = m_pob->post();}
else if (m_body) {
// no quantifiers for now
SASSERT(!is_quantifier(m_body));
cube = m_body;
cube = ::push_not(cube);
}
flatten_and(cube, m_cube);
if (m_cube.empty()) {
m_cube.push_back(m.mk_true());
}
else {
std::sort(m_cube.c_ptr(), m_cube.c_ptr() + m_cube.size(), ast_lt_proc());
}
}
else {
UNREACHABLE();
}
}
bool lemma::is_false() {
// a lemma is false if
// 1. it is defined by a cube, and the cube contains a single literal 'true'
// 2. it is defined by a body, and the body is a single literal false
// 3. it is defined by a pob, and the pob post is false
if (m_cube.size() == 1) {return m.is_true(m_cube.get(0));}
else if (m_body) {return m.is_false(m_body);}
else if (m_pob) {return m.is_true(m_pob->post());}
return false;
}
expr* lemma::get_expr() {
mk_expr_core();
return m_body;
}
expr_ref_vector const &lemma::get_cube() {
mk_cube_core();
return m_cube;
}
void lemma::update_cube (pob_ref const &p, expr_ref_vector &cube) {
SASSERT(m_pob);
SASSERT(m_pob.get() == p.get());
m_cube.reset();
m_body.reset();
m_cube.append(cube);
if (m_cube.empty()) {m_cube.push_back(m.mk_true());}
// after the cube is updated, if there are no skolems,
// convert the lemma to quantifier-free
bool is_quant = false;
for (unsigned i = 0, sz = cube.size(); !is_quant && i < sz; ++i) {
is_quant = has_zk_const(cube.get(i));
}
if (!is_quant) {
m_zks.reset();
m_bindings.reset();
}
}
bool lemma::has_binding(app_ref_vector const &binding) {
unsigned num_decls = m_zks.size();
SASSERT(binding.size() == num_decls);
if (num_decls == 0) return true;
for (unsigned off = 0, sz = m_bindings.size(); off < sz; off += num_decls) {
unsigned i = 0;
for (; i < num_decls; ++i) {
if (m_bindings.get(off + i) != binding.get(i)) {
break;
}
}
if (i == num_decls) return true;
}
return false;
}
void lemma::add_binding(app_ref_vector const &binding) {
if (!has_binding(binding)) {
m_bindings.append(binding);
TRACE("spacer",
tout << "new binding: ";
for (unsigned i = 0; i < binding.size(); i++)
tout << mk_pp(binding.get(i), m) << " ";
tout << "\n";);
}
}
void lemma::instantiate(expr * const * exprs, expr_ref &result, expr *e) {
expr *lem = e == nullptr ? get_expr() : e;
if (!is_quantifier (lem) || m_bindings.empty()) {return;}
expr *body = to_quantifier(lem)->get_expr();
unsigned num_decls = to_quantifier(lem)->get_num_decls();
var_subst vs(m, false);
vs(body, num_decls, exprs, result);
}
void lemma::set_level (unsigned lvl) {
if(m_pob){m_pob->blocked_at(lvl);}
m_lvl = lvl;
}
void lemma::mk_insts(expr_ref_vector &out, expr* e)
{
expr *lem = e == nullptr ? get_expr() : e;
if (!is_quantifier (lem) || m_bindings.empty()) {return;}
unsigned num_decls = to_quantifier(lem)->get_num_decls();
expr_ref inst(m);
for (unsigned off = 0, sz = m_bindings.size(); off < sz; off += num_decls) {
instantiate((expr * const *) m_bindings.c_ptr() + off, inst, e);
out.push_back(inst);
inst.reset();
}
}
// ----------------
// pred_tansformer
pred_transformer::pt_rule &pred_transformer::pt_rules::mk_rule(const pred_transformer::pt_rule &v) {
pt_rule *p = nullptr;
if (find_by_rule(v.rule(), p))
return *p;
p = alloc(pt_rule, v);
m_rules.insert(&p->rule(), p);
if (p->tag()) m_tags.insert(p->tag(), p);
return *p;
}
pred_transformer::pred_transformer(context& ctx, manager& pm, func_decl* head):
pm(pm), m(pm.get_manager()),
ctx(ctx), m_head(head, m),
m_sig(m),
m_reach_solver (ctx.mk_solver2()),
m_pobs(*this),
m_frames(*this),
m_reach_facts(), m_rf_init_sz(0),
m_transition_clause(m), m_transition(m), m_init(m),
m_extend_lit0(m), m_extend_lit(m),
m_all_init(false)
{
m_solver = alloc(prop_solver, m, ctx.mk_solver0(), ctx.mk_solver1(),
ctx.get_params(), head->get_name());
init_sig ();
m_extend_lit = mk_extend_lit();
m_extend_lit0 = m_extend_lit;
}
app_ref pred_transformer::mk_extend_lit() {
app_ref v(m);
std::stringstream name;
name << m_head->get_name () << "_ext0";
v = m.mk_const (symbol(name.str().c_str()), m.mk_bool_sort());
return app_ref(m.mk_not (m.mk_const (pm.get_n_pred (v->get_decl ()))), m);
}
std::ostream& pred_transformer::display(std::ostream& out) const
{
if (!rules().empty()) { out << "rules\n"; }
datalog::rule_manager& rm = ctx.get_datalog_context().get_rule_manager();
for (unsigned i = 0; i < rules().size(); ++i) {
rm.display_smt2(*rules()[i], out) << "\n";
}
out << "transition\n" << mk_pp(transition(), m) << "\n";
return out;
}
void pred_transformer::collect_statistics(statistics& st) const
{
m_solver->collect_statistics(st);
// -- number of times a lemma has been propagated to a higher level
// -- during push
st.update("SPACER num propagations", m_stats.m_num_propagations);
// -- number of lemmas in all current frames
st.update("SPACER num active lemmas", m_frames.lemma_size ());
// -- number of lemmas that are inductive invariants
st.update("SPACER num invariants", m_stats.m_num_invariants);
// -- number of proof obligations (0 if pobs are not reused)
st.update("SPACER num pobs", m_pobs.size());
// -- number of reach facts created
st.update("SPACER num reach queries", m_stats.m_num_reach_queries);
st.update("SPACER num ctp blocked", m_stats.m_num_ctp_blocked);
st.update("SPACER num is_invariant", m_stats.m_num_is_invariant);
st.update("SPACER num lemma jumped", m_stats.m_num_lemma_level_jump);
// -- time in rule initialization
st.update ("time.spacer.init_rules.pt.init", m_initialize_watch.get_seconds ());
// -- time is must_reachable()
st.update ("time.spacer.solve.pt.must_reachable",
m_must_reachable_watch.get_seconds ());
st.update("time.spacer.ctp", m_ctp_watch.get_seconds());
st.update("time.spacer.mbp", m_mbp_watch.get_seconds());
}
void pred_transformer::reset_statistics()
{
m_solver->reset_statistics();
//m_reachable.reset_statistics();
m_stats.reset();
m_initialize_watch.reset ();
m_must_reachable_watch.reset ();
m_ctp_watch.reset();
m_mbp_watch.reset();
}
void pred_transformer::init_sig()
{
for (unsigned i = 0; i < m_head->get_arity(); ++i) {
sort * arg_sort = m_head->get_domain(i);
std::stringstream name_stm;
name_stm << m_head->get_name() << '_' << i;
func_decl_ref stm(m);
stm = m.mk_func_decl(symbol(name_stm.str().c_str()), 0, (sort*const*)nullptr, arg_sort);
m_sig.push_back(pm.get_o_pred(stm, 0));
}
}
void pred_transformer::ensure_level(unsigned level)
{
if (is_infty_level(level)) { return; }
while (m_frames.size() <= level) {
m_frames.add_frame ();
m_solver->add_level ();
}
}
bool pred_transformer::is_must_reachable(expr* state, model_ref* model)
{
scoped_watch _t_(m_must_reachable_watch);
SASSERT (state);
// XXX This seems to mis-handle the case when state is
// reachable using the init rule of the current transformer
if (m_reach_facts.empty()) { return false; }
m_reach_solver->push ();
m_reach_solver->assert_expr (state);
m_reach_solver->assert_expr (m.mk_not (m_reach_facts.back()->tag()));
lbool res = m_reach_solver->check_sat (0, nullptr);
if (model) { m_reach_solver->get_model(*model); }
m_reach_solver->pop (1);
return (res == l_true);
}
reach_fact* pred_transformer::get_used_rf (model_evaluator_util& mev,
bool all) {
expr_ref v (m);
for (auto *rf : m_reach_facts) {
if (!all && rf->is_init()) continue;
VERIFY(mev.eval (rf->tag(), v, false));
if (m.is_false(v)) return rf;
}
UNREACHABLE();
return nullptr;
}
reach_fact *pred_transformer::get_used_origin_rf (model_evaluator_util& mev,
unsigned oidx) {
expr_ref b(m), v(m);
for (auto *rf : m_reach_facts) {
pm.formula_n2o (rf->tag(), v, oidx);
VERIFY(mev.eval (v, b, false));
if (m.is_false (b)) return rf;
}
UNREACHABLE();
return nullptr;
}
const datalog::rule *pred_transformer::find_rule(model &model) {
expr_ref val(m);
for (auto &kv : m_pt_rules) {
app *tag = kv.m_value->tag();
if (model.eval(tag->get_decl(), val) && m.is_true(val)) {
return &kv.m_value->rule();
}
}
return nullptr;
}
const datalog::rule *pred_transformer::find_rule(model &model,
bool& is_concrete,
vector<bool>& reach_pred_used,
unsigned& num_reuse_reach)
{
// find a rule whose tag is true in the model;
// prefer a rule where the model intersects with reach facts of all predecessors;
// also find how many predecessors' reach facts are true in the model
expr_ref vl(m);
const datalog::rule *r = ((datalog::rule*)nullptr);
//for (auto &entry : m_tag2rule) {
for (auto &kv : m_pt_rules) {
app* tag = kv.m_value->tag();
if (model.eval(tag->get_decl(), vl) && m.is_true(vl)) {
r = &kv.m_value->rule();
is_concrete = true;
num_reuse_reach = 0;
reach_pred_used.reset();
unsigned tail_sz = r->get_uninterpreted_tail_size();
for (unsigned i = 0; i < tail_sz; i++) {
bool used = false;
func_decl* d = r->get_tail(i)->get_decl();
const pred_transformer &pt = ctx.get_pred_transformer(d);
if (!pt.has_rfs()) {is_concrete = false;}
else {
expr_ref v(m);
pm.formula_n2o(pt.get_last_rf_tag (), v, i);
model.eval(to_app (v.get ())->get_decl (), vl);
used = m.is_false (vl);
is_concrete = is_concrete && used;
}
reach_pred_used.push_back (used);
if (used) {num_reuse_reach++;}
}
if (is_concrete) {break;}
}
}
// SASSERT (r);
// reached by a reachability fact
if (!r) { is_concrete = true; }
return r;
}
void pred_transformer::find_predecessors(datalog::rule const& r, ptr_vector<func_decl>& preds) const
{
preds.reset();
unsigned tail_sz = r.get_uninterpreted_tail_size();
for (unsigned ti = 0; ti < tail_sz; ti++) {
preds.push_back(r.get_tail(ti)->get_decl());
}
}
void pred_transformer::simplify_formulas()
{m_frames.simplify_formulas ();}
expr_ref pred_transformer::get_formulas(unsigned level) const
{
expr_ref_vector res(m);
m_frames.get_frame_geq_lemmas (level, res);
return mk_and(res);
}
bool pred_transformer::propagate_to_next_level (unsigned src_level)
{return m_frames.propagate_to_next_level (src_level);}
/// \brief adds a lemma to the solver and to child solvers
void pred_transformer::add_lemma_core(lemma* lemma, bool ground_only)
{
unsigned lvl = lemma->level();
expr* l = lemma->get_expr();
SASSERT(!lemma->is_ground() || is_clause(m, l));
SASSERT(!is_quantifier(l) || is_clause(m, to_quantifier(l)->get_expr()));
TRACE("spacer", tout << "add-lemma-core: " << pp_level (lvl)
<< " " << head ()->get_name ()
<< " " << mk_pp (l, m) << "\n";);
TRACE("core_array_eq", tout << "add-lemma-core: " << pp_level (lvl)
<< " " << head ()->get_name ()
<< " " << mk_pp (l, m) << "\n";);
STRACE ("spacer.expand-add",
tout << "** add-lemma: " << pp_level (lvl) << " "
<< head ()->get_name () << " "
<< mk_epp (l, m) << "\n";
if (!lemma->is_ground()) {
tout << "Bindings: " << lemma->get_bindings() << "\n";
}
tout << "\n";
);
if (is_infty_level(lvl)) { m_stats.m_num_invariants++; }
if (lemma->is_ground()) {
if (is_infty_level(lvl)) { m_solver->assert_expr(l); }
else {
ensure_level (lvl);
m_solver->assert_expr (l, lvl);
}
}
for (unsigned i = 0, sz = m_use.size (); i < sz; ++i)
{ m_use [i]->add_lemma_from_child(*this, lemma,
next_level(lvl), ground_only); }
}
bool pred_transformer::add_lemma (expr *e, unsigned lvl) {
lemma_ref lem = alloc(lemma, m, e, lvl);
return m_frames.add_lemma(lem.get());
}
void pred_transformer::add_lemma_from_child (pred_transformer& child,
lemma* lemma, unsigned lvl,
bool ground_only)
{
ensure_level(lvl);
expr_ref_vector fmls(m);
mk_assumptions(child.head(), lemma->get_expr(), fmls);
for (unsigned i = 0; i < fmls.size(); ++i) {
expr_ref_vector inst(m);
expr* a = to_app(fmls.get(i))->get_arg(0);
expr* l = to_app(fmls.get(i))->get_arg(1);
if (!lemma->is_ground() && get_context().use_instantiate()) {
expr_ref grnd_lemma(m);
app_ref_vector tmp(m);
lemma->mk_insts(inst, l);
// -- take ground instance of the current lemma
ground_expr(to_quantifier(l)->get_expr(), grnd_lemma, tmp);
inst.push_back(grnd_lemma);
}
for (unsigned j=0; j < inst.size(); j++) {
inst.set(j, m.mk_implies(a, inst.get(j)));
}
if (lemma->is_ground() || (get_context().use_qlemmas() && !ground_only)) {
inst.push_back(fmls.get(i));
}
SASSERT (!inst.empty ());
for (unsigned j = 0; j < inst.size(); ++j) {
TRACE("spacer_detail", tout << "child property: "
<< mk_pp(inst.get (j), m) << "\n";);
if (is_infty_level(lvl)) {
m_solver->assert_expr(inst.get(j));
}
else {
m_solver->assert_expr(inst.get(j), lvl);
}
}
}
}
app_ref pred_transformer::mk_fresh_rf_tag ()
{
std::stringstream name;
func_decl_ref decl(m);
name << head ()->get_name () << "#reach_tag_" << m_reach_facts.size ();
decl = m.mk_func_decl (symbol (name.str ().c_str ()), 0,
(sort*const*)nullptr, m.mk_bool_sort ());
return app_ref(m.mk_const (pm.get_n_pred (decl)), m);
}
void pred_transformer::add_rf (reach_fact *rf)
{
timeit _timer (is_trace_enabled("spacer_timeit"),
"spacer::pred_transformer::add_rf",
verbose_stream ());
TRACE ("spacer",
tout << "add_rf: " << head()->get_name() << " "
<< (rf->is_init () ? "INIT " : "")
<< mk_pp(rf->get (), m) << "\n";);
// -- avoid duplicates
if (!rf || get_rf(rf->get())) {return;}
// all initial facts are grouped together
SASSERT (!rf->is_init () || m_reach_facts.empty () ||
m_reach_facts.back ()->is_init ());
// create tags
app_ref last_tag(m);
app_ref new_tag(m);
expr_ref fml(m);
if (!m_reach_facts.empty()) {last_tag = m_reach_facts.back()->tag();}
if (rf->is_init ())
new_tag = mk_fresh_rf_tag();
else
// side-effect: updates m_solver with rf
new_tag = to_app(extend_initial(rf->get())->get_arg(0));
rf->set_tag(new_tag);
// add to m_reach_facts
m_reach_facts.push_back (rf);
if (rf->is_init()) {m_rf_init_sz++;}
// update m_reach_solver
if (last_tag) {fml = m.mk_or(m.mk_not(last_tag), rf->get(), rf->tag());}
else {fml = m.mk_or(rf->get(), rf->tag());}
m_reach_solver->assert_expr (fml);
TRACE ("spacer", tout << "updating reach ctx: " << fml << "\n";);
// update solvers of other pred_transformers
// XXX wrap rf into a lemma to fit the API
lemma fake_lemma(m, fml, infty_level());
// update users; reach facts are independent of levels
for (auto use : m_use)
use->add_lemma_from_child (*this, &fake_lemma, infty_level());
}
expr_ref pred_transformer::get_reachable()
{
expr_ref res(m);
res = m.mk_false();
if (!m_reach_facts.empty()) {
expr_substitution sub(m);
expr_ref c(m), v(m);
for (unsigned i = 0, sz = sig_size(); i < sz; ++i) {
c = m.mk_const(pm.o2n(sig(i), 0));
v = m.mk_var(i, sig(i)->get_range());
sub.insert(c, v);
}
scoped_ptr<expr_replacer> rep = mk_expr_simp_replacer(m);
rep->set_substitution(&sub);
expr_ref_vector args(m);
for (unsigned i = 0, sz = m_reach_facts.size (); i < sz; ++i) {
reach_fact *f;
f = m_reach_facts.get(i);
expr_ref r(m);
r = f->get();
const ptr_vector<app> &aux = f->aux_vars();
if (!aux.empty()) {
// -- existentially quantify auxiliary variables
r = mk_exists (m, aux.size(), aux.c_ptr(), r);
// XXX not sure how this interacts with variable renaming later on.
// XXX For now, simply dissallow existentially quantified auxiliaries
NOT_IMPLEMENTED_YET();
}
(*rep)(r);
args.push_back (r);
}
res = mk_or(args);
}
return res;
}
expr* pred_transformer::get_last_rf_tag () const
{return m_reach_facts.empty() ? nullptr : m_reach_facts.back()->tag();}
expr_ref pred_transformer::get_cover_delta(func_decl* p_orig, int level)
{
expr_ref result(m.mk_true(), m), v(m), c(m);
expr_ref_vector lemmas (m);
m_frames.get_frame_lemmas (level == -1 ? infty_level() : level, lemmas);
if (!lemmas.empty()) { result = mk_and(lemmas); }
// replace local constants by bound variables.
expr_substitution sub(m);
for (unsigned i = 0; i < sig_size(); ++i) {
c = m.mk_const(pm.o2n(sig(i), 0));
v = m.mk_var(i, sig(i)->get_range());
sub.insert(c, v);
}
scoped_ptr<expr_replacer> rep = mk_default_expr_replacer(m);
rep->set_substitution(&sub);
(*rep)(result);
// adjust result according to model converter.
unsigned arity = m_head->get_arity();
model_ref md = alloc(model, m);
if (arity == 0) {
md->register_decl(m_head, result);
} else {
func_interp* fi = alloc(func_interp, m, arity);
fi->set_else(result);
md->register_decl(m_head, fi);
}
model_converter_ref mc = ctx.get_model_converter();
apply(mc, md);
if (p_orig->get_arity() == 0) {
result = md->get_const_interp(p_orig);
} else {
result = md->get_func_interp(p_orig)->get_interp();
}
return result;
}
/**
* get an origin summary used by this transformer in the given model
* level is the level at which may summaries are obtained
* oidx is the origin index of this predicate in the model
* must indicates whether a must or a may summary is requested
*
* returns an implicant of the summary
*/
expr_ref pred_transformer::get_origin_summary (model_evaluator_util &mev,
unsigned level,
unsigned oidx,
bool must,
const ptr_vector<app> **aux)
{
expr_ref_vector summary (m);
expr_ref v(m);
if (!must) { // use may summary
summary.push_back (get_formulas(level));
// -- no auxiliary variables in lemmas
*aux = nullptr;
} else { // find must summary to use
reach_fact *f = get_used_origin_rf (mev, oidx);
summary.push_back (f->get ());
*aux = &f->aux_vars ();
}
SASSERT (!summary.empty ());
// -- convert to origin
for (unsigned i = 0; i < summary.size(); ++i) {
pm.formula_n2o (summary.get (i), v, oidx);
summary[i] = v;
}
// bail out of if the model is insufficient
if (!mev.is_true(summary))
return expr_ref(m);
// -- pick an implicant
expr_ref_vector lits(m);
compute_implicant_literals (mev, summary, lits);
return mk_and(lits);
}
void pred_transformer::add_cover(unsigned level, expr* property)
{
// replace bound variables by local constants.
expr_ref result(property, m), v(m), c(m);
expr_substitution sub(m);
for (unsigned i = 0; i < sig_size(); ++i) {
c = m.mk_const(pm.o2n(sig(i), 0));
v = m.mk_var(i, sig(i)->get_range());
sub.insert(v, c);
}
scoped_ptr<expr_replacer> rep = mk_default_expr_replacer(m);
rep->set_substitution(&sub);
(*rep)(result);
TRACE("spacer", tout << "cover:\n" << mk_pp(result, m) << "\n";);
// add the property.
expr_ref_vector lemmas(m);
flatten_and(result, lemmas);
for (unsigned i = 0, sz = lemmas.size(); i < sz; ++i) {
add_lemma(lemmas.get(i), level);
}
}
void pred_transformer::propagate_to_infinity (unsigned level)
{m_frames.propagate_to_infinity (level);}
/// \brief Returns true if the obligation is already blocked by current lemmas
bool pred_transformer::is_blocked (pob &n, unsigned &uses_level)
{
ensure_level (n.level ());
prop_solver::scoped_level _sl (*m_solver, n.level ());
m_solver->set_core (nullptr);
m_solver->set_model (nullptr);
expr_ref_vector post(m), _aux(m);
post.push_back (n.post ());
// this only uses the lemmas at the current level
// transition relation is irrelevant
// XXX quic3: not all lemmas are asserted at the post-condition
lbool res = m_solver->check_assumptions (post, _aux, _aux,
0, nullptr, 0);
if (res == l_false) { uses_level = m_solver->uses_level(); }
return res == l_false;
}
bool pred_transformer::is_qblocked (pob &n) {
// XXX currently disabled
return false;
params_ref p;
p.set_bool("arith.ignore_int", true);
p.set_bool("array.weak", true);
p.set_bool("mbqi", false);
scoped_ptr<solver> s;
s = mk_smt_solver(m, p, symbol::null);
s->updt_params(p);
// XXX force parameters to be set
s->push();
s->pop(1);
expr_ref_vector frame_lemmas(m);
m_frames.get_frame_geq_lemmas (n.level (), frame_lemmas);
// assert all lemmas
bool has_quant = false;
for (unsigned i = 0, sz = frame_lemmas.size (); i < sz; ++i)
{
has_quant = has_quant || is_quantifier(frame_lemmas.get(i));
s->assert_expr(frame_lemmas.get(i));
}
if (!has_quant) return false;
// assert cti
s->assert_expr(n.post());
lbool res = s->check_sat(0, 0);
// if (res == l_false) {
// expr_ref_vector core(m);
// solver->get_itp_core(core);
// expr_ref c(m);
// c = mk_and(core);
// STRACE("spacer.expand-add", tout << "core: " << mk_epp(c,m) << "\n";);
// }
return res == l_false;
}
void pred_transformer::mbp(app_ref_vector &vars, expr_ref &fml, const model_ref &mdl,
bool reduce_all_selects, bool force) {
scoped_watch _t_(m_mbp_watch);
qe_project(m, vars, fml, mdl, reduce_all_selects, use_native_mbp(), !force);
}
//
// check if predicate transformer has a satisfiable predecessor state.
// returns either a satisfiable predecessor state or
// return a property that blocks state and is implied by the
// predicate transformer (or some unfolding of it).
//
lbool pred_transformer::is_reachable(pob& n, expr_ref_vector* core,
model_ref* model, unsigned& uses_level,
bool& is_concrete, datalog::rule const*& r,
vector<bool>& reach_pred_used,
unsigned& num_reuse_reach)
{
TRACE("spacer",
tout << "is-reachable: " << head()->get_name() << " level: "
<< n.level() << " depth: " << n.depth () << "\n";
tout << mk_pp(n.post(), m) << "\n";);
timeit _timer (is_trace_enabled("spacer_timeit"),
"spacer::pred_transformer::is_reachable",
verbose_stream ());
ensure_level(n.level());
// prepare the solver
prop_solver::scoped_level _sl(*m_solver, n.level());
prop_solver::scoped_subset_core _sc (*m_solver, !n.use_farkas_generalizer ());
prop_solver::scoped_weakness _sw(*m_solver, 0,
ctx.weak_abs() ? n.weakness() : UINT_MAX);
m_solver->set_core(core);
m_solver->set_model(model);
expr_ref_vector post (m), reach_assumps (m);
post.push_back (n.post ());
// populate reach_assumps
if (n.level () > 0 && !m_all_init) {
for (auto &kv : m_pt_rules) {
datalog::rule const* r = &kv.m_value->rule();
find_predecessors(*r, m_predicates);
if (m_predicates.empty()) {continue;}
for (unsigned i = 0; i < m_predicates.size(); i++) {
const pred_transformer &pt =
ctx.get_pred_transformer(m_predicates[i]);
if (pt.has_rfs()) {
expr_ref a(m);
pm.formula_n2o(pt.get_last_rf_tag(), a, i);
reach_assumps.push_back(m.mk_not (a));
} else {
reach_assumps.push_back(m.mk_not (kv.m_value->tag()));
break;
}
}
}
}
TRACE ("spacer",
if (!reach_assumps.empty ()) {
tout << "reach assumptions\n";
for (unsigned i = 0; i < reach_assumps.size (); i++) {
tout << mk_pp (reach_assumps.get (i), m) << "\n";
}
}
);
// check local reachability;
// result is either sat (with some reach assumps) or
// unsat (even with no reach assumps)
expr *bg = m_extend_lit.get ();
lbool is_sat = m_solver->check_assumptions (post, reach_assumps,
m_transition_clause, 1, &bg, 0);
TRACE ("spacer",
if (!reach_assumps.empty ()) {
tout << "reach assumptions used\n";
for (unsigned i = 0; i < reach_assumps.size (); i++) {
tout << mk_pp (reach_assumps.get (i), m) << "\n";
}
}
);
if (is_sat == l_true || is_sat == l_undef) {
if (core) { core->reset(); }
if (model) {
r = find_rule(**model, is_concrete, reach_pred_used, num_reuse_reach);
TRACE ("spacer", tout << "reachable "
<< "is_concrete " << is_concrete << " rused: ";
for (unsigned i = 0, sz = reach_pred_used.size (); i < sz; ++i)
tout << reach_pred_used [i];
tout << "\n";);
}
return is_sat;
}
if (is_sat == l_false) {
SASSERT (reach_assumps.empty ());
TRACE ("spacer", tout << "unreachable with lemmas\n";
if (core) {
tout << "Core:\n";
for (unsigned i = 0; i < core->size (); i++) {
tout << mk_pp (core->get(i), m) << "\n";
}
}
);
uses_level = m_solver->uses_level();
return l_false;
}
UNREACHABLE();
return l_undef;
}
/// returns true if lemma is blocked by an existing model
bool pred_transformer::is_ctp_blocked(lemma *lem) {
if (!ctx.use_ctp()) {return false;}
if (!lem->has_ctp()) {return false;}
scoped_watch _t_(m_ctp_watch);
model_ref &ctp = lem->get_ctp();
// -- find rule of the ctp
const datalog::rule *r;
r = find_rule(*ctp);
if (r == nullptr) {return false;}
// -- find predicates along the rule
find_predecessors(*r, m_predicates);
// check if any lemma blocks the ctp model
for (unsigned i = 0, sz = m_predicates.size(); i < sz; ++i) {
pred_transformer &pt = ctx.get_pred_transformer(m_predicates[i]);
expr_ref lemmas(m), val(m);
lemmas = pt.get_formulas(lem->level());
pm.formula_n2o(lemmas.get(), lemmas, i);
if (ctp->eval(lemmas, val) && m.is_false(val)) {return false;}
}
// lem is blocked by ctp since none of the lemmas at the previous
// level block ctp
return true;
}
bool pred_transformer::is_invariant(unsigned level, lemma* lem,
unsigned& solver_level,
expr_ref_vector* core)
{
m_stats.m_num_is_invariant++;
if (is_ctp_blocked(lem)) {
m_stats.m_num_ctp_blocked++;
return false;
}
expr_ref lemma_expr(m);
lemma_expr = lem->get_expr();
expr_ref_vector conj(m), aux(m);
expr_ref gnd_lemma(m);
if (!get_context().use_qlemmas() && !lem->is_ground()) {
app_ref_vector tmp(m);
ground_expr(to_quantifier(lemma_expr)->get_expr (), gnd_lemma, tmp);
lemma_expr = gnd_lemma.get();
}
conj.push_back(mk_not(m, lemma_expr));
flatten_and (conj);
prop_solver::scoped_level _sl(*m_solver, level);
prop_solver::scoped_subset_core _sc (*m_solver, true);
prop_solver::scoped_weakness _sw (*m_solver, 1,
ctx.weak_abs() ? lem->weakness() : UINT_MAX);
model_ref mdl;
model_ref *mdl_ref_ptr = nullptr;
if (ctx.use_ctp()) {mdl_ref_ptr = &mdl;}
m_solver->set_core(core);
m_solver->set_model(mdl_ref_ptr);
expr * bg = m_extend_lit.get ();
lbool r = m_solver->check_assumptions (conj, aux, m_transition_clause,
1, &bg, 1);
if (r == l_false) {
solver_level = m_solver->uses_level ();
lem->reset_ctp();
if (level < m_solver->uses_level()) {m_stats.m_num_lemma_level_jump++;}
SASSERT (level <= solver_level);
}
else if (r == l_true) {
// optionally remove unused symbols from the model
if (mdl_ref_ptr) {lem->set_ctp(*mdl_ref_ptr);}
}
else {lem->reset_ctp();}
return r == l_false;
}
bool pred_transformer::check_inductive(unsigned level, expr_ref_vector& state,
unsigned& uses_level, unsigned weakness)
{
expr_ref_vector conj(m), core(m);
expr_ref states(m);
states = mk_and(state);
states = m.mk_not(states);
mk_assumptions(head(), states, conj);
prop_solver::scoped_level _sl(*m_solver, level);
prop_solver::scoped_subset_core _sc (*m_solver, true);
prop_solver::scoped_weakness _sw (*m_solver, 1,
ctx.weak_abs() ? weakness : UINT_MAX);
m_solver->set_core(&core);
m_solver->set_model (nullptr);
expr_ref_vector aux (m);
conj.push_back (m_extend_lit);
lbool res = m_solver->check_assumptions (state, aux,
m_transition_clause,
conj.size (), conj.c_ptr (), 1);
if (res == l_false) {
state.reset();
state.append(core);
uses_level = m_solver->uses_level();
}
TRACE ("core_array_eq",
tout << "check_inductive: "
<< "states: " << mk_pp (states, m)
<< " is: " << res << "\n"
<< "with transition: " << mk_pp (m_transition, m) << "\n";);
return res == l_false;
}
void pred_transformer::mk_assumptions(func_decl* head, expr* fml,
expr_ref_vector& result)
{
expr_ref tmp1(m), tmp2(m);
for (auto& kv : m_pt_rules) {
expr* tag = kv.m_value->tag();
datalog::rule const& r = kv.m_value->rule();
find_predecessors(r, m_predicates);
for (unsigned i = 0; i < m_predicates.size(); i++) {
func_decl* d = m_predicates[i];
if (d == head) {
tmp1 = m.mk_implies(tag, fml);
pm.formula_n2o(tmp1, tmp2, i);
result.push_back(tmp2);
}
}
}
}
void pred_transformer::initialize(decl2rel const& pts)
{
m_init = m.mk_false();
m_transition = m.mk_true();
init_rules(pts);
th_rewriter rw(m);
rw(m_transition);
rw(m_init);
m_solver->assert_expr (m_transition);
m_solver->assert_expr (m_init, 0);
TRACE("spacer",
tout << "Initial state: " << mk_pp(m_init, m) << "\n";
tout << "Transition: " << mk_pp(m_transition, m) << "\n";);
SASSERT(is_app(m_init));
//m_reachable.add_init(to_app(m_init));
}
void pred_transformer::init_rfs ()
{
expr_ref_vector v(m);
reach_fact_ref fact;
for (auto &kv : m_pt_rules) {
pt_rule &ptr = *kv.m_value;
const datalog::rule& r = ptr.rule();
if (ptr.is_init()) {
fact = alloc(reach_fact, m, r, ptr.trans(), ptr.auxs(), true);
add_rf(fact.get());
}
}
}
void pred_transformer::init_rules(decl2rel const& pts) {
expr_ref_vector transitions(m), not_inits(m);
app_ref tag(m);
for (auto r : m_rules) {
init_rule(pts, *r);
}
if (m_pt_rules.empty()) {
m_transition = m.mk_false();
m_transition_clause.reset();
}
else {
unsigned i = 0;
expr_ref_vector transitions(m);
m_transition_clause.push_back (m_extend_lit->get_arg(0));
for (auto &kv : m_pt_rules) {
pt_rule &r = *kv.m_value;
std::string name = head()->get_name().str() + "__tr" + std::to_string(i);
tag = m.mk_const(symbol(name.c_str()), m.mk_bool_sort());
m_pt_rules.set_tag(tag, r);
m_transition_clause.push_back(tag);
transitions.push_back(m.mk_implies(r.tag(), r.trans()));
if (!r.is_init()) {not_inits.push_back(m.mk_not(tag));}
++i;
}
if (!ctx.use_inc_clause()) {
transitions.push_back(mk_or(m_transition_clause));
m_transition_clause.reset();
}
m_transition = mk_and(transitions);
}
// mk init condition -- disables all non-initial transitions
m_init = mk_and(not_inits);
// no rule has uninterpreted tail
if (not_inits.empty ()) {m_all_init = true;}
}
#ifdef Z3DEBUG
static bool is_all_non_null(app_ref_vector const& apps) {
for (auto *a : apps) if (!a) return false;
return true;
}
#endif
void pred_transformer::init_rule(decl2rel const& pts, datalog::rule const& rule) {
scoped_watch _t_(m_initialize_watch);
// Predicates that are variable representatives. Other predicates at
// positions the variables occur are made equivalent with these.
expr_ref_vector side(m);
app_ref_vector var_reprs(m);
ptr_vector<app> aux_vars;
unsigned ut_size = rule.get_uninterpreted_tail_size();
unsigned t_size = rule.get_tail_size();
SASSERT(ut_size <= t_size);
init_atom(pts, rule.get_head(), var_reprs, side, UINT_MAX);
for (unsigned i = 0; i < ut_size; ++i) {
if (rule.is_neg_tail(i)) {
throw default_exception("SPACER does not support "
"negated predicates in rule tails");
}
init_atom(pts, rule.get_tail(i), var_reprs, side, i);
}
// -- substitute free variables
expr_ref trans(m);
{
expr_ref_vector tail(m);
for (unsigned i = ut_size; i < t_size; ++i)
tail.push_back(rule.get_tail(i));
trans= mk_and (tail);
ground_free_vars(trans, var_reprs, aux_vars, ut_size == 0);
SASSERT(is_all_non_null(var_reprs));
expr_ref tmp(m);
var_subst(m, false)(trans, var_reprs.size (),
(expr*const*)var_reprs.c_ptr(), tmp);
flatten_and (tmp, side);
trans = mk_and(side);
side.reset ();
}
// rewrite and simplify
th_rewriter rw(m);
rw(trans);
if (ctx.blast_term_ite()) {blast_term_ite(trans, 3); rw(trans);}
TRACE("spacer_init_rule", tout << mk_pp(trans, m) << "\n";);
// allow quantifiers in init rule
SASSERT(ut_size == 0 || is_ground(trans));
if (!m.is_false(trans)) {
pt_rule &ptr = m_pt_rules.mk_rule(m, rule);
ptr.set_trans(trans);
ptr.set_auxs(aux_vars);
ptr.set_reps(var_reprs);
}
// TRACE("spacer",
// tout << rule.get_decl()->get_name() << "\n";
// tout << var_reprs << "\n";);
}
// create constants for free variables in tail.
void pred_transformer::ground_free_vars(expr* e, app_ref_vector& vars,
ptr_vector<app>& aux_vars, bool is_init) {
expr_free_vars fv;
fv(e);
while (vars.size() < fv.size()) {vars.push_back(nullptr);}
for (unsigned i = 0; i < fv.size(); ++i) {
if (fv[i] && !vars[i].get()) {
// AG: is it useful to make names unique across rules?
app_ref v(m);
v = m.mk_fresh_const("aux", fv[i]);
v = m.mk_const (pm.get_n_pred(v->get_decl ()));
vars[i] = v;
aux_vars.push_back(v);
}
}
}
// create names for variables used in relations.
void pred_transformer::init_atom(decl2rel const &pts, app *atom,
app_ref_vector &var_reprs,
expr_ref_vector &side, unsigned tail_idx) {
unsigned arity = atom->get_num_args();
func_decl* head = atom->get_decl();
pred_transformer& pt = *pts.find(head);
for (unsigned i = 0; i < arity; i++) {
app_ref rep(m);
if (tail_idx == UINT_MAX) {
rep = m.mk_const(pm.o2n(pt.sig(i), 0));
} else {
rep = m.mk_const(pm.o2o(pt.sig(i), 0, tail_idx));
}
expr * arg = atom->get_arg(i);
if (is_var(arg)) {
var * v = to_var(arg);
unsigned var_idx = v->get_idx();
if (var_idx >= var_reprs.size()) {
var_reprs.resize(var_idx+1);
}
expr * repr = var_reprs[var_idx].get();
if (repr) {
side.push_back(m.mk_eq(rep, repr));
} else {
var_reprs[var_idx] = rep;
}
} else {
SASSERT(is_app(arg));
side.push_back(m.mk_eq(rep, arg));
}
}
}
void pred_transformer::add_premises(decl2rel const& pts, unsigned lvl, expr_ref_vector& r)
{
if (lvl == 0) {r.push_back(m_init);}
else {
r.push_back(m_transition);
if (!m_transition_clause.empty()) {
expr_ref c(m);
c = mk_or(m_transition_clause);
r.push_back(c);
}
}
for (unsigned i = 0; i < rules().size(); ++i) {
add_premises(pts, lvl, *rules()[i], r);
}
}
void pred_transformer::add_premises(decl2rel const& pts, unsigned lvl,
datalog::rule& rule, expr_ref_vector& r)
{
find_predecessors(rule, m_predicates);
for (unsigned i = 0; i < m_predicates.size(); ++i) {
expr_ref tmp(m);
func_decl* head = m_predicates[i];
pred_transformer& pt = *pts.find(head);
expr_ref inv = pt.get_formulas(lvl);
if (!m.is_true(inv)) {
pm.formula_n2o(inv, tmp, i, true);
r.push_back(tmp);
}
}
}
void pred_transformer::inherit_lemmas(pred_transformer& other)
{m_frames.inherit_frames (other.m_frames);}
app* pred_transformer::extend_initial (expr *e)
{
// create fresh extend literal
app_ref v(m);
std::stringstream name;
name << m_head->get_name() << "_ext";
v = m.mk_fresh_const (name.str ().c_str (),
m.mk_bool_sort ());
v = m.mk_const (pm.get_n_pred (v->get_decl ()));
expr_ref ic(m);
// -- extend the initial condition
ic = m.mk_or (m_extend_lit, e, v);
m_solver->assert_expr (ic);
// -- remember the new extend literal
m_extend_lit = m.mk_not (v);
return m_extend_lit;
}
/// \brief Update a given solver with all constraints representing
/// this pred_transformer
void pred_transformer::updt_solver(prop_solver *solver) {
solver->assert_expr(m_transition);
solver->assert_expr(m_init, 0);
// -- facts derivable at the head
expr_ref last_tag(m);
last_tag = m_extend_lit0;
for (auto *rf : m_reach_facts) {
if (rf->is_init()) continue; // already in m_init
solver->assert_expr(m.mk_or(last_tag, rf->get(), rf->tag()));
last_tag = m.mk_not(rf->tag());
}
SASSERT(last_tag == m_extend_lit);
// -- lemmas
app_ref_vector _unused(m);
expr_ref_vector fmls(m);
// -- assert lemmas
for (auto *u : m_frames.lemmas()) {
// instances
u->mk_insts(fmls);
// extra ground instance
if (!u->is_ground()) {
expr_ref gnd(m);
ground_expr(u->get_expr(), gnd, _unused);
fmls.push_back(gnd);
}
// (quantified) lemma
if (u->is_ground() || get_context().use_qlemmas())
fmls.push_back(u->get_expr());
// send to solver
if (is_infty_level(u->level()))
solver->assert_exprs(fmls);
else {
for (unsigned i = 0; i <= u->level(); ++i)
solver->assert_exprs(fmls, i);
}
fmls.reset();
}
// -- lemmas and rfs from other predicates
for (auto &kv : m_pt_rules) {
const datalog::rule &r = kv.m_value->rule();
find_predecessors(r, m_predicates);
if (m_predicates.empty()) continue;
for (unsigned i = 0, sz = m_predicates.size(); i < sz; ++i) {
const pred_transformer &pt = ctx.get_pred_transformer(m_predicates[i]);
// assert lemmas of pt
updt_solver_with_lemmas(solver, pt, to_app(kv.m_value->tag()), i);
// assert rfs of pt
update_solver_with_rfs(solver, pt, to_app(kv.m_value->tag()), i);
}
}
}
void pred_transformer::updt_solver_with_lemmas(prop_solver *solver,
const pred_transformer &pt,
app* rule_tag, unsigned pos) {
app_ref_vector _unused(m);
expr_ref_vector fmls(m);
for (auto *u : pt.m_frames.lemmas()) {
expr_ref e(m), gnd(m);
e = u->get_expr();
pm.formula_n2o(e, e, pos);
u->mk_insts(fmls, e);
if (!u->is_ground()) {
// special ground instance
ground_expr(u->get_expr(), gnd, _unused);
pm.formula_n2o(gnd, gnd, pos);
fmls.push_back(gnd);
}
// quantified formula
if (u->is_ground() || get_context().use_qlemmas())
fmls.push_back(e);
// add tag
for (unsigned i = 0, sz = fmls.size(); i < sz; ++i)
fmls.set(i, m.mk_implies(rule_tag, fmls.get(i)));
// send to solver
if (is_infty_level(u->level()))
solver->assert_exprs(fmls);
else {
for (unsigned i = 1, end = next_level(u->level()); i <= end; ++i)
solver->assert_exprs(fmls, i);
}
fmls.reset();
}
}
void pred_transformer::update_solver_with_rfs(prop_solver *solver,
const pred_transformer &pt,
app *rule_tag, unsigned pos) {
expr_ref not_rule_tag(m);
not_rule_tag = m.mk_not(rule_tag);
expr_ref last_tag(m);
for (auto *rf : pt.m_reach_facts) {
expr_ref e(m);
if (!last_tag) {
e = m.mk_or(m.mk_not(rule_tag), rf->get(), rf->tag());
}
else {
expr *args[4] = { not_rule_tag, last_tag, rf->get(), rf->tag() };
e = m.mk_or(4, args);
}
last_tag = m.mk_not(rf->tag());
pm.formula_n2o(e.get(), e, pos);
solver->assert_expr(e);
}
}
/// pred_transformer::frames
bool pred_transformer::frames::add_lemma(lemma *new_lemma)
{
TRACE("spacer", tout << "add-lemma: " << pp_level(new_lemma->level()) << " "
<< m_pt.head()->get_name() << " "
<< mk_pp(new_lemma->get_expr(), m_pt.get_ast_manager()) << "\n";);
unsigned i = 0;
for (auto *old_lemma : m_lemmas) {
if (old_lemma->get_expr() == new_lemma->get_expr()) {
m_pt.get_context().new_lemma_eh(m_pt, new_lemma);
// register existing lemma with the pob
if (new_lemma->has_pob()) {
pob_ref &pob = new_lemma->get_pob();
if (!pob->lemmas().contains(old_lemma))
pob->add_lemma(old_lemma);
}
// extend bindings if needed
if (!new_lemma->get_bindings().empty()) {
old_lemma->add_binding(new_lemma->get_bindings());
}
// if the lemma is at a higher level, skip it,
if (old_lemma->level() >= new_lemma->level()) {
TRACE("spacer", tout << "Already at a higher level: "
<< pp_level(old_lemma->level()) << "\n";);
// but, since the instances might be new, assert the
// instances that have been copied into m_lemmas[i]
if (!new_lemma->get_bindings().empty()) {
m_pt.add_lemma_core(old_lemma, true);
}
if(is_infty_level(old_lemma->level())) {
old_lemma->bump();
if (old_lemma->get_bumped() >= 100) {
IF_VERBOSE(1, verbose_stream() << "Adding lemma to oo "
<< old_lemma->get_bumped() << " "
<< mk_pp(old_lemma->get_expr(),
m_pt.get_ast_manager()) << "\n";);
throw default_exception("Stuck on a lemma");
}
}
// no new lemma added
return false;
}
// update level of the existing lemma
old_lemma->set_level(new_lemma->level());
// assert lemma in the solver
m_pt.add_lemma_core(old_lemma, false);
// move the lemma to its new place to maintain sortedness
unsigned sz = m_lemmas.size();
for (unsigned j = i;
(j + 1) < sz && m_lt(m_lemmas[j + 1], m_lemmas[j]); ++j) {
m_lemmas.swap (j, j+1);
}
return true;
}
i++;
}
// new_lemma is really new
m_lemmas.push_back(new_lemma);
// XXX because m_lemmas is reduced, keep secondary vector of all lemmas
// XXX so that pob can refer to its lemmas without creating reference cycles
m_pinned_lemmas.push_back(new_lemma);
m_sorted = false;
m_pt.add_lemma_core(new_lemma);
if (new_lemma->has_pob()) {new_lemma->get_pob()->add_lemma(new_lemma);}
if (!new_lemma->external()) {
m_pt.get_context().new_lemma_eh(m_pt, new_lemma);
}
return true;
}
void pred_transformer::frames::propagate_to_infinity (unsigned level)
{
for (unsigned i = 0, sz = m_lemmas.size (); i < sz; ++i)
if (m_lemmas[i]->level() >= level && !is_infty_level(m_lemmas [i]->level())) {
m_lemmas [i]->set_level (infty_level ());
m_pt.add_lemma_core (m_lemmas [i]);
m_sorted = false;
}
}
void pred_transformer::frames::sort ()
{
if (m_sorted) { return; }
m_sorted = true;
std::sort(m_lemmas.c_ptr(), m_lemmas.c_ptr() + m_lemmas.size (), m_lt);
}
bool pred_transformer::frames::propagate_to_next_level (unsigned level)
{
sort ();
bool all = true;
if (m_lemmas.empty()) { return all; }
unsigned tgt_level = next_level (level);
m_pt.ensure_level (tgt_level);
for (unsigned i = 0, sz = m_lemmas.size(); i < sz && m_lemmas [i]->level() <= level;) {
if (m_lemmas [i]->level () < level) {++i; continue;}
unsigned solver_level;
if (m_pt.is_invariant(tgt_level, m_lemmas.get(i), solver_level)) {
m_lemmas [i]->set_level (solver_level);
m_pt.add_lemma_core (m_lemmas.get(i));
// percolate the lemma up to its new place
for (unsigned j = i; (j+1) < sz && m_lt (m_lemmas[j+1], m_lemmas[j]); ++j) {
m_lemmas.swap(j, j + 1);
}
++m_pt.m_stats.m_num_propagations;
} else {
all = false;
++i;
}
}
return all;
}
void pred_transformer::frames::simplify_formulas ()
{
// number of subsumed lemmas
unsigned num_sumbsumed = 0;
// ensure that the lemmas are sorted
sort();
ast_manager &m = m_pt.get_ast_manager();
tactic_ref simplifier = mk_unit_subsumption_tactic(m);
lemma_ref_vector new_lemmas;
unsigned lemmas_size = m_lemmas.size();
goal_ref g(alloc (goal, m, false, false, false));
unsigned j = 0;
// for every frame + infinity frame
for (unsigned i = 0; i <= m_size; ++i) {
g->reset_all ();
// normalize level
unsigned level = i < m_size ? i : infty_level ();
goal_ref_buffer result;
// simplify lemmas of the current level
// XXX lemmas of higher levels can be assumed in background
// XXX decide what to do with non-ground lemmas!
unsigned begin = j;
for (; j < lemmas_size && m_lemmas[j]->level() <= level; ++j) {
if (m_lemmas[j]->level() == level) {
g->assert_expr(m_lemmas[j]->get_expr());
}
}
unsigned end = j;
unsigned sz = end - begin;
// no lemmas at current level, move to next level
if (sz <= 0) {continue;}
// exactly one lemma at current level, nothing to
// simplify. move to next level
if (sz == 1) {
new_lemmas.push_back(m_lemmas[begin]);
continue;
}
// more than one lemma at current level. simplify.
(*simplifier)(g, result);
SASSERT(result.size () == 1);
goal *r = result[0];
// no simplification happened, copy all the lemmas
if (r->size () == sz) {
for (unsigned n = begin; n < end; ++n) {
new_lemmas.push_back (m_lemmas[n]);
}
}
// something got simplified, find out which lemmas remain
else {
num_sumbsumed += (sz - r->size());
// For every expression in the result, copy corresponding
// lemma into new_lemmas
// XXX linear search. optimize if needed.
for (unsigned k = 0; k < r->size(); ++k) {
bool found = false;
for (unsigned n = begin; n < end; ++n) {
if (m_lemmas[n]->get_expr() == r->form(k)) {
new_lemmas.push_back(m_lemmas[n]);
found = true;
break;
}
}
if (!found) {
verbose_stream() << "Failed to find a lemma for: "
<< mk_pp(r->form(k), m) << "\n";
verbose_stream() << "Available lemmas are: ";
for (unsigned n = begin; n < end; ++n) {
verbose_stream() << n << ": "
<< mk_pp(m_lemmas[n]->get_expr(), m)
<< "\n";
}
verbose_stream() << "Simplified goal is:\n";
for (unsigned k = 0; k < r->size(); ++k)
verbose_stream() << k << ": "
<< mk_pp(r->form(k), m) << "\n";
}
ENSURE(found);
SASSERT(found);
}
}
}
SASSERT(new_lemmas.size() + num_sumbsumed == m_lemmas.size());
ENSURE(new_lemmas.size() + num_sumbsumed == m_lemmas.size());
if (new_lemmas.size() < m_lemmas.size()) {
m_lemmas.reset();
m_lemmas.append(new_lemmas);
m_sorted = false;
sort();
}
}
/// pred_transformer::pobs
pob* pred_transformer::pobs::mk_pob(pob *parent,
unsigned level, unsigned depth,
expr *post, app_ref_vector const &b) {
if (!m_pt.ctx.reuse_pobs()) {
pob* n = alloc(pob, parent, m_pt, level, depth);
n->set_post(post, b);
return n;
}
// create a new pob and set its post to normalize it
pob p(parent, m_pt, level, depth, false);
p.set_post(post, b);
if (m_pobs.contains(p.post())) {
auto &buf = m_pobs[p.post()];
for (unsigned i = 0, sz = buf.size(); i < sz; ++i) {
pob *f = buf.get(i);
if (f->parent() == parent) {
f->inherit(p);
return f;
}
}
}
pob* n = alloc(pob, parent, m_pt, level, depth);
n->set_post(post, b);
m_pinned.push_back(n);
if (m_pobs.contains(n->post())) {
m_pobs[n->post()].push_back(n);
}
else {
pob_buffer buf;
buf.push_back(n);
m_pobs.insert(n->post(), buf);
}
return n;
}
// ----------------
// context
context::context(fp_params const& params, ast_manager& m) :
m_params(params),
m(m),
m_context(nullptr),
m_pm(m),
m_query_pred(m),
m_query(nullptr),
m_pob_queue(),
m_last_result(l_undef),
m_inductive_lvl(0),
m_expanded_lvl(0),
m_json_marshaller(this) {
ref<solver> pool0_base =
mk_smt_solver(m, params_ref::get_empty(), symbol::null);
ref<solver> pool1_base =
mk_smt_solver(m, params_ref::get_empty(), symbol::null);
ref<solver> pool2_base =
mk_smt_solver(m, params_ref::get_empty(), symbol::null);
unsigned max_num_contexts = params.spacer_max_num_contexts();
m_pool0 = alloc(solver_pool, pool0_base.get(), max_num_contexts);
m_pool1 = alloc(solver_pool, pool1_base.get(), max_num_contexts);
m_pool2 = alloc(solver_pool, pool2_base.get(), max_num_contexts);
updt_params();
}
context::~context()
{
reset_lemma_generalizers();
reset();
}
void context::updt_params() {
m_random.set_seed(m_params.spacer_random_seed());
m_children_order = static_cast<spacer_children_order>(m_params.spacer_order_children());
m_simplify_pob = m_params.spacer_simplify_pob();
m_use_euf_gen = m_params.spacer_use_euf_gen();
m_use_ctp = m_params.spacer_ctp();
m_use_inc_clause = m_params.spacer_use_inc_clause();
m_blast_term_ite = m_params.spacer_blast_term_ite();
m_reuse_pobs = m_params.spacer_reuse_pobs();
m_use_ind_gen = m_params.spacer_use_inductive_generalizer();
m_use_array_eq_gen = m_params.spacer_use_array_eq_generalizer();
m_validate_lemmas = m_params.spacer_validate_lemmas();
m_max_level = m_params.spacer_max_level ();
m_use_propagate = m_params.spacer_propagate ();
m_reset_obligation_queue = m_params.spacer_reset_pob_queue();
m_push_pob = m_params.spacer_push_pob();
m_push_pob_max_depth = m_params.spacer_push_pob_max_depth();
m_use_lemma_as_pob = m_params.spacer_use_lemma_as_cti();
m_elim_aux = m_params.spacer_elim_aux();
m_reach_dnf = m_params.spacer_reach_dnf();
m_use_derivations = m_params.spacer_use_derivations();
m_validate_result = m_params.validate();
m_use_eq_prop = m_params.spacer_eq_prop();
m_ground_pob = m_params.spacer_ground_pobs();
m_q3_qgen = m_params.spacer_q3_use_qgen();
m_use_gpdr = m_params.spacer_gpdr();
m_simplify_formulas_pre = m_params.spacer_simplify_lemmas_pre();
m_simplify_formulas_post = m_params.spacer_simplify_lemmas_post();
m_use_native_mbp = m_params.spacer_native_mbp ();
m_instantiate = m_params.spacer_q3_instantiate ();
m_use_qlemmas = m_params.spacer_q3();
m_weak_abs = m_params.spacer_weak_abs();
m_use_restarts = m_params.spacer_restarts();
m_restart_initial_threshold = m_params.spacer_restart_initial_threshold();
m_pdr_bfs = m_params.spacer_gpdr_bfs();
if (m_use_gpdr) {
// set options to be compatible with GPDR
m_weak_abs = false;
m_push_pob = false;
m_use_qlemmas = false;
m_ground_pob = true;
m_reset_obligation_queue = false;
m_use_derivations = false;
m_use_lemma_as_pob = false;
}
}
void context::reset()
{
TRACE("spacer", tout << "\n";);
m_pob_queue.reset();
for (auto &entry: m_rels) {dealloc(entry.m_value);}
m_rels.reset();
m_query = nullptr;
m_last_result = l_undef;
m_inductive_lvl = 0;
}
void context::init_rules(datalog::rule_set& rules, decl2rel& rels)
{
scoped_watch _t_(m_init_rules_watch);
m_context = &rules.get_context();
// Allocate collection of predicate transformers
for (auto dit = rules.begin_grouped_rules(),
dend = rules.end_grouped_rules(); dit != dend; ++dit) {
func_decl* pred = dit->m_key;
TRACE("spacer", tout << mk_pp(pred, m) << "\n";);
SASSERT(!rels.contains(pred));
auto *e = rels.insert_if_not_there2(pred, alloc(pred_transformer, *this,
get_manager(), pred));
datalog::rule_vector const& pred_rules = *dit->m_value;
for (auto rule : pred_rules) {e->get_data().m_value->add_rule(rule);}
}
// Allocate predicate transformers for predicates that are used
// but don't have rules
for (auto *r : rules) {
pred_transformer* pt;
unsigned utz = r->get_uninterpreted_tail_size();
for (unsigned i = 0; i < utz; ++i) {
func_decl* pred = r->get_decl(i);
if (!rels.find(pred, pt)) {
pt = alloc(pred_transformer, *this, get_manager(), pred);
rels.insert(pred, pt);
}
}
}
// Initialize use list dependencies
for (auto &entry : rels) {
func_decl* pred = entry.m_key;
pred_transformer* pt = entry.m_value, *pt_user = nullptr;
for (auto dep : rules.get_dependencies().get_deps(pred)) {
TRACE("spacer", tout << mk_pp(pred, m) << " " << mk_pp(dep, m) << "\n";);
rels.find(dep, pt_user);
pt_user->add_use(pt);
}
}
// Initialize the predicate transformers.
for (auto &entry : rels) {
pred_transformer* rel = entry.m_value;
rel->initialize(rels);
TRACE("spacer", rel->display(tout); );
}
// initialize reach facts
for (auto &entry : rels) {entry.m_value->init_rfs();}
}
void context::inherit_lemmas(const decl2rel &rels) {
for (auto &entry : rels) {
pred_transformer *pt = nullptr;
if (m_rels.find(entry.m_key, pt)) {
entry.m_value->inherit_lemmas(*pt);
}
}
}
void context::update_rules(datalog::rule_set& rules)
{
decl2rel rels;
// SMT params must be set before any expression is asserted to any
// solver
init_global_smt_params();
// constructs new pred transformers and asserts trans and init
init_rules(rules, rels);
// inherits lemmas from m_rels into rels
inherit_lemmas(rels);
// switch context to new rels
init(rels);
// re-initialize lemma generalizers
init_lemma_generalizers();
}
void context::init(const decl2rel &rels) {
// reset context. Current state is all stored in rels
reset();
// re-initialize context
for (auto &entry : rels)
{m_rels.insert(entry.m_key, entry.m_value);}
}
unsigned context::get_num_levels(func_decl* p)
{
pred_transformer* pt = nullptr;
if (m_rels.find(p, pt)) {
return pt->get_num_levels();
} else {
IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
return 0;
}
}
expr_ref context::get_cover_delta(int level, func_decl* p_orig, func_decl* p)
{
pred_transformer* pt = nullptr;
if (m_rels.find(p, pt)) {
return pt->get_cover_delta(p_orig, level);
} else {
IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
return expr_ref(m.mk_true(), m);
}
}
void context::add_cover(int level, func_decl* p, expr* property)
{
pred_transformer* pt = nullptr;
if (!m_rels.find(p, pt)) {
pt = alloc(pred_transformer, *this, get_manager(), p);
m_rels.insert(p, pt);
IF_VERBOSE(10, verbose_stream() << "did not find predicate " << p->get_name() << "\n";);
}
unsigned lvl = (level == -1)?infty_level():((unsigned)level);
pt->add_cover(lvl, property);
}
void context::add_invariant (func_decl *p, expr *property)
{add_cover (infty_level(), p, property);}
expr_ref context::get_reachable(func_decl *p)
{
pred_transformer* pt = nullptr;
if (!m_rels.find(p, pt))
{ return expr_ref(m.mk_false(), m); }
return pt->get_reachable();
}
bool context::validate()
{
if (!m_validate_result) { return true; }
std::stringstream msg;
switch(m_last_result) {
case l_true: {
#if 0
expr_ref cex(m);
cex = get_ground_sat_answer();
if (!cex.get()) {
IF_VERBOSE(0, verbose_stream() << "Cex validation failed\n";);
throw default_exception("Cex validation failed\n");
return false;
}
#endif
proof_ref cex(m);
cex = get_ground_refutation();
if (!cex.get()) {
IF_VERBOSE(0, verbose_stream() << "Cex validation failed\n";);
throw default_exception("Cex validation failed\n");
return false;
}
break;
}
case l_false: {
expr_ref_vector refs(m);
expr_ref tmp(m);
model_ref model;
vector<relation_info> rs;
model_converter_ref mc;
get_level_property(m_inductive_lvl, refs, rs);
inductive_property ex(m, mc, rs);
ex.to_model(model);
var_subst vs(m, false);
for (auto& kv : m_rels) {
ptr_vector<datalog::rule> const& rules = kv.m_value->rules();
TRACE ("spacer", tout << "PT: " << kv.m_value->head ()->get_name ().str ()
<< "\n";);
for (auto* rp : rules) {
datalog::rule& r = *rp;
TRACE ("spacer",
get_datalog_context ().
get_rule_manager ().
display_smt2(r, tout) << "\n";);
model->eval(r.get_head(), tmp);
expr_ref_vector fmls(m);
fmls.push_back(m.mk_not(tmp));
unsigned utsz = r.get_uninterpreted_tail_size();
unsigned tsz = r.get_tail_size();
for (unsigned j = 0; j < utsz; ++j) {
model->eval(r.get_tail(j), tmp);
fmls.push_back(tmp);
}
for (unsigned j = utsz; j < tsz; ++j) {
fmls.push_back(r.get_tail(j));
}
tmp = m.mk_and(fmls.size(), fmls.c_ptr());
svector<symbol> names;
expr_free_vars fv;
fv (tmp);
fv.set_default_sort (m.mk_bool_sort ());
for (unsigned i = 0; i < fv.size(); ++i) {
names.push_back(symbol(fv.size () - i - 1));
}
if (!fv.empty()) {
fv.reverse ();
tmp = m.mk_exists(fv.size(), fv.c_ptr(), names.c_ptr(), tmp);
}
ref<solver> sol =
mk_smt_solver(m, params_ref::get_empty(), symbol::null);
sol->assert_expr(tmp);
lbool res = sol->check_sat(0, nullptr);
if (res != l_false) {
msg << "rule validation failed when checking: "
<< mk_pp(tmp, m);
IF_VERBOSE(0, verbose_stream() << msg.str() << "\n";);
throw default_exception(msg.str());
return false;
}
}
}
TRACE ("spacer", tout << "Validation Succeeded\n";);
break;
}
default:
break;
}
return true;
}
void context::reset_lemma_generalizers()
{
std::for_each(m_lemma_generalizers.begin(), m_lemma_generalizers.end(),
delete_proc<lemma_generalizer>());
m_lemma_generalizers.reset();
}
// initialize global SMT parameters shared by all solvers
void context::init_global_smt_params() {
m.toggle_proof_mode(PGM_ENABLED);
params_ref p;
if (!m_use_eq_prop) {
p.set_uint("arith.propagation_mode", BP_NONE);
p.set_bool("arith.auto_config_simplex", true);
p.set_bool("arith.propagate_eqs", false);
p.set_bool("arith.eager_eq_axioms", false);
}
p.set_uint("random_seed", m_params.spacer_random_seed());
p.set_bool("dump_benchmarks", m_params.spacer_dump_benchmarks());
p.set_double("dump_threshold", m_params.spacer_dump_threshold());
// mbqi
p.set_bool("mbqi", m_params.spacer_mbqi());
if (!m_ground_pob) {
p.set_uint("phase_selection", PS_CACHING_CONSERVATIVE2);
p.set_uint("restart_strategy", RS_GEOMETRIC);
p.set_double("restart_factor", 1.5);
p.set_uint("qi.quick_checker", MC_UNSAT);
p.set_double("qi.eager_threshold", 10.0);
p.set_double("qi.lazy_threshold", 20.0);
// options that we used to set, but are not user visible and
// possibly not very useful
// fparams.m_ng_lift_ite = LI_FULL;
// fparams.m_eliminate_bounds = true;
// fparams.m_pi_use_database = true;
}
m_pool0->updt_params(p);
m_pool1->updt_params(p);
m_pool2->updt_params(p);
}
void context::init_lemma_generalizers()
{
reset_lemma_generalizers();
if (m_q3_qgen) {
m_lemma_generalizers.push_back(alloc(lemma_bool_inductive_generalizer,
*this, 0, true));
m_lemma_generalizers.push_back(alloc(lemma_quantifier_generalizer, *this,
m_params.spacer_q3_qgen_normalize()));
}
if (m_use_euf_gen) {
m_lemma_generalizers.push_back (alloc(lemma_eq_generalizer, *this));
}
// -- AG: commented out because it is causing performance issues at the moment
//m_lemma_generalizers.push_back (alloc (unsat_core_generalizer, *this));
if (m_use_ind_gen) {
m_lemma_generalizers.push_back(alloc(lemma_bool_inductive_generalizer, *this, 0));
}
if (m_use_array_eq_gen) {
m_lemma_generalizers.push_back(alloc(lemma_array_eq_generalizer, *this));
}
if (m_validate_lemmas) {
m_lemma_generalizers.push_back(alloc(lemma_sanity_checker, *this));
}
}
void context::get_level_property(unsigned lvl, expr_ref_vector& res,
vector<relation_info>& rs) const {
for (auto const& kv : m_rels) {
pred_transformer* r = kv.m_value;
if (r->head() == m_query_pred) {
continue;
}
expr_ref conj = r->get_formulas(lvl);
m_pm.formula_n2o(0, false, conj);
res.push_back(conj);
ptr_vector<func_decl> sig(r->head()->get_arity(), r->sig());
rs.push_back(relation_info(m, r->head(), sig, conj));
}
}
void context::simplify_formulas() {
for (auto& kv : m_rels) {
kv.m_value->simplify_formulas();
}
}
lbool context::solve(unsigned from_lvl)
{
m_last_result = l_undef;
try {
if (m_use_gpdr) {
SASSERT(from_lvl == 0);
m_last_result = gpdr_solve_core();
}
else {
m_last_result = solve_core (from_lvl);
}
if (m_last_result == l_false) {
simplify_formulas();
m_last_result = l_false;
IF_VERBOSE(1, {
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
model_converter_ref mc;
inductive_property ex(m, mc, rs);
verbose_stream() << ex.to_string();
});
// upgrade invariants that are known to be inductive.
// decl2rel::iterator it = m_rels.begin (), end = m_rels.end ();
// for (; m_inductive_lvl > 0 && it != end; ++it) {
// if (it->m_value->head() != m_query_pred) {
// it->m_value->propagate_to_infinity (m_inductive_lvl);
// }
// }
}
VERIFY (validate ());
} catch (unknown_exception)
{}
if (m_last_result == l_true) {
m_stats.m_cex_depth = get_cex_depth ();
}
if (m_params.print_statistics ()) {
statistics st;
collect_statistics (st);
st.display_smt2 (verbose_stream ());
}
return m_last_result;
}
void context::checkpoint()
{
if (m.canceled ()) {
throw default_exception("spacer canceled");
}
}
unsigned context::get_cex_depth()
{
if (m_last_result != l_true) {
IF_VERBOSE(1,
verbose_stream ()
<< "Trace unavailable when result is false\n";);
return 0;
}
// treat the following as queues: read from left to right and insert at right
ptr_vector<func_decl> preds;
ptr_vector<pred_transformer> pts;
reach_fact_ref_vector facts;
// temporary
reach_fact* fact;
datalog::rule const* r;
pred_transformer* pt;
// get and discard query rule
fact = m_query->get_last_rf ();
r = &fact->get_rule ();
unsigned cex_depth = 0;
// initialize queues
// assume that the query is only on a single predicate
// (i.e. disallow fancy queries for now)
facts.append (fact->get_justifications ());
if (facts.size() != 1) {
// XXX AG: Escape if an assertion is about to fail
IF_VERBOSE(1,
verbose_stream () <<
"Warning: counterexample is trivial or non-existent\n";);
return cex_depth;
}
SASSERT (facts.size () == 1);
m_query->find_predecessors (*r, preds);
SASSERT (preds.size () == 1);
pts.push_back (&(get_pred_transformer (preds[0])));
pts.push_back (NULL); // cex depth marker
// bfs traversal of the query derivation tree
for (unsigned curr = 0; curr < pts.size (); curr++) {
// get current pt and fact
pt = pts.get (curr);
// check for depth marker
if (pt == nullptr) {
++cex_depth;
// insert new marker if there are pts at higher depth
if (curr + 1 < pts.size()) { pts.push_back(NULL); }
continue;
}
fact = facts.get (curr - cex_depth); // discount the number of markers
// get rule justifying the derivation of fact at pt
r = &fact->get_rule ();
TRACE ("spacer",
tout << "next rule: " << r->name ().str () << "\n";
);
// add child facts and pts
facts.append (fact->get_justifications ());
pt->find_predecessors (*r, preds);
for (unsigned j = 0; j < preds.size (); j++) {
pts.push_back (&(get_pred_transformer (preds[j])));
}
}
return cex_depth;
}
/**
\brief retrieve answer.
*/
void context::get_rules_along_trace(datalog::rule_ref_vector& rules)
{
if (m_last_result != l_true) {
IF_VERBOSE(1,
verbose_stream ()
<< "Trace unavailable when result is false\n";);
return;
}
// treat the following as queues: read from left to right and insert at right
ptr_vector<func_decl> preds;
ptr_vector<pred_transformer> pts;
reach_fact_ref_vector facts;
// temporary
reach_fact* fact;
datalog::rule const* r;
pred_transformer* pt;
// get query rule
fact = m_query->get_last_rf ();
r = &fact->get_rule ();
rules.push_back (const_cast<datalog::rule *> (r));
TRACE ("spacer",
tout << "Initial rule: " << r->name().str() << "\n";
);
// initialize queues
// assume that the query is only on a single predicate
// (i.e. disallow fancy queries for now)
facts.append (fact->get_justifications ());
if (facts.size() != 1) {
// XXX AG: Escape if an assertion is about to fail
IF_VERBOSE(1,
verbose_stream () <<
"Warning: counterexample is trivial or non-existent\n";);
return;
}
SASSERT (facts.size () == 1);
m_query->find_predecessors (*r, preds);
SASSERT (preds.size () == 1);
pts.push_back (&(get_pred_transformer (preds[0])));
// populate rules according to a preorder traversal of the query derivation tree
for (unsigned curr = 0; curr < pts.size (); curr++) {
// get current pt and fact
pt = pts.get (curr);
fact = facts.get (curr);
// get rule justifying the derivation of fact at pt
r = &fact->get_rule ();
rules.push_back (const_cast<datalog::rule *> (r));
TRACE ("spacer",
tout << "next rule: " << r->name ().str () << "\n";
);
// add child facts and pts
facts.append (fact->get_justifications ());
pt->find_predecessors (*r, preds);
for (unsigned j = 0; j < preds.size (); j++) {
pts.push_back (&(get_pred_transformer (preds[j])));
}
}
}
model_ref context::get_model()
{
model_ref model;
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
ex.to_model (model);
return model;
}
proof_ref context::get_proof() const
{
return proof_ref (m);
}
expr_ref context::get_answer()
{
switch(m_last_result) {
case l_true:
return mk_sat_answer();
case l_false:
return mk_unsat_answer();
default:
return expr_ref(m.mk_true(), m);
}
}
/**
\brief Retrieve satisfying assignment with explanation.
*/
expr_ref context::mk_sat_answer() {return get_ground_sat_answer();}
expr_ref context::mk_unsat_answer() const
{
expr_ref_vector refs(m);
vector<relation_info> rs;
get_level_property(m_inductive_lvl, refs, rs);
inductive_property ex(m, const_cast<model_converter_ref&>(m_mc), rs);
return ex.to_expr();
}
proof_ref context::get_ground_refutation() {
if (m_last_result != l_true) {
IF_VERBOSE(0, verbose_stream()
<< "Sat answer unavailable when result is false\n";);
return proof_ref(m);
}
ground_sat_answer_op op(*this);
return op(*m_query);
}
expr_ref context::get_ground_sat_answer()
{
if (m_last_result != l_true) {
IF_VERBOSE(0, verbose_stream()
<< "Sat answer unavailable when result is false\n";);
return expr_ref(m);
}
// treat the following as queues: read from left to right and insert at the right
reach_fact_ref_vector reach_facts;
ptr_vector<func_decl> preds;
ptr_vector<pred_transformer> pts;
expr_ref_vector cex (m); // pre-order list of ground instances of predicates
expr_ref_vector cex_facts (m); // equalities for the ground cex using signature constants
// temporary
reach_fact *reach_fact;
pred_transformer* pt;
expr_ref cex_fact (m);
datalog::rule const* r;
// get and discard query rule
reach_fact = m_query->get_last_rf ();
r = &reach_fact->get_rule ();
// initialize queues
reach_facts.append (reach_fact->get_justifications ());
if (reach_facts.size() != 1) {
// XXX Escape if an assertion is about to fail
IF_VERBOSE(1,
verbose_stream () <<
"Warning: counterexample is trivial or non-existent\n";);
return expr_ref(m.mk_true(), m);
}
m_query->find_predecessors (*r, preds);
SASSERT (preds.size () == 1);
pts.push_back (&(get_pred_transformer (preds[0])));
cex_facts.push_back (m.mk_true ());
// XXX a hack to avoid assertion when query predicate is not nullary
if (preds[0]->get_arity () == 0)
{ cex.push_back(m.mk_const(preds[0])); }
// smt context to obtain local cexes
ref<solver> cex_ctx =
mk_smt_solver(m, params_ref::get_empty(), symbol::null);
model_evaluator_util mev (m);
// preorder traversal of the query derivation tree
for (unsigned curr = 0; curr < pts.size (); curr++) {
// pick next pt, fact, and cex_fact
pt = pts.get (curr);
reach_fact = reach_facts[curr];
cex_fact = cex_facts.get (curr);
ptr_vector<pred_transformer> child_pts;
// get justifying rule and child facts for the derivation of reach_fact at pt
r = &reach_fact->get_rule ();
const reach_fact_ref_vector &child_reach_facts =
reach_fact->get_justifications ();
// get child pts
preds.reset();
pt->find_predecessors(*r, preds);
for (unsigned j = 0; j < preds.size (); j++) {
child_pts.push_back (&(get_pred_transformer (preds[j])));
}
// update the queues
reach_facts.append (child_reach_facts);
pts.append (child_pts);
// update cex and cex_facts by making a local sat check:
// check consistency of reach facts of children, rule body, and cex_fact
cex_ctx->push ();
cex_ctx->assert_expr (cex_fact);
unsigned u_tail_sz = r->get_uninterpreted_tail_size ();
SASSERT (child_reach_facts.size () == u_tail_sz);
for (unsigned i = 0; i < u_tail_sz; i++) {
expr_ref ofml (m);
m_pm.formula_n2o(child_reach_facts[i]->get(), ofml, i);
cex_ctx->assert_expr (ofml);
}
cex_ctx->assert_expr(pt->transition());
cex_ctx->assert_expr(pt->rule2tag(r));
lbool res = cex_ctx->check_sat(0, nullptr);
CTRACE("cex", res == l_false,
tout << "Cex fact: " << mk_pp(cex_fact, m) << "\n";
for (unsigned i = 0; i < u_tail_sz; i++)
tout << "Pre" << i << " "
<< mk_pp(child_reach_facts[i]->get(), m) << "\n";
tout << "Rule: ";
get_datalog_context().get_rule_manager().display_smt2(*r, tout) << "\n";
);
VERIFY (res == l_true);
model_ref local_mdl;
cex_ctx->get_model (local_mdl);
cex_ctx->pop (1);
model_evaluator mev(*local_mdl);
for (unsigned i = 0; i < child_pts.size(); i++) {
pred_transformer& ch_pt = *(child_pts.get(i));
unsigned sig_size = ch_pt.sig_size();
expr_ref_vector ground_fact_conjs(m);
expr_ref_vector ground_arg_vals(m);
for (unsigned j = 0; j < sig_size; j++) {
expr_ref sig_arg(m), sig_val(m);
sig_arg = m.mk_const (m_pm.o2o(ch_pt.sig(j), 0, i));
VERIFY(mev.eval (sig_arg, sig_val, true));
ground_fact_conjs.push_back(m.mk_eq(sig_arg, sig_val));
ground_arg_vals.push_back(sig_val);
}
if (ground_fact_conjs.size () > 0) {
expr_ref ground_fact(m);
ground_fact = mk_and(ground_fact_conjs);
m_pm.formula_o2n(ground_fact, ground_fact, i);
cex_facts.push_back (ground_fact);
} else {
cex_facts.push_back (m.mk_true ());
}
cex.push_back(m.mk_app(ch_pt.head(),
sig_size, ground_arg_vals.c_ptr()));
}
}
TRACE ("spacer", tout << "ground cex\n" << cex << "\n";);
return expr_ref(m.mk_and(cex.size(), cex.c_ptr()), m);
}
///this is where everything starts
lbool context::solve_core (unsigned from_lvl)
{
scoped_watch _w_(m_solve_watch);
//if there is no query predicate, abort
if (!m_rels.find(m_query_pred, m_query)) { return l_false; }
unsigned lvl = from_lvl;
pob *root = m_query->mk_pob(nullptr,from_lvl,0,m.mk_true());
m_pob_queue.set_root (*root);
unsigned max_level = m_max_level;
for (unsigned i = from_lvl; i < max_level; ++i) {
checkpoint();
m_expanded_lvl = infty_level ();
m_stats.m_max_query_lvl = lvl;
if (check_reachability()) { return l_true; }
if (lvl > 0 && m_use_propagate)
if (propagate(m_expanded_lvl, lvl, UINT_MAX)) { dump_json(); return l_false; }
dump_json();
if (is_inductive()){
return l_false;
}
for (unsigned i = 0; i < m_callbacks.size(); i++){
if (m_callbacks[i]->unfold())
m_callbacks[i]->unfold_eh();
}
m_pob_queue.inc_level ();
lvl = m_pob_queue.max_level ();
m_stats.m_max_depth = std::max(m_stats.m_max_depth, lvl);
IF_VERBOSE(1,verbose_stream() << "Entering level "<< lvl << "\n";);
STRACE("spacer.expand-add", tout << "\n* LEVEL " << lvl << "\n";);
IF_VERBOSE(1,
if (m_params.print_statistics ()) {
statistics st;
collect_statistics (st);
};
);
}
// communicate failure to datalog::context
if (m_context) { m_context->set_status(datalog::BOUNDED); }
return l_undef;
}
//
bool context::check_reachability ()
{
scoped_watch _w_(m_reach_watch);
timeit _timer (get_verbosity_level () >= 1,
"spacer::context::check_reachability",
verbose_stream ());
pob_ref last_reachable;
pob_ref_buffer new_pobs;
if (m_reset_obligation_queue) { m_pob_queue.reset(); }
unsigned initial_size = m_stats.m_num_lemmas;
unsigned threshold = m_restart_initial_threshold;
unsigned luby_idx = 1;
while (m_pob_queue.top()) {
pob_ref node;
checkpoint ();
while (last_reachable) {
checkpoint ();
node = last_reachable;
last_reachable = nullptr;
if (m_pob_queue.is_root(*node)) { return true; }
if (is_reachable (*node->parent())) {
last_reachable = node->parent ();
SASSERT(last_reachable->is_closed());
last_reachable->close ();
} else if (!node->parent()->is_closed()) {
/* bump node->parent */
node->parent ()->bump_weakness();
}
}
SASSERT (m_pob_queue.top ());
// -- remove all closed nodes and updated all dirty nodes
// -- this is necessary because there is no easy way to
// -- remove nodes from the priority queue.
while (m_pob_queue.top ()->is_closed () ||
m_pob_queue.top()->is_dirty()) {
pob_ref n = m_pob_queue.top ();
m_pob_queue.pop ();
if (n->is_closed()) {
IF_VERBOSE (1,
verbose_stream () << "Deleting closed node: "
<< n->pt ().head ()->get_name ()
<< "(" << n->level () << ", " << n->depth () << ")"
<< " " << n->post ()->get_id () << "\n";);
if (m_pob_queue.is_root(*n)) { return true; }
SASSERT (m_pob_queue.top ());
} else if (n->is_dirty()) {
n->clean ();
// -- the node n might not be at the top after it is cleaned
m_pob_queue.push (*n);
} else
{ UNREACHABLE(); }
}
SASSERT (m_pob_queue.top ());
if (m_use_restarts && m_stats.m_num_lemmas - initial_size > threshold) {
luby_idx++;
m_stats.m_num_restarts++;
threshold =
static_cast<unsigned>(get_luby(luby_idx)) * m_restart_initial_threshold;
IF_VERBOSE (1, verbose_stream ()
<< "(restarting :lemmas " << m_stats.m_num_lemmas
<< " :restart_threshold " << threshold
<< ")\n";);
// -- clear obligation queue up to the root
while (!m_pob_queue.is_root(*m_pob_queue.top())) { m_pob_queue.pop(); }
initial_size = m_stats.m_num_lemmas;
}
node = m_pob_queue.top ();
m_pob_queue.pop();
unsigned old_sz = m_pob_queue.size();
(void)old_sz;
SASSERT (node->level () <= m_pob_queue.max_level ());
switch (expand_pob(*node, new_pobs)) {
case l_true:
SASSERT(m_pob_queue.size() == old_sz);
SASSERT(new_pobs.empty());
last_reachable = node;
last_reachable->close ();
if (m_pob_queue.is_root(*node)) {return true;}
break;
case l_false:
SASSERT(m_pob_queue.size() == old_sz);
for (auto pob : new_pobs) {
if (is_requeue(*pob)) {m_pob_queue.push(*pob);}
}
if (m_pob_queue.is_root(*node)) {return false;}
break;
case l_undef:
SASSERT(m_pob_queue.size() == old_sz);
for (auto pob : new_pobs) {m_pob_queue.push(*pob);}
break;
}
new_pobs.reset();
}
UNREACHABLE();
return false;
}
/// returns true if the given pob can be re-scheduled
bool context::is_requeue(pob &n) {
if (!m_push_pob) {return false;}
unsigned max_depth = m_push_pob_max_depth;
return (n.level() >= m_pob_queue.max_level() ||
m_pob_queue.max_level() - n.level() <= max_depth);
}
/// check whether node n is concretely reachable
bool context::is_reachable(pob &n)
{
scoped_watch _w_(m_is_reach_watch);
// XXX hold a reference for n during this call.
// XXX Should convert is_reachable() to accept pob_ref as argument
pob_ref nref(&n);
TRACE ("spacer",
tout << "is-reachable: " << n.pt().head()->get_name()
<< " level: " << n.level()
<< " depth: " << (n.depth () - m_pob_queue.min_depth ()) << "\n"
<< mk_pp(n.post(), m) << "\n";);
stopwatch watch;
IF_VERBOSE (1, verbose_stream () << "is-reachable: " << n.pt ().head ()->get_name ()
<< " (" << n.level () << ", "
<< (n.depth () - m_pob_queue.min_depth ()) << ") "
<< (n.use_farkas_generalizer () ? "FAR " : "SUB ")
<< n.post ()->get_id ();
verbose_stream().flush ();
watch.start (););
// used in case n is unreachable
unsigned uses_level = infty_level ();
model_ref model;
// used in case n is reachable
bool is_concrete;
const datalog::rule * r = nullptr;
// denotes which predecessor's (along r) reach facts are used
vector<bool> reach_pred_used;
unsigned num_reuse_reach = 0;
unsigned saved = n.level ();
n.m_level = infty_level ();
lbool res = n.pt().is_reachable(n, nullptr, &model,
uses_level, is_concrete, r,
reach_pred_used, num_reuse_reach);
n.m_level = saved;
if (res != l_true || !is_concrete) {
IF_VERBOSE(1, verbose_stream () << " F "
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
return false;
}
SASSERT(res == l_true);
SASSERT(is_concrete);
model_evaluator_util mev (m);
mev.set_model(*model);
// -- update must summary
if (r && r->get_uninterpreted_tail_size () > 0) {
reach_fact_ref rf = n.pt().mk_rf (n, mev, *r);
n.pt ().add_rf (rf.get ());
}
// if n has a derivation, create a new child and report l_undef
// otherwise if n has no derivation or no new children, report l_true
pob *next = nullptr;
scoped_ptr<derivation> deriv;
if (n.has_derivation()) {deriv = n.detach_derivation();}
// -- close n, it is reachable
// -- don't worry about removing n from the obligation queue
n.close ();
if (deriv) {
next = deriv->create_next_child ();
if (next) {
SASSERT(!next->is_closed());
// move derivation over to the next obligation
next->set_derivation(deriv.detach());
// remove the current node from the queue if it is at the top
if (m_pob_queue.top() == &n) { m_pob_queue.pop(); }
m_pob_queue.push(*next);
}
}
// either deriv was a nullptr or it was moved into next
SASSERT(!next || !deriv);
IF_VERBOSE(1, verbose_stream () << (next ? " X " : " T ")
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
// recurse on the new proof obligation
return next ? is_reachable(*next) : true;
}
void context::dump_json()
{
if(m_params.spacer_print_json().size()) {
std::ofstream of;
of.open(m_params.spacer_print_json().bare_str());
m_json_marshaller.marshal(of);
of.close();
}
}
void context::predecessor_eh()
{
for (unsigned i = 0; i < m_callbacks.size(); i++) {
if(m_callbacks[i]->predecessor())
m_callbacks[i]->predecessor_eh();
}
}
/// Checks whether the given pob is reachable
/// returns l_true if reachable, l_false if unreachable
/// returns l_undef if reachability cannot be decided
/// out contains new pobs to add to the queue in case the result is l_undef
lbool context::expand_pob(pob& n, pob_ref_buffer &out)
{
SASSERT(out.empty());
pob::on_expand_event _evt(n);
TRACE ("spacer",
tout << "expand-pob: " << n.pt().head()->get_name()
<< " level: " << n.level()
<< " depth: " << (n.depth () - m_pob_queue.min_depth ())
<< " fvsz: " << n.get_free_vars_size() << "\n"
<< mk_pp(n.post(), m) << "\n";);
STRACE ("spacer.expand-add",
tout << "** expand-pob: " << n.pt().head()->get_name()
<< " level: " << n.level()
<< " depth: " << (n.depth () - m_pob_queue.min_depth ()) << "\n"
<< mk_epp(n.post(), m) << "\n\n";);
TRACE ("core_array_eq",
tout << "expand-pob: " << n.pt().head()->get_name()
<< " level: " << n.level()
<< " depth: " << (n.depth () - m_pob_queue.min_depth ()) << "\n"
<< mk_pp(n.post(), m) << "\n";);
stopwatch watch;
IF_VERBOSE (1, verbose_stream () << "expand: " << n.pt ().head ()->get_name ()
<< " (" << n.level () << ", "
<< (n.depth () - m_pob_queue.min_depth ()) << ") "
<< (n.use_farkas_generalizer () ? "FAR " : "SUB ")
<< " w(" << n.weakness() << ") "
<< n.post ()->get_id ();
verbose_stream().flush ();
watch.start (););
// used in case n is unreachable
unsigned uses_level = infty_level ();
expr_ref_vector cube(m);
model_ref model;
// used in case n is reachable
bool is_concrete;
const datalog::rule * r = nullptr;
// denotes which predecessor's (along r) reach facts are used
vector<bool> reach_pred_used;
unsigned num_reuse_reach = 0;
if (m_push_pob && n.pt().is_blocked(n, uses_level)) {
// if (!m_pob_queue.is_root (n)) n.close ();
IF_VERBOSE (1, verbose_stream () << " K "
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
n.inc_level();
out.push_back(&n);
return l_false;
}
if (/* XXX noop */ n.pt().is_qblocked(n)) {
STRACE("spacer.expand-add",
tout << "This pob can be blocked by instantiation\n";);
}
predecessor_eh();
lbool res = n.pt ().is_reachable (n, &cube, &model, uses_level, is_concrete, r,
reach_pred_used, num_reuse_reach);
checkpoint ();
IF_VERBOSE (1, verbose_stream () << "." << std::flush;);
switch (res) {
//reachable but don't know if this is purely using UA
case l_true: {
// update stats
m_stats.m_num_reuse_reach += num_reuse_reach;
model_evaluator_util mev (m);
mev.set_model (*model);
// must-reachable
if (is_concrete) {
// -- update must summary
if (r && r->get_uninterpreted_tail_size() > 0) {
reach_fact_ref rf = n.pt().mk_rf (n, mev, *r);
checkpoint ();
n.pt ().add_rf (rf.get ());
checkpoint ();
}
// if n has a derivation, create a new child and report l_undef
// otherwise if n has no derivation or no new children, report l_true
pob *next = nullptr;
scoped_ptr<derivation> deriv;
if (n.has_derivation()) {deriv = n.detach_derivation();}
// -- close n, it is reachable
// -- don't worry about removing n from the obligation queue
n.close ();
if (deriv) {
next = deriv->create_next_child ();
checkpoint ();
if (next) {
// move derivation over to the next obligation
next->set_derivation (deriv.detach());
// this is the new node to add
out.push_back (next);
}
}
IF_VERBOSE(1, verbose_stream () << (next ? " X " : " T ")
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
return next ? l_undef : l_true;
}
// create a child of n
out.push_back(&n);
VERIFY(create_children (n, *r, mev, reach_pred_used, out));
IF_VERBOSE(1, verbose_stream () << " U "
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
return l_undef;
}
case l_false:
// n is unreachable, create new summary facts
{
timeit _timer (is_trace_enabled("spacer_timeit"),
"spacer::expand_pob::false",
verbose_stream ());
// -- only update expanded level when new lemmas are generated at it.
if (n.level() < m_expanded_lvl) { m_expanded_lvl = n.level(); }
TRACE("spacer", tout << "cube:\n";
for (unsigned j = 0; j < cube.size(); ++j)
tout << mk_pp(cube[j].get(), m) << "\n";);
pob_ref nref(&n);
// -- create lemma from a pob and last unsat core
lemma_ref lemma = alloc(class lemma, pob_ref(&n), cube, uses_level);
// -- run all lemma generalizers
for (unsigned i = 0;
// -- only generalize if lemma was constructed using farkas
n.use_farkas_generalizer () && !lemma->is_false() &&
i < m_lemma_generalizers.size(); ++i) {
checkpoint ();
(*m_lemma_generalizers[i])(lemma);
}
DEBUG_CODE(
lemma_sanity_checker sanity_checker(*this);
sanity_checker(lemma);
);
TRACE("spacer", tout << "invariant state: "
<< (is_infty_level(lemma->level())?"(inductive)":"")
<< mk_pp(lemma->get_expr(), m) << "\n";);
bool v = n.pt().add_lemma (lemma.get());
if (v) { m_stats.m_num_lemmas++; }
// Optionally update the node to be the negation of the lemma
if (v && m_use_lemma_as_pob) {
n.new_post (mk_and(lemma->get_cube()));
n.set_farkas_generalizer (false);
// XXX hack while refactoring is in progress
n.clean();
}
// schedule the node to be placed back in the queue
n.inc_level();
out.push_back(&n);
CASSERT("spacer", n.level() == 0 || check_invariant(n.level()-1));
IF_VERBOSE(1, verbose_stream () << " F "
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
return l_false;
}
case l_undef:
// something went wrong
if (n.weakness() < 100 /* MAX_WEAKENSS */) {
bool has_new_child = false;
SASSERT(m_weak_abs);
m_stats.m_expand_pob_undef++;
if (r && r->get_uninterpreted_tail_size() > 0) {
model_evaluator_util mev(m);
mev.set_model(*model);
// do not trust reach_pred_used
for (unsigned i = 0, sz = reach_pred_used.size(); i < sz; ++i)
{ reach_pred_used[i] = false; }
has_new_child = create_children(n,*r,mev,reach_pred_used, out);
}
IF_VERBOSE(1, verbose_stream() << " UNDEF "
<< std::fixed << std::setprecision(2)
<< watch.get_seconds () << "\n";);
if (has_new_child) {
// ensure that n is placed back in the queue
out.push_back(&n);
return l_undef;
}
// -- failed to create a child, bump weakness and repeat
// -- the recursion is bounded by the levels of weakness supported
SASSERT(out.empty());
n.bump_weakness();
return expand_pob(n, out);
}
TRACE("spacer", tout << "unknown state: " << mk_and(cube) << "\n";);
throw unknown_exception();
}
UNREACHABLE();
throw unknown_exception();
}
//
// check if predicate transformer has a satisfiable predecessor state.
// returns either a satisfiable predecessor state or
// return a property that blocks state and is implied by the
// predicate transformer (or some unfolding of it).
//
bool context::propagate(unsigned min_prop_lvl,
unsigned max_prop_lvl, unsigned full_prop_lvl)
{
scoped_watch _w_(m_propagate_watch);
if (min_prop_lvl == infty_level()) { return false; }
timeit _timer (get_verbosity_level() >= 1,
"spacer::context::propagate",
verbose_stream ());
if (full_prop_lvl < max_prop_lvl) { full_prop_lvl = max_prop_lvl; }
if (m_simplify_formulas_pre) {
simplify_formulas();
}
STRACE ("spacer.expand-add", tout << "Propagating\n";);
IF_VERBOSE (1, verbose_stream () << "Propagating: " << std::flush;);
for (unsigned lvl = min_prop_lvl; lvl <= full_prop_lvl; lvl++) {
IF_VERBOSE (1,
if (lvl > max_prop_lvl && lvl == max_prop_lvl + 1)
verbose_stream () << " ! ";
verbose_stream () << lvl << " " << std::flush;);
checkpoint();
CTRACE ("spacer", lvl > max_prop_lvl && lvl == max_prop_lvl + 1,
tout << "In full propagation\n";);
bool all_propagated = true;
for (auto & kv : m_rels) {
checkpoint();
pred_transformer& r = *kv.m_value;
all_propagated = r.propagate_to_next_level(lvl) && all_propagated;
}
//CASSERT("spacer", check_invariant(lvl));
if (all_propagated) {
for (auto& kv : m_rels) {
checkpoint ();
pred_transformer& r = *kv.m_value;
r.propagate_to_infinity (lvl);
}
if (lvl <= max_prop_lvl) {
m_inductive_lvl = lvl;
IF_VERBOSE(1, verbose_stream () << "\n";);
return true;
}
break;
}
if (all_propagated && lvl == max_prop_lvl) {
m_inductive_lvl = lvl;
return true;
} else if (all_propagated && lvl > max_prop_lvl) { break; }
}
if (m_simplify_formulas_post) {
simplify_formulas();
}
IF_VERBOSE(1, verbose_stream () << "\n";);
return false;
}
reach_fact *pred_transformer::mk_rf (pob& n, model_evaluator_util &mev,
const datalog::rule& r)
{
SASSERT(&n.pt() == this);
timeit _timer1 (is_trace_enabled("spacer_timeit"),
"mk_rf",
verbose_stream ());
expr_ref res(m);
reach_fact_ref_vector child_reach_facts;
ptr_vector<func_decl> preds;
find_predecessors (r, preds);
expr_ref_vector path_cons (m);
path_cons.push_back (get_transition (r));
app_ref_vector vars (m);
for (unsigned i = 0; i < preds.size (); i++) {
func_decl* pred = preds[i];
pred_transformer& ch_pt = ctx.get_pred_transformer (pred);
// get a reach fact of body preds used in the model
expr_ref o_ch_reach (m);
reach_fact *kid = ch_pt.get_used_origin_rf (mev, i);
child_reach_facts.push_back (kid);
pm.formula_n2o (kid->get (), o_ch_reach, i);
path_cons.push_back (o_ch_reach);
// collect o-vars to eliminate
for (unsigned j = 0; j < pred->get_arity (); j++)
{ vars.push_back(m.mk_const(pm.o2o(ch_pt.sig(j), 0, i))); }
const ptr_vector<app> &v = kid->aux_vars ();
for (unsigned j = 0, sz = v.size (); j < sz; ++j)
{ vars.push_back(m.mk_const(pm.n2o(v [j]->get_decl(), i))); }
}
// collect aux vars to eliminate
ptr_vector<app>& aux_vars = get_aux_vars (r);
bool elim_aux = ctx.elim_aux();
if (elim_aux) { vars.append(aux_vars.size(), aux_vars.c_ptr()); }
res = mk_and (path_cons);
// -- pick an implicant from the path condition
if (ctx.reach_dnf()) {
expr_ref_vector u(m), lits(m);
u.push_back (res);
compute_implicant_literals (mev, u, lits);
res = mk_and (lits);
}
TRACE ("spacer",
tout << "Reach fact, before QE:\n";
tout << mk_pp (res, m) << "\n";
tout << "Vars:\n";
for (unsigned i = 0; i < vars.size(); ++i) {
tout << mk_pp(vars.get (i), m) << "\n";
}
);
{
timeit _timer1 (is_trace_enabled("spacer_timeit"),
"mk_rf::qe_project",
verbose_stream ());
mbp(vars, res, mev.get_model(), false, true /* force or skolemize */);
}
TRACE ("spacer",
tout << "Reach fact, after QE project:\n";
tout << mk_pp (res, m) << "\n";
tout << "Vars:\n";
for (unsigned i = 0; i < vars.size(); ++i) {
tout << mk_pp(vars.get (i), m) << "\n";
}
);
SASSERT (vars.empty ());
m_stats.m_num_reach_queries++;
ptr_vector<app> empty;
reach_fact *f = alloc(reach_fact, m, r, res, elim_aux ? empty : aux_vars);
for (unsigned i = 0, sz = child_reach_facts.size (); i < sz; ++i)
{ f->add_justification(child_reach_facts.get(i)); }
return f;
}
/**
\brief create children states from model cube.
*/
bool context::create_children(pob& n, datalog::rule const& r,
model_evaluator_util &mev,
const vector<bool> &reach_pred_used,
pob_ref_buffer &out)
{
scoped_watch _w_ (m_create_children_watch);
pred_transformer& pt = n.pt();
TRACE("spacer",
tout << "Model:\n";
model_smt2_pp(tout, m, *mev.get_model (), 0);
tout << "\n";
tout << "Transition:\n" << mk_pp(pt.get_transition(r), m) << "\n";
tout << "Pob:\n" << mk_pp(n.post(), m) << "\n";);
SASSERT (r.get_uninterpreted_tail_size () > 0);
ptr_vector<func_decl> preds;
pt.find_predecessors(r, preds);
// obtain all formulas to consider for model generalization
expr_ref_vector forms(m), lits(m);
forms.push_back(pt.get_transition(r));
forms.push_back(n.post());
compute_implicant_literals (mev, forms, lits);
expr_ref phi = mk_and (lits);
// primed variables of the head
app_ref_vector vars(m);
for (unsigned i = 0, sz = pt.head()->get_arity(); i < sz; ++i) {
vars.push_back(m.mk_const(m_pm.o2n(pt.sig(i), 0)));
}
// local variables of the rule
ptr_vector<app>& aux_vars = pt.get_aux_vars(r);
vars.append(aux_vars.size(), aux_vars.c_ptr());
// skolems of the pob
n.get_skolems(vars);
n.pt().mbp(vars, phi, mev.get_model (), true, use_ground_pob());
//qe::reduce_array_selects (*mev.get_model (), phi1);
SASSERT (!m_ground_pob || vars.empty ());
TRACE ("spacer",
tout << "Implicant:\n";
tout << lits << "\n";
tout << "After MBP:\n" << phi << "\n";
if (!vars.empty())
tout << "Failed to eliminate: " << vars << "\n";
);
if (m_use_gpdr && preds.size() > 1) {
SASSERT(vars.empty());
return gpdr_create_split_children(n, r, phi, mev.get_model(), out);
}
derivation *deriv = alloc(derivation, n, r, phi, vars);
// pick an order to process children
unsigned_vector kid_order;
kid_order.resize(preds.size(), 0);
for (unsigned i = 0, sz = preds.size(); i < sz; ++i) kid_order[i] = i;
if (m_children_order == CO_REV_RULE) {
kid_order.reverse();
}
else if (m_children_order == CO_RANDOM) {
shuffle(kid_order.size(), kid_order.c_ptr(), m_random);
}
for (unsigned i = 0, sz = preds.size(); i < sz; ++i) {
unsigned j = kid_order[i];
pred_transformer &pt = get_pred_transformer(preds.get(j));
const ptr_vector<app> *aux = nullptr;
expr_ref sum(m);
sum = pt.get_origin_summary (mev, prev_level(n.level()),
j, reach_pred_used[j], &aux);
if (!sum) {
dealloc(deriv);
return false;
}
deriv->add_premise (pt, j, sum, reach_pred_used[j], aux);
}
// create post for the first child and add to queue
pob* kid = deriv->create_first_child (mev);
// -- failed to create derivation, cleanup and bail out
if (!kid) {
dealloc(deriv);
return false;
}
SASSERT (kid);
kid->set_derivation (deriv);
// Optionally disable derivation optimization
if (!m_use_derivations) { kid->reset_derivation(); }
// -- deriviation is abstract if the current weak model does
// -- not satisfy 'T && phi'. It is possible to recover from
// -- that more gracefully. For now, we just remove the
// -- derivation completely forcing it to be recomputed
if (m_weak_abs && (!mev.is_true(pt.get_transition(r)) ||
!mev.is_true(n.post())))
{ kid->reset_derivation(); }
out.push_back(kid);
m_stats.m_num_queries++;
return true;
}
void context::collect_statistics(statistics& st) const
{
m_pool0->collect_statistics(st);
m_pool1->collect_statistics(st);
m_pool2->collect_statistics(st);
for (auto const& kv : m_rels) {
kv.m_value->collect_statistics(st);
}
// -- number of times a pob for some predicate transformer has
// -- been created
st.update("SPACER num queries", m_stats.m_num_queries);
// -- number of times a reach fact was true in some model
st.update("SPACER num reuse reach facts", m_stats.m_num_reuse_reach);
// -- maximum level at which any query was asked
st.update("SPACER max query lvl", m_stats.m_max_query_lvl);
// -- maximum depth
st.update("SPACER max depth", m_stats.m_max_depth);
// -- level at which safe inductive invariant was found
st.update("SPACER inductive level", m_inductive_lvl);
// -- length of the counterexample
st.update("SPACER cex depth", m_stats.m_cex_depth);
// -- number of times expand_pobresulted in undef
st.update("SPACER expand pob undef", m_stats.m_expand_pob_undef);
// -- number of distinct lemmas constructed
st.update("SPACER num lemmas", m_stats.m_num_lemmas);
// -- number of restarts taken
st.update("SPACER restarts", m_stats.m_num_restarts);
// -- time to initialize the rules
st.update ("time.spacer.init_rules", m_init_rules_watch.get_seconds ());
// -- time in the main solve loop
st.update ("time.spacer.solve", m_solve_watch.get_seconds ());
// -- time in lemma propagation (i.e., pushing)
st.update ("time.spacer.solve.propagate", m_propagate_watch.get_seconds ());
// -- time in reachability (i.e., blocking)
st.update ("time.spacer.solve.reach", m_reach_watch.get_seconds ());
// -- time in deciding whether a pob is must-reachable
st.update ("time.spacer.solve.reach.is-reach", m_is_reach_watch.get_seconds ());
// -- time in creating new predecessors
st.update ("time.spacer.solve.reach.children",
m_create_children_watch.get_seconds ());
st.update("spacer.random_seed", m_params.spacer_random_seed());
st.update("spacer.lemmas_imported", m_stats.m_num_lemmas_imported);
st.update("spacer.lemmas_discarded", m_stats.m_num_lemmas_discarded);
for (unsigned i = 0; i < m_lemma_generalizers.size(); ++i) {
m_lemma_generalizers[i]->collect_statistics(st);
}
}
void context::reset_statistics()
{
m_pool0->reset_statistics();
m_pool1->reset_statistics();
m_pool2->reset_statistics();
for (auto & kv : m_rels) {
kv.m_value->reset_statistics();
}
m_stats.reset();
for (unsigned i = 0; i < m_lemma_generalizers.size(); ++i) {
m_lemma_generalizers[i]->reset_statistics();
}
m_init_rules_watch.reset ();
m_solve_watch.reset ();
m_propagate_watch.reset ();
m_reach_watch.reset ();
m_is_reach_watch.reset ();
m_create_children_watch.reset ();
}
bool context::check_invariant(unsigned lvl)
{
for (auto &entry : m_rels) {
checkpoint();
if (!check_invariant(lvl, entry.m_key)) {
return false;
}
}
return true;
}
bool context::check_invariant(unsigned lvl, func_decl* fn)
{
ref<solver> ctx = mk_smt_solver(m, params_ref::get_empty(), symbol::null);
pred_transformer& pt = *m_rels.find(fn);
expr_ref_vector conj(m);
expr_ref inv = pt.get_formulas(next_level(lvl));
if (m.is_true(inv)) { return true; }
pt.add_premises(m_rels, lvl, conj);
conj.push_back(m.mk_not(inv));
expr_ref fml(m.mk_and(conj.size(), conj.c_ptr()), m);
ctx->assert_expr(fml);
lbool result = ctx->check_sat(0, nullptr);
TRACE("spacer", tout << "Check invariant level: " << lvl << " " << result
<< "\n" << mk_pp(fml, m) << "\n";);
return result == l_false;
}
expr_ref context::get_constraints (unsigned level)
{
expr_ref res(m);
expr_ref_vector constraints(m);
for (auto & kv : m_rels) {
pred_transformer& r = *kv.m_value;
expr_ref c = r.get_formulas(level);
if (m.is_true(c)) { continue; }
// replace local constants by bound variables.
expr_ref_vector args(m);
for (unsigned i = 0; i < r.sig_size(); ++i)
{ args.push_back(m.mk_const(m_pm.o2n(r.sig(i), 0))); }
expr_ref pred(m);
pred = m.mk_app(r.head (), r.sig_size(), args.c_ptr());
constraints.push_back(m.mk_implies(pred, c));
}
if (constraints.empty()) { return expr_ref(m.mk_true(), m); }
return mk_and (constraints);
}
void context::add_constraint (expr *c, unsigned level)
{
if (!c) { return; }
if (m.is_true(c)) { return; }
expr *e1, *e2;
if (m.is_implies(c, e1, e2)) {
SASSERT (is_app (e1));
pred_transformer *r = nullptr;
if (m_rels.find (to_app (e1)->get_decl (), r)){
lemma_ref lem = alloc(lemma, m, e2, level);
lem.get()->set_external(true);
if (r->add_lemma(lem.get())) {
this->m_stats.m_num_lemmas_imported++;
}
else{
this->m_stats.m_num_lemmas_discarded++;
}
}
}
}
void context::new_lemma_eh(pred_transformer &pt, lemma *lem) {
if (m_params.spacer_print_json().size())
m_json_marshaller.register_lemma(lem);
bool handle=false;
for (unsigned i = 0; i < m_callbacks.size(); i++) {
handle|=m_callbacks[i]->new_lemma();
}
if (!handle)
return;
if ((is_infty_level(lem->level()) && m_params.spacer_p3_share_invariants()) ||
(!is_infty_level(lem->level()) && m_params.spacer_p3_share_lemmas())) {
expr_ref_vector args(m);
for (unsigned i = 0; i < pt.sig_size(); ++i) {
args.push_back(m.mk_const(pt.get_manager().o2n(pt.sig(i), 0)));
}
expr *app = m.mk_app(pt.head(), pt.sig_size(), args.c_ptr());
expr *lemma = m.mk_implies(app, lem->get_expr());
for (unsigned i = 0; i < m_callbacks.size(); i++) {
if (m_callbacks[i]->new_lemma())
m_callbacks[i]->new_lemma_eh(lemma, lem->level());
}
}
}
void context::new_pob_eh(pob *p) {
if (m_params.spacer_print_json().size())
m_json_marshaller.register_pob(p);
}
bool context::is_inductive() {
// check that inductive level (F infinity) of the query predicate
// contains a constant false
return false;
}
/// pob_lt operator
inline bool pob_lt::operator() (const pob *pn1, const pob *pn2) const
{
SASSERT (pn1);
SASSERT (pn2);
const pob& n1 = *pn1;
const pob& n2 = *pn2;
if (n1.level() != n2.level()) { return n1.level() < n2.level(); }
if (n1.depth() != n2.depth()) { return n1.depth() < n2.depth(); }
// -- a more deterministic order of proof obligations in a queue
// if (!n1.get_context ().get_params ().spacer_nondet_tie_break ())
{
const expr* p1 = n1.post ();
const expr* p2 = n2.post ();
ast_manager &m = n1.get_ast_manager ();
// -- order by size. Less conjunctions is a proxy for
// -- generality. Currently, this takes precedence over
// -- predicates which might not be the best choice
unsigned sz1 = 1;
unsigned sz2 = 1;
if (m.is_and(p1)) { sz1 = to_app(p1)->get_num_args(); }
if (m.is_and(p2)) { sz2 = to_app(p2)->get_num_args(); }
if (sz1 != sz2) { return sz1 < sz2; }
// -- when all else fails, order by identifiers of the
// -- expressions. This roughly means that expressions created
// -- earlier are preferred. Note that variables in post are
// -- based on names of the predicates. Hence this guarantees an
// -- order over predicates as well. That is, two expressions
// -- are equal if and only if they correspond to the same proof
// -- obligation of the same predicate.
if (p1->get_id() != p2->get_id()) { return p1->get_id() < p2->get_id(); }
if (n1.pt().head()->get_id() == n2.pt().head()->get_id()) {
IF_VERBOSE (1,
verbose_stream ()
<< "dup: " << n1.pt ().head ()->get_name ()
<< "(" << n1.level () << ", " << n1.depth () << ") "
<< p1->get_id () << "\n";
//<< " p1: " << mk_pp (const_cast<expr*>(p1), m) << "\n"
);
}
// XXX see comment below on identical nodes
// SASSERT (n1.pt ().head ()->get_id () != n2.pt ().head ()->get_id ());
// -- if expression comparison fails, compare by predicate id
if (n1.pt().head ()->get_id () != n2.pt ().head ()->get_id ())
{ return n1.pt().head()->get_id() < n2.pt().head()->get_id(); }
/** XXX Identical nodes. This should not happen. However,
* currently, when propagating reachability, we might call
* expand_pob() twice on the same node, causing it to generate
* the same proof obligation multiple times */
return &n1 < &n2;
}
// else
// return &n1 < &n2;
}
}