3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-17 14:25:35 +00:00
z3/src/qe/qe_mbi.cpp
Nikolaj Bjorner 8da84ec69e merge
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2018-06-14 16:08:52 -07:00

266 lines
8.4 KiB
C++

/*++
Copyright (c) 2018 Microsoft Corporation
Module Name:
qe_mbi.cpp
Abstract:
Model-based interpolation utilities
Author:
Nikolaj Bjorner (nbjorner), Arie Gurfinkel 2018-6-8
Revision History:
--*/
#include "ast/ast_util.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/bool_rewriter.h"
#include "model/model_evaluator.h"
#include "solver/solver.h"
#include "qe/qe_mbi.h"
#include "qe/qe_term_graph.h"
namespace qe {
lbool mbi_plugin::check(func_decl_ref_vector const& vars, expr_ref_vector& lits, model_ref& mdl) {
while (true) {
switch ((*this)(vars, lits, mdl)) {
case mbi_sat:
return l_true;
case mbi_unsat:
return l_false;
case mbi_undef:
return l_undef;
case mbi_augment:
break;
}
}
}
// -------------------------------
// prop_mbi
prop_mbi_plugin::prop_mbi_plugin(solver* s): m_solver(s) {}
// sketch of propositional
mbi_result prop_mbi_plugin::operator()(func_decl_ref_vector const& vars, expr_ref_vector& lits, model_ref& mdl) {
ast_manager& m = lits.m();
lbool r = m_solver->check_sat(lits);
switch (r) {
case l_false:
lits.reset();
m_solver->get_unsat_core(lits);
return mbi_unsat;
case l_true:
m_solver->get_model(mdl);
lits.reset();
for (unsigned i = 0, sz = mdl->get_num_constants(); i < sz; ++i) {
func_decl* c = mdl->get_constant(i);
if (vars.contains(c)) {
if (m.is_true(mdl->get_const_interp(c))) {
lits.push_back(m.mk_const(c));
}
else if (m.is_false(mdl->get_const_interp(c))) {
lits.push_back(m.mk_not(m.mk_const(c)));
}
}
}
return mbi_sat;
default:
return mbi_undef;
}
}
void prop_mbi_plugin::block(expr_ref_vector const& lits) {
m_solver->assert_expr(mk_not(mk_and(lits)));
}
// -------------------------------
// euf_mbi, TBD
struct euf_mbi_plugin::is_atom_proc {
ast_manager& m;
expr_ref_vector& m_atoms;
is_atom_proc(expr_ref_vector& atoms): m(atoms.m()), m_atoms(atoms) {}
void operator()(app* a) {
if (m.is_eq(a)) {
m_atoms.push_back(a);
}
else if (m.is_bool(a) && a->get_family_id() != m.get_basic_family_id()) {
m_atoms.push_back(a);
}
}
void operator()(expr*) {}
};
euf_mbi_plugin::euf_mbi_plugin(solver* s, solver* sNot):
m(s->get_manager()),
m_atoms(m),
m_solver(s),
m_dual_solver(sNot) {
params_ref p;
p.set_bool("core.minimize", true);
m_solver->updt_params(p);
m_dual_solver->updt_params(p);
expr_ref_vector fmls(m);
m_solver->get_assertions(fmls);
expr_fast_mark1 marks;
is_atom_proc proc(m_atoms);
for (expr* e : fmls) {
quick_for_each_expr(proc, marks, e);
}
}
mbi_result euf_mbi_plugin::operator()(func_decl_ref_vector const& vars, expr_ref_vector& lits, model_ref& mdl) {
lbool r = m_solver->check_sat(lits);
switch (r) {
case l_false:
lits.reset();
m_solver->get_unsat_core(lits);
// optionally minimize core using superposition.
return mbi_unsat;
case l_true: {
expr_ref_vector fmls(m);
m_solver->get_model(mdl);
model_evaluator mev(*mdl.get());
lits.reset();
for (expr* e : m_atoms) {
if (mev.is_true(e)) {
lits.push_back(e);
}
else if (mev.is_false(e)) {
lits.push_back(m.mk_not(e));
}
}
TRACE("qe", tout << "atoms from model: " << lits << "\n";);
r = m_dual_solver->check_sat(lits);
expr_ref_vector core(m);
term_graph tg(m);
switch (r) {
case l_false:
// use the dual solver to find a 'small' implicant
m_dual_solver->get_unsat_core(core);
TRACE("qe", tout << "core: " << core << "\n";);
// project the implicant onto vars
tg.add_lits(core);
lits.reset();
lits.append(tg.project(vars, false));
TRACE("qe", tout << "project: " << lits << "\n";);
return mbi_sat;
case l_undef:
return mbi_undef;
case l_true:
UNREACHABLE();
return mbi_undef;
}
return mbi_sat;
}
default:
// TBD: if not running solver to completion, then:
// 1. extract unit literals from m_solver.
// 2. run a cc over the units
// 3. extract equalities or other assignments over the congruence classes
// 4. ensure that at least some progress is made over original lits.
return mbi_undef;
}
}
void euf_mbi_plugin::block(expr_ref_vector const& lits) {
m_solver->assert_expr(mk_not(mk_and(lits)));
}
/** --------------------------------------------------------------
* ping-pong interpolation of Gurfinkel & Vizel
* compute a binary interpolant.
*/
lbool interpolator::pingpong(mbi_plugin& a, mbi_plugin& b, func_decl_ref_vector const& vars, expr_ref& itp) {
model_ref mdl;
expr_ref_vector lits(m);
bool turn = true;
vector<expr_ref_vector> itps, blocks;
itps.push_back(expr_ref_vector(m));
itps.push_back(expr_ref_vector(m));
blocks.push_back(expr_ref_vector(m));
blocks.push_back(expr_ref_vector(m));
mbi_result last_res = mbi_undef;
bool_rewriter rw(m);
while (true) {
auto* t1 = turn ? &a : &b;
auto* t2 = turn ? &b : &a;
mbi_result next_res = (*t1)(vars, lits, mdl);
switch (next_res) {
case mbi_sat:
if (last_res == mbi_sat) {
itp = nullptr;
return l_true;
}
TRACE("mbi", tout << "new lits " << lits << "\n";);
break; // continue
case mbi_unsat: {
if (lits.empty()) {
// TBD, either a => itp and itp => !b
// or b => itp and itp => !a
itp = mk_and(itps[!turn]);
return l_false;
}
t2->block(lits);
expr_ref lemma(mk_not(mk_and(lits)));
TRACE("mbi", tout << lemma << "\n";);
blocks[turn].push_back(lemma);
itp = m.mk_implies(mk_and(blocks[!turn]), lemma);
// TBD: compute closure over variables not in vars
itps[turn].push_back(itp);
lits.reset(); // or find a prefix of lits?
break;
}
case mbi_augment:
break;
case mbi_undef:
return l_undef;
}
turn = !turn;
last_res = next_res;
}
}
/**
* One-sided pogo creates clausal interpolants.
* It creates a set of consequences of b that are inconsistent with a.
*/
lbool interpolator::pogo(mbi_plugin& a, mbi_plugin& b, func_decl_ref_vector const& vars, expr_ref& itp) {
expr_ref_vector lits(m), itps(m);
while (true) {
model_ref mdl;
lits.reset();
switch (a.check(vars, lits, mdl)) {
case l_true:
switch (b.check(vars, lits, mdl)) {
case l_true:
return l_true;
case l_false:
a.block(lits);
itps.push_back(mk_not(mk_and(lits)));
break;
case l_undef:
return l_undef;
}
case l_false:
itp = mk_and(itps);
return l_false;
case l_undef:
return l_undef;
}
}
}
};