3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-22 08:17:37 +00:00
z3/src/api/go/solver.go
copilot-swe-agent[bot] 8d79e21aa7 Add missing API methods across language bindings (discussion #8701)
Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
2026-02-20 04:24:22 +00:00

465 lines
16 KiB
Go

package z3
/*
#include "z3.h"
#include <stdlib.h>
*/
import "C"
import (
"runtime"
"unsafe"
)
// Status represents the result of a satisfiability check.
type Status int
const (
// Unsatisfiable means the constraints are unsatisfiable.
Unsatisfiable Status = -1
// Unknown means Z3 could not determine satisfiability.
Unknown Status = 0
// Satisfiable means the constraints are satisfiable.
Satisfiable Status = 1
)
// String returns the string representation of the status.
func (s Status) String() string {
switch s {
case Unsatisfiable:
return "unsat"
case Unknown:
return "unknown"
case Satisfiable:
return "sat"
default:
return "unknown"
}
}
// Solver represents a Z3 solver.
type Solver struct {
ctx *Context
ptr C.Z3_solver
}
// NewSolver creates a new solver for the given context.
func (c *Context) NewSolver() *Solver {
s := &Solver{
ctx: c,
ptr: C.Z3_mk_solver(c.ptr),
}
C.Z3_solver_inc_ref(c.ptr, s.ptr)
runtime.SetFinalizer(s, func(solver *Solver) {
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
})
return s
}
// NewSolverForLogic creates a solver for a specific logic.
func (c *Context) NewSolverForLogic(logic string) *Solver {
sym := c.MkStringSymbol(logic)
s := &Solver{
ctx: c,
ptr: C.Z3_mk_solver_for_logic(c.ptr, sym.ptr),
}
C.Z3_solver_inc_ref(c.ptr, s.ptr)
runtime.SetFinalizer(s, func(solver *Solver) {
C.Z3_solver_dec_ref(solver.ctx.ptr, solver.ptr)
})
return s
}
// String returns the string representation of the solver.
func (s *Solver) String() string {
return C.GoString(C.Z3_solver_to_string(s.ctx.ptr, s.ptr))
}
// Assert adds a constraint to the solver.
func (s *Solver) Assert(constraint *Expr) {
C.Z3_solver_assert(s.ctx.ptr, s.ptr, constraint.ptr)
}
// AssertAndTrack adds a constraint with a tracking literal.
func (s *Solver) AssertAndTrack(constraint, track *Expr) {
C.Z3_solver_assert_and_track(s.ctx.ptr, s.ptr, constraint.ptr, track.ptr)
}
// Check checks the satisfiability of the constraints.
func (s *Solver) Check() Status {
result := C.Z3_solver_check(s.ctx.ptr, s.ptr)
return Status(result)
}
// CheckAssumptions checks satisfiability under assumptions.
func (s *Solver) CheckAssumptions(assumptions ...*Expr) Status {
if len(assumptions) == 0 {
return s.Check()
}
cAssumptions := make([]C.Z3_ast, len(assumptions))
for i, a := range assumptions {
cAssumptions[i] = a.ptr
}
result := C.Z3_solver_check_assumptions(s.ctx.ptr, s.ptr, C.uint(len(assumptions)), &cAssumptions[0])
return Status(result)
}
// Model returns the model if the constraints are satisfiable.
func (s *Solver) Model() *Model {
modelPtr := C.Z3_solver_get_model(s.ctx.ptr, s.ptr)
if modelPtr == nil {
return nil
}
return newModel(s.ctx, modelPtr)
}
// Push creates a backtracking point.
func (s *Solver) Push() {
C.Z3_solver_push(s.ctx.ptr, s.ptr)
}
// Pop removes backtracking points.
func (s *Solver) Pop(n uint) {
C.Z3_solver_pop(s.ctx.ptr, s.ptr, C.uint(n))
}
// Reset removes all assertions from the solver.
func (s *Solver) Reset() {
C.Z3_solver_reset(s.ctx.ptr, s.ptr)
}
// NumScopes returns the number of backtracking points.
func (s *Solver) NumScopes() uint {
return uint(C.Z3_solver_get_num_scopes(s.ctx.ptr, s.ptr))
}
// Assertions returns the assertions in the solver.
func (s *Solver) Assertions() []*Expr {
vec := C.Z3_solver_get_assertions(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// UnsatCore returns the unsat core if the constraints are unsatisfiable.
func (s *Solver) UnsatCore() []*Expr {
vec := C.Z3_solver_get_unsat_core(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// ReasonUnknown returns the reason why the result is unknown.
func (s *Solver) ReasonUnknown() string {
return C.GoString(C.Z3_solver_get_reason_unknown(s.ctx.ptr, s.ptr))
}
// GetStatistics returns the statistics for the solver.
// Statistics include performance metrics, memory usage, and decision statistics.
func (s *Solver) GetStatistics() *Statistics {
ptr := C.Z3_solver_get_statistics(s.ctx.ptr, s.ptr)
return newStatistics(s.ctx, ptr)
}
// FromFile parses and asserts SMT-LIB2 formulas from a file.
// The solver will contain the assertions from the file after this call.
func (s *Solver) FromFile(filename string) {
cFilename := C.CString(filename)
defer C.free(unsafe.Pointer(cFilename))
C.Z3_solver_from_file(s.ctx.ptr, s.ptr, cFilename)
}
// FromString parses and asserts SMT-LIB2 formulas from a string.
// The solver will contain the assertions from the string after this call.
func (s *Solver) FromString(str string) {
cStr := C.CString(str)
defer C.free(unsafe.Pointer(cStr))
C.Z3_solver_from_string(s.ctx.ptr, s.ptr, cStr)
}
// GetHelp returns a string describing all available solver parameters.
func (s *Solver) GetHelp() string {
return C.GoString(C.Z3_solver_get_help(s.ctx.ptr, s.ptr))
}
// SetParams sets solver parameters.
// Parameters control solver behavior such as timeout, proof generation, etc.
func (s *Solver) SetParams(params *Params) {
C.Z3_solver_set_params(s.ctx.ptr, s.ptr, params.ptr)
}
// GetParamDescrs returns parameter descriptions for the solver.
func (s *Solver) GetParamDescrs() *ParamDescrs {
ptr := C.Z3_solver_get_param_descrs(s.ctx.ptr, s.ptr)
return newParamDescrs(s.ctx, ptr)
}
// Interrupt interrupts the solver execution.
// This is useful for stopping long-running solver operations gracefully.
func (s *Solver) Interrupt() {
C.Z3_solver_interrupt(s.ctx.ptr, s.ptr)
}
// Units returns the unit clauses (literals) learned by the solver.
// Unit clauses are assertions that have been simplified to single literals.
// This is useful for debugging and understanding solver behavior.
func (s *Solver) Units() []*Expr {
vec := C.Z3_solver_get_units(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// NonUnits returns the non-unit clauses in the solver's current state.
// These are clauses that have not been reduced to unit clauses.
// This is useful for debugging and understanding solver behavior.
func (s *Solver) NonUnits() []*Expr {
vec := C.Z3_solver_get_non_units(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// Trail returns the decision trail of the solver.
// The trail contains the sequence of literals assigned during search.
// This is useful for understanding the solver's decision history.
// Note: This function works primarily with SimpleSolver. For solvers created
// using tactics (e.g., NewSolver()), it may return an error.
func (s *Solver) Trail() []*Expr {
vec := C.Z3_solver_get_trail(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// TrailLevels returns the decision levels for each literal in the trail.
// The returned slice has the same length as the trail, where each element
// indicates the decision level at which the corresponding trail literal was assigned.
// This is useful for understanding the structure of the search tree.
// Note: This function works primarily with SimpleSolver. For solvers created
// using tactics (e.g., NewSolver()), it may return an error.
func (s *Solver) TrailLevels() []uint {
// Get the trail vector directly from the C API
trailVec := C.Z3_solver_get_trail(s.ctx.ptr, s.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, trailVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, trailVec)
n := uint(C.Z3_ast_vector_size(s.ctx.ptr, trailVec))
if n == 0 {
return []uint{}
}
// Allocate the levels array
levels := make([]C.uint, n)
// Get the levels using the trail vector directly
// Safe to pass &levels[0] because we checked n > 0 above
C.Z3_solver_get_levels(s.ctx.ptr, s.ptr, trailVec, C.uint(n), &levels[0])
// Convert to Go slice
result := make([]uint, n)
for i := uint(0); i < n; i++ {
result[i] = uint(levels[i])
}
return result
}
// CongruenceRoot returns the congruence class representative of the given expression.
// This returns the root element in the congruence closure for the term.
// Note: This function works primarily with SimpleSolver. Terms and variables that
// are eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceRoot(expr *Expr) *Expr {
ast := C.Z3_solver_congruence_root(s.ctx.ptr, s.ptr, expr.ptr)
return newExpr(s.ctx, ast)
}
// CongruenceNext returns the next element in the congruence class of the given expression.
// This allows iteration through all elements in a congruence class.
// Note: This function works primarily with SimpleSolver. Terms and variables that
// are eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceNext(expr *Expr) *Expr {
ast := C.Z3_solver_congruence_next(s.ctx.ptr, s.ptr, expr.ptr)
return newExpr(s.ctx, ast)
}
// CongruenceExplain returns an explanation for why two expressions are congruent.
// The result is an expression that justifies the congruence between a and b.
// Note: This function works primarily with SimpleSolver. Terms and variables that
// are eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceExplain(a, b *Expr) *Expr {
ast := C.Z3_solver_congruence_explain(s.ctx.ptr, s.ptr, a.ptr, b.ptr)
return newExpr(s.ctx, ast)
}
// SetInitialValue provides an initial value hint for a variable to the solver.
// This can help guide the solver to find solutions more efficiently.
// The variable must be a constant or function application, and the value must be
// compatible with the variable's sort.
func (s *Solver) SetInitialValue(variable, value *Expr) {
C.Z3_solver_set_initial_value(s.ctx.ptr, s.ptr, variable.ptr, value.ptr)
}
// Cube extracts a cube (conjunction of literals) from the solver state.
// vars is an optional list of variables to use as cube variables; if nil, the solver decides.
// cutoff specifies the backtrack level cutoff for cube generation.
// Returns a slice of expressions representing the cube, or nil when the search space is exhausted.
func (s *Solver) Cube(vars []*Expr, cutoff uint) []*Expr {
varVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, varVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, varVec)
for _, v := range vars {
C.Z3_ast_vector_push(s.ctx.ptr, varVec, v.ptr)
}
result := C.Z3_solver_cube(s.ctx.ptr, s.ptr, varVec, C.uint(cutoff))
return astVectorToExprs(s.ctx, result)
}
// GetConsequences retrieves fixed assignments for variables given assumptions.
// Returns the status and the set of consequences as implications.
func (s *Solver) GetConsequences(assumptions []*Expr, variables []*Expr) (Status, []*Expr) {
asmVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, asmVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, asmVec)
varVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, varVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, varVec)
consVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, consVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, consVec)
for _, a := range assumptions {
C.Z3_ast_vector_push(s.ctx.ptr, asmVec, a.ptr)
}
for _, v := range variables {
C.Z3_ast_vector_push(s.ctx.ptr, varVec, v.ptr)
}
r := Status(C.Z3_solver_get_consequences(s.ctx.ptr, s.ptr, asmVec, varVec, consVec))
return r, astVectorToExprs(s.ctx, consVec)
}
// SolveFor solves constraints treating given variables symbolically.
// variables are the variables to solve for, terms are the substitution terms,
// and guards are the Boolean guards for the substitutions.
func (s *Solver) SolveFor(variables []*Expr, terms []*Expr, guards []*Expr) {
varVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, varVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, varVec)
termVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, termVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, termVec)
guardVec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, guardVec)
defer C.Z3_ast_vector_dec_ref(s.ctx.ptr, guardVec)
for _, v := range variables {
C.Z3_ast_vector_push(s.ctx.ptr, varVec, v.ptr)
}
for _, t := range terms {
C.Z3_ast_vector_push(s.ctx.ptr, termVec, t.ptr)
}
for _, g := range guards {
C.Z3_ast_vector_push(s.ctx.ptr, guardVec, g.ptr)
}
C.Z3_solver_solve_for(s.ctx.ptr, s.ptr, varVec, termVec, guardVec)
}
// Model represents a Z3 model (satisfying assignment).
type Model struct {
ctx *Context
ptr C.Z3_model
}
// newModel creates a new Model and manages its reference count.
func newModel(ctx *Context, ptr C.Z3_model) *Model {
m := &Model{ctx: ctx, ptr: ptr}
C.Z3_model_inc_ref(ctx.ptr, ptr)
runtime.SetFinalizer(m, func(model *Model) {
C.Z3_model_dec_ref(model.ctx.ptr, model.ptr)
})
return m
}
// String returns the string representation of the model.
func (m *Model) String() string {
return C.GoString(C.Z3_model_to_string(m.ctx.ptr, m.ptr))
}
// NumConsts returns the number of constants in the model.
func (m *Model) NumConsts() uint {
return uint(C.Z3_model_get_num_consts(m.ctx.ptr, m.ptr))
}
// NumFuncs returns the number of function interpretations in the model.
func (m *Model) NumFuncs() uint {
return uint(C.Z3_model_get_num_funcs(m.ctx.ptr, m.ptr))
}
// GetConstDecl returns the i-th constant declaration in the model.
func (m *Model) GetConstDecl(i uint) *FuncDecl {
return newFuncDecl(m.ctx, C.Z3_model_get_const_decl(m.ctx.ptr, m.ptr, C.uint(i)))
}
// GetFuncDecl returns the i-th function declaration in the model.
func (m *Model) GetFuncDecl(i uint) *FuncDecl {
return newFuncDecl(m.ctx, C.Z3_model_get_func_decl(m.ctx.ptr, m.ptr, C.uint(i)))
}
// Eval evaluates an expression in the model.
// If modelCompletion is true, Z3 will assign an interpretation for uninterpreted constants.
func (m *Model) Eval(expr *Expr, modelCompletion bool) (*Expr, bool) {
var result C.Z3_ast
var completion C.bool
if modelCompletion {
completion = C.bool(true)
} else {
completion = C.bool(false)
}
success := C.Z3_model_eval(m.ctx.ptr, m.ptr, expr.ptr, completion, &result)
if success == C.bool(false) {
return nil, false
}
return newExpr(m.ctx, result), true
}
// GetConstInterp returns the interpretation of a constant.
func (m *Model) GetConstInterp(decl *FuncDecl) *Expr {
result := C.Z3_model_get_const_interp(m.ctx.ptr, m.ptr, decl.ptr)
if result == nil {
return nil
}
return newExpr(m.ctx, result)
}
// FuncInterp represents a function interpretation in a model.
type FuncInterp struct {
ctx *Context
ptr C.Z3_func_interp
}
// GetFuncInterp returns the interpretation of a function.
func (m *Model) GetFuncInterp(decl *FuncDecl) *FuncInterp {
result := C.Z3_model_get_func_interp(m.ctx.ptr, m.ptr, decl.ptr)
if result == nil {
return nil
}
fi := &FuncInterp{ctx: m.ctx, ptr: result}
C.Z3_func_interp_inc_ref(m.ctx.ptr, result)
runtime.SetFinalizer(fi, func(f *FuncInterp) {
C.Z3_func_interp_dec_ref(f.ctx.ptr, f.ptr)
})
return fi
}
// NumEntries returns the number of entries in the function interpretation.
func (fi *FuncInterp) NumEntries() uint {
return uint(C.Z3_func_interp_get_num_entries(fi.ctx.ptr, fi.ptr))
}
// GetElse returns the else value of the function interpretation.
func (fi *FuncInterp) GetElse() *Expr {
result := C.Z3_func_interp_get_else(fi.ctx.ptr, fi.ptr)
return newExpr(fi.ctx, result)
}
// GetArity returns the arity of the function interpretation.
func (fi *FuncInterp) GetArity() uint {
return uint(C.Z3_func_interp_get_arity(fi.ctx.ptr, fi.ptr))
}
// SortUniverse returns the universe of values for an uninterpreted sort in the model.
// The universe is represented as a list of distinct expressions.
// Returns nil if the sort is not an uninterpreted sort in this model.
func (m *Model) SortUniverse(sort *Sort) []*Expr {
vec := C.Z3_model_get_sort_universe(m.ctx.ptr, m.ptr, sort.ptr)
if vec == nil {
return nil
}
return astVectorToExprs(m.ctx, vec)
}