3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 21:38:44 +00:00
z3/src/util/lp/bound_analyzer_on_row.h
Christoph M. Wintersteiger d61b722b68 Partial cleanup of util/lp/*
2017-09-17 16:00:06 +01:00

351 lines
9.8 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/vector.h"
#include "util/lp/linear_combination_iterator.h"
#include "util/lp/implied_bound.h"
#include "util/lp/test_bound_analyzer.h"
#include <functional>
#include "util/lp/lp_bound_propagator.h"
// We have an equality : sum by j of row[j]*x[j] = rs
// We try to pin a var by pushing the total by using the variable bounds
// In a loop we drive the partial sum down, denoting the variables of this process by _u.
// In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l
namespace lp {
class bound_analyzer_on_row {
linear_combination_iterator<mpq> & m_it;
lp_bound_propagator & m_bp;
unsigned m_row_or_term_index;
int m_column_of_u; // index of an unlimited from above monoid
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
int m_column_of_l; // index of an unlimited from below monoid
impq m_rs;
public :
// constructor
bound_analyzer_on_row(
linear_combination_iterator<mpq> &it,
const numeric_pair<mpq>& rs,
unsigned row_or_term_index,
lp_bound_propagator & bp
)
:
m_it(it),
m_bp(bp),
m_row_or_term_index(row_or_term_index),
m_column_of_u(-1),
m_column_of_l(-1),
m_rs(rs)
{}
unsigned j;
void analyze() {
mpq a; unsigned j;
while (((m_column_of_l != -2) || (m_column_of_u != -2)) && m_it.next(a, j))
analyze_bound_on_var_on_coeff(j, a);
if (m_column_of_u >= 0)
limit_monoid_u_from_below();
else if (m_column_of_u == -1)
limit_all_monoids_from_below();
if (m_column_of_l >= 0)
limit_monoid_l_from_above();
else if (m_column_of_l == -1)
limit_all_monoids_from_above();
}
bool bound_is_available(unsigned j, bool low_bound) {
return (low_bound && low_bound_is_available(j)) ||
(!low_bound && upper_bound_is_available(j));
}
bool upper_bound_is_available(unsigned j) const {
switch (m_bp.get_column_type(j))
{
case column_type::fixed:
case column_type::boxed:
case column_type::upper_bound:
return true;
default:
return false;
}
}
bool low_bound_is_available(unsigned j) const {
switch (m_bp.get_column_type(j))
{
case column_type::fixed:
case column_type::boxed:
case column_type::low_bound:
return true;
default:
return false;
}
}
const impq & ub(unsigned j) const {
SASSERT(upper_bound_is_available(j));
return m_bp.get_upper_bound(j);
}
const impq & lb(unsigned j) const {
SASSERT(low_bound_is_available(j));
return m_bp.get_low_bound(j);
}
const mpq & monoid_max_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
if (a_is_pos) {
strict = !is_zero(ub(j).y);
return ub(j).x;
}
strict = !is_zero(lb(j).y);
return lb(j).x;
}
mpq monoid_max(const mpq & a, unsigned j) const {
if (is_pos(a)) {
return a * ub(j).x;
}
return a * lb(j).x;
}
mpq monoid_max(const mpq & a, unsigned j, bool & strict) const {
if (is_pos(a)) {
strict = !is_zero(ub(j).y);
return a * ub(j).x;
}
strict = !is_zero(lb(j).y);
return a * lb(j).x;
}
const mpq & monoid_min_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
if (!a_is_pos) {
strict = !is_zero(ub(j).y);
return ub(j).x;
}
strict = !is_zero(lb(j).y);
return lb(j).x;
}
mpq monoid_min(const mpq & a, unsigned j, bool& strict) const {
if (is_neg(a)) {
strict = !is_zero(ub(j).y);
return a * ub(j).x;
}
strict = !is_zero(lb(j).y);
return a * lb(j).x;
}
mpq monoid_min(const mpq & a, unsigned j) const {
if (is_neg(a)) {
return a * ub(j).x;
}
return a * lb(j).x;
}
void limit_all_monoids_from_above() {
int strict = 0;
mpq total;
SASSERT(is_zero(total));
m_it.reset();
mpq a; unsigned j;
while (m_it.next(a, j)) {
bool str;
total -= monoid_min(a, j, str);
if (str)
strict++;
}
m_it.reset();
while (m_it.next(a, j)) {
bool str;
bool a_is_pos = is_pos(a);
mpq bound = total / a + monoid_min_no_mult(a_is_pos, j, str);
if (a_is_pos) {
limit_j(j, bound, true, false, strict - static_cast<int>(str) > 0);
}
else {
limit_j(j, bound, false, true, strict - static_cast<int>(str) > 0);
}
}
}
void limit_all_monoids_from_below() {
int strict = 0;
mpq total;
SASSERT(is_zero(total));
m_it.reset();
mpq a; unsigned j;
while (m_it.next(a, j)) {
bool str;
total -= monoid_max(a, j, str);
if (str)
strict++;
}
m_it.reset();
while (m_it.next(a, j)) {
bool str;
bool a_is_pos = is_pos(a);
mpq bound = total / a + monoid_max_no_mult(a_is_pos, j, str);
bool astrict = strict - static_cast<int>(str) > 0;
if (a_is_pos) {
limit_j(j, bound, true, true, astrict);
}
else {
limit_j(j, bound, false, false, astrict);
}
}
}
void limit_monoid_u_from_below() {
// we are going to limit from below the monoid m_column_of_u,
// every other monoid is impossible to limit from below
mpq u_coeff, a;
unsigned j;
mpq bound = -m_rs.x;
m_it.reset();
bool strict = false;
while (m_it.next(a, j)) {
if (j == static_cast<unsigned>(m_column_of_u)) {
u_coeff = a;
continue;
}
bool str;
bound -= monoid_max(a, j, str);
if (str)
strict = true;
}
bound /= u_coeff;
if (numeric_traits<impq>::is_pos(u_coeff)) {
limit_j(m_column_of_u, bound, true, true, strict);
} else {
limit_j(m_column_of_u, bound, false, false, strict);
}
}
void limit_monoid_l_from_above() {
// we are going to limit from above the monoid m_column_of_l,
// every other monoid is impossible to limit from above
mpq l_coeff, a;
unsigned j;
mpq bound = -m_rs.x;
bool strict = false;
m_it.reset();
while (m_it.next(a, j)) {
if (j == static_cast<unsigned>(m_column_of_l)) {
l_coeff = a;
continue;
}
bool str;
bound -= monoid_min(a, j, str);
if (str)
strict = true;
}
bound /= l_coeff;
if (is_pos(l_coeff)) {
limit_j(m_column_of_l, bound, true, false, strict);
} else {
limit_j(m_column_of_l, bound, false, true, strict);
}
}
// // it is the coefficent before the bounded column
// void provide_evidence(bool coeff_is_pos) {
// /*
// auto & be = m_ibounds.back();
// bool low_bound = be.m_low_bound;
// if (!coeff_is_pos)
// low_bound = !low_bound;
// auto it = m_it.clone();
// mpq a; unsigned j;
// while (it->next(a, j)) {
// if (be.m_j == j) continue;
// SASSERT(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
// is_neg(a)? low_bound: !low_bound);
// }
// delete it;
// */
// }
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_low_bound, bool strict){
m_bp.try_add_bound(u, j, is_low_bound, coeff_before_j_is_pos, m_row_or_term_index, strict);
}
void advance_u(unsigned j) {
if (m_column_of_u == -1)
m_column_of_u = j;
else
m_column_of_u = -2;
}
void advance_l(unsigned j) {
if (m_column_of_l == -1)
m_column_of_l = j;
else
m_column_of_l = -2;
}
void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
switch (m_bp.get_column_type(j)) {
case column_type::low_bound:
if (numeric_traits<mpq>::is_pos(a))
advance_u(j);
else
advance_l(j);
break;
case column_type::upper_bound:
if(numeric_traits<mpq>::is_neg(a))
advance_u(j);
else
advance_l(j);
break;
case column_type::free_column:
advance_u(j);
advance_l(j);
break;
default:
break;
}
}
static void analyze_row(linear_combination_iterator<mpq> &it,
const numeric_pair<mpq>& rs,
unsigned row_or_term_index,
lp_bound_propagator & bp
) {
bound_analyzer_on_row a(it, rs, row_or_term_index, bp);
a.analyze();
}
};
}