3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-27 21:48:56 +00:00
z3/src/ast/sls/bv_sls_terms.cpp
Nikolaj Bjorner 586343ce64 na
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2024-07-14 15:38:56 -07:00

130 lines
4 KiB
C++

/*++
Copyright (c) 2024 Microsoft Corporation
Module Name:
bv_sls_terms.cpp
Abstract:
normalize bit-vector expressions to use only binary operators.
Author:
Nikolaj Bjorner (nbjorner) 2024-02-07
--*/
#include "ast/ast_ll_pp.h"
#include "ast/sls/bv_sls_terms.h"
#include "ast/rewriter/bool_rewriter.h"
#include "ast/rewriter/bv_rewriter.h"
namespace bv {
sls_terms::sls_terms(sls::context& ctx):
ctx(ctx),
m(ctx.get_manager()),
bv(m),
m_axioms(m) {}
void sls_terms::register_term(expr* e) {
auto r = ensure_binary(e);
if (r != e)
m_axioms.push_back(m.mk_eq(e, r));
}
expr_ref sls_terms::ensure_binary(expr* e) {
app* a = to_app(e);
auto arg = [&](unsigned i) {
return a->get_arg(i);
};
unsigned num_args = a->get_num_args();
expr_ref r(m);
#define FOLD_OP(oper) \
r = arg(0); \
for (unsigned i = 1; i < num_args; ++i)\
r = oper(r, arg(i)); \
if (bv.is_concat(e)) {
FOLD_OP(bv.mk_concat);
}
else if (bv.is_bv_sdiv(e) || bv.is_bv_sdiv0(e) || bv.is_bv_sdivi(e)) {
r = mk_sdiv(arg(0), arg(1));
}
else if (bv.is_bv_smod(e) || bv.is_bv_smod0(e) || bv.is_bv_smodi(e)) {
r = mk_smod(arg(0), arg(1));
}
else if (bv.is_bv_srem(e) || bv.is_bv_srem0(e) || bv.is_bv_sremi(e)) {
r = mk_srem(arg(0), arg(1));
}
else
r = e;
return r;
}
expr_ref sls_terms::mk_sdiv(expr* x, expr* y) {
// d = udiv(abs(x), abs(y))
// y = 0, x >= 0 -> -1
// y = 0, x < 0 -> 1
// x = 0, y != 0 -> 0
// x > 0, y < 0 -> -d
// x < 0, y > 0 -> -d
// x > 0, y > 0 -> d
// x < 0, y < 0 -> d
bool_rewriter br(m);
bv_rewriter bvr(m);
unsigned sz = bv.get_bv_size(x);
rational N = rational::power_of_two(sz);
expr_ref z(bv.mk_zero(sz), m);
expr_ref o(bv.mk_one(sz), m);
expr_ref n1(bv.mk_numeral(N - 1, sz), m);
expr_ref signx = bvr.mk_ule(bv.mk_numeral(N / 2, sz), x);
expr_ref signy = bvr.mk_ule(bv.mk_numeral(N / 2, sz), y);
expr_ref absx = br.mk_ite(signx, bvr.mk_bv_neg(x), x);
expr_ref absy = br.mk_ite(signy, bvr.mk_bv_neg(y), y);
expr_ref d = expr_ref(bv.mk_bv_udiv(absx, absy), m);
expr_ref r = br.mk_ite(br.mk_eq(signx, signy), d, bvr.mk_bv_neg(d));
r = br.mk_ite(br.mk_eq(z, y),
br.mk_ite(signx, o, n1),
br.mk_ite(br.mk_eq(x, z), z, r));
return r;
}
expr_ref sls_terms::mk_smod(expr* x, expr* y) {
// u := umod(abs(x), abs(y))
// u = 0 -> 0
// y = 0 -> x
// x < 0, y < 0 -> -u
// x < 0, y >= 0 -> y - u
// x >= 0, y < 0 -> y + u
// x >= 0, y >= 0 -> u
bool_rewriter br(m);
bv_rewriter bvr(m);
unsigned sz = bv.get_bv_size(x);
expr_ref z(bv.mk_zero(sz), m);
expr_ref abs_x = br.mk_ite(bvr.mk_sle(z, x), x, bvr.mk_bv_neg(x));
expr_ref abs_y = br.mk_ite(bvr.mk_sle(z, y), y, bvr.mk_bv_neg(y));
expr_ref u = bvr.mk_bv_urem(abs_x, abs_y);
expr_ref r(m);
r = br.mk_ite(br.mk_eq(u, z), z,
br.mk_ite(br.mk_eq(y, z), x,
br.mk_ite(br.mk_and(bvr.mk_sle(z, x), bvr.mk_sle(z, x)), u,
br.mk_ite(bvr.mk_sle(z, x), bvr.mk_bv_add(y, u),
br.mk_ite(bv.mk_sle(z, y), bvr.mk_bv_sub(y, u), bvr.mk_bv_neg(u))))));
return r;
}
expr_ref sls_terms::mk_srem(expr* x, expr* y) {
// y = 0 -> x
// else x - sdiv(x, y) * y
expr_ref r(m);
bool_rewriter br(m);
bv_rewriter bvr(m);
expr_ref z(bv.mk_zero(bv.get_bv_size(x)), m);
r = br.mk_ite(br.mk_eq(y, z), x, bvr.mk_bv_sub(x, bvr.mk_bv_mul(y, mk_sdiv(x, y))));
return r;
}
}