3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-12 11:54:07 +00:00
z3/src/muz/spacer/spacer_expand_bnd_generalizer.cpp
LeeYoungJoon 0a93ff515d
Centralize and document TRACE tags using X-macros (#7657)
* Introduce X-macro-based trace tag definition
- Created trace_tags.def to centralize TRACE tag definitions
- Each tag includes a symbolic name and description
- Set up enum class TraceTag for type-safe usage in TRACE macros

* Add script to generate Markdown documentation from trace_tags.def
- Python script parses trace_tags.def and outputs trace_tags.md

* Refactor TRACE_NEW to prepend TraceTag and pass enum to is_trace_enabled

* trace: improve trace tag handling system with hierarchical tagging

- Introduce hierarchical tag-class structure: enabling a tag class activates all child tags
- Unify TRACE, STRACE, SCTRACE, and CTRACE under enum TraceTag
- Implement initial version of trace_tag.def using X(tag, tag_class, description)
  (class names and descriptions to be refined in a future update)

* trace: replace all string-based TRACE tags with enum TraceTag
- Migrated all TRACE, STRACE, SCTRACE, and CTRACE macros to use enum TraceTag values instead of raw string literals

* trace : add cstring header

* trace : Add Markdown documentation generation from trace_tags.def via mk_api_doc.py

* trace : rename macro parameter 'class' to 'tag_class' and remove Unicode comment in trace_tags.h.

* trace : Add TODO comment for future implementation of tag_class activation

* trace : Disable code related to tag_class until implementation is ready (#7663).
2025-05-28 14:31:25 +01:00

229 lines
7.5 KiB
C++

/*++
Copyright (c) 2020 Arie Gurfinkel
Module Name:
spacer_expand_bnd_generalizer.cpp
Abstract:
Strengthen lemmas by changing numeral constants inside arithmetic literals
Author:
Hari Govind V K
Arie Gurfinkel
--*/
#include "muz/spacer/spacer_expand_bnd_generalizer.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/expr_safe_replace.h"
namespace {
/// Returns true if \p e is arithmetic comparison
///
/// Returns true if \p e is of the form \p lhs op rhs, where
/// op in {<=, <, >, >=}, and rhs is a numeric value
bool is_arith_comp(const expr *e, expr *&lhs, rational &rhs, bool &is_int,
ast_manager &m) {
arith_util arith(m);
expr *e1, *e2;
if (m.is_not(e, e1)) return is_arith_comp(e1, lhs, rhs, is_int, m);
if (arith.is_le(e, lhs, e2) || arith.is_lt(e, lhs, e2) ||
arith.is_ge(e, lhs, e2) || arith.is_gt(e, lhs, e2))
return arith.is_numeral(e2, rhs, is_int);
return false;
}
bool is_arith_comp(const expr *e, expr *&lhs, rational &rhs, ast_manager &m) {
bool is_int;
return is_arith_comp(e, lhs, rhs, is_int, m);
}
bool is_arith_comp(const expr *e, rational &rhs, ast_manager &m) {
expr *lhs;
return is_arith_comp(e, lhs, rhs, m);
}
/// If \p lit is of the form (x op v), replace v with num
///
/// Supports arithmetic literals where op is <, <=, >, >=, or negation
bool update_bound(const expr *lit, rational num, expr_ref &res,
bool negate = false) {
SASSERT(is_app(lit));
ast_manager &m = res.get_manager();
expr *e1;
if (m.is_not(lit, e1)) { return update_bound(e1, num, res, !negate); }
arith_util arith(m);
expr *lhs;
rational val;
bool is_int;
if (!is_arith_comp(lit, lhs, val, is_int, m)) return false;
res = m.mk_app(to_app(lit)->get_decl(), lhs, arith.mk_numeral(num, is_int));
if (negate) { m.mk_not(res); }
return true;
}
} // namespace
namespace spacer {
namespace collect_rationals_ns {
/// Finds rationals in an expression
struct proc {
ast_manager &m;
arith_util m_arith;
vector<rational> &m_res;
proc(ast_manager &a_m, vector<rational> &res)
: m(a_m), m_arith(m), m_res(res) {}
void operator()(expr *n) const {}
void operator()(app *n) {
rational val;
if (m_arith.is_numeral(n, val)) m_res.push_back(val);
}
};
} // namespace collect_rationals_ns
/// Extract all numerals from an expression
void collect_rationals(expr *e, vector<rational> &res, ast_manager &m) {
collect_rationals_ns::proc proc(m, res);
quick_for_each_expr(proc, e);
}
lemma_expand_bnd_generalizer::lemma_expand_bnd_generalizer(context &ctx)
: lemma_generalizer(ctx), m(ctx.get_ast_manager()), m_arith(m) {
// -- collect rationals from initial condition and transition relation
for (auto &kv : ctx.get_pred_transformers()) {
collect_rationals(kv.m_value->init(), m_values, m);
collect_rationals(kv.m_value->transition(), m_values, m);
}
// remove duplicates
std::sort(m_values.begin(), m_values.end());
auto last = std::unique(m_values.begin(), m_values.end());
for (size_t i = 0, sz = std::distance(last, m_values.end()); i < sz; ++i)
m_values.pop_back();
}
void lemma_expand_bnd_generalizer::operator()(lemma_ref &lemma) {
scoped_watch _w_(m_st.watch);
if (!lemma->get_pob()->is_expand_bnd_enabled()) return;
expr_ref_vector cube(lemma->get_cube());
// -- temporary stores a core
expr_ref_vector core(m);
expr_ref lit(m), new_lit(m);
rational bnd;
// for every literal
for (unsigned i = 0, sz = cube.size(); i < sz; i++) {
lit = cube.get(i);
if (m.is_true(lit)) continue;
if (!is_arith_comp(lit, bnd, m)) continue;
TRACE(expand_bnd, tout << "Attempting to expand " << lit << " inside "
<< cube << "\n";);
// for every value
for (rational n : m_values) {
if (!is_interesting(lit, bnd, n)) continue;
m_st.atmpts++;
TRACE(expand_bnd, tout << "Attempting to expand " << lit
<< " with numeral " << n << "\n";);
// -- update bound on lit
VERIFY(update_bound(lit, n, new_lit));
// -- update lit to new_lit for a new candidate lemma
cube[i] = new_lit;
core.reset();
core.append(cube);
// -- check that candidate is inductive
if (check_inductive(lemma, core)) {
expr_fast_mark1 in_core;
for (auto *e : core) in_core.mark(e);
for (unsigned i = 0, sz = cube.size(); i < sz; ++i) {
if (!in_core.is_marked(cube.get(i))) cube[i] = m.mk_true();
}
// move to next literal if the current has been removed
if (!in_core.is_marked(new_lit)) break;
} else {
// -- candidate not inductive, restore original lit
cube[i] = lit;
}
}
}
// Currently, we allow for only one round of expand bound per lemma
// Mark lemma as already expanded so that it is not generalized in this way
// again
lemma->get_pob()->disable_expand_bnd_gen();
}
/// Check whether \p candidate is a possible generalization for \p lemma.
/// Side-effect: update \p lemma with the new candidate
bool lemma_expand_bnd_generalizer::check_inductive(lemma_ref &lemma,
expr_ref_vector &candidate) {
TRACE(expand_bnd_verb,
tout << "Attempting to update lemma with " << candidate << "\n";);
unsigned uses_level = 0;
auto &pt = lemma->get_pob()->pt();
bool res = pt.check_inductive(lemma->level(), candidate, uses_level,
lemma->weakness());
if (res) {
m_st.success++;
lemma->update_cube(lemma->get_pob(), candidate);
lemma->set_level(uses_level);
TRACE(expand_bnd, tout << "expand_bnd succeeded with "
<< mk_and(candidate) << " at level "
<< uses_level << "\n";);
}
return res;
}
/// Check whether lit ==> lit[val |--> n] (barring special cases). That is,
/// whether \p lit becomes weaker if \p val is replaced with \p n
///
/// \p lit has to be of the form t <= v where v is a numeral.
/// Special cases:
/// In the trivial case in which \p val == \p n, return false.
/// if lit is an equality or the negation of an equality, return true.
bool lemma_expand_bnd_generalizer::is_interesting(const expr *lit, rational val,
rational new_val) {
SASSERT(lit);
// the only case in which negation and non negation agree
if (val == new_val) return false;
if (m.is_eq(lit)) return true;
// negation is the actual negation modulo val == n
expr *e1;
if (m.is_not(lit, e1)) {
return m.is_eq(lit) || !is_interesting(e1, val, new_val);
}
SASSERT(val != new_val);
SASSERT(is_app(lit));
if (to_app(lit)->get_family_id() != m_arith.get_family_id()) return false;
switch (to_app(lit)->get_decl_kind()) {
case OP_LE:
case OP_LT:
return new_val > val;
case OP_GT:
case OP_GE:
return new_val < val;
default:
return false;
}
}
void lemma_expand_bnd_generalizer::collect_statistics(statistics &st) const {
st.update("time.spacer.solve.reach.gen.expand", m_st.watch.get_seconds());
st.update("SPACER expand_bnd attmpts", m_st.atmpts);
st.update("SPACER expand_bnd success", m_st.success);
}
} // namespace spacer