mirror of
https://github.com/Z3Prover/z3
synced 2026-02-12 11:54:07 +00:00
* Introduce X-macro-based trace tag definition - Created trace_tags.def to centralize TRACE tag definitions - Each tag includes a symbolic name and description - Set up enum class TraceTag for type-safe usage in TRACE macros * Add script to generate Markdown documentation from trace_tags.def - Python script parses trace_tags.def and outputs trace_tags.md * Refactor TRACE_NEW to prepend TraceTag and pass enum to is_trace_enabled * trace: improve trace tag handling system with hierarchical tagging - Introduce hierarchical tag-class structure: enabling a tag class activates all child tags - Unify TRACE, STRACE, SCTRACE, and CTRACE under enum TraceTag - Implement initial version of trace_tag.def using X(tag, tag_class, description) (class names and descriptions to be refined in a future update) * trace: replace all string-based TRACE tags with enum TraceTag - Migrated all TRACE, STRACE, SCTRACE, and CTRACE macros to use enum TraceTag values instead of raw string literals * trace : add cstring header * trace : Add Markdown documentation generation from trace_tags.def via mk_api_doc.py * trace : rename macro parameter 'class' to 'tag_class' and remove Unicode comment in trace_tags.h. * trace : Add TODO comment for future implementation of tag_class activation * trace : Disable code related to tag_class until implementation is ready (#7663).
229 lines
7.5 KiB
C++
229 lines
7.5 KiB
C++
/*++
|
|
Copyright (c) 2020 Arie Gurfinkel
|
|
|
|
Module Name:
|
|
|
|
spacer_expand_bnd_generalizer.cpp
|
|
|
|
Abstract:
|
|
|
|
Strengthen lemmas by changing numeral constants inside arithmetic literals
|
|
|
|
Author:
|
|
|
|
Hari Govind V K
|
|
Arie Gurfinkel
|
|
|
|
--*/
|
|
#include "muz/spacer/spacer_expand_bnd_generalizer.h"
|
|
#include "ast/for_each_expr.h"
|
|
#include "ast/rewriter/expr_safe_replace.h"
|
|
|
|
namespace {
|
|
/// Returns true if \p e is arithmetic comparison
|
|
///
|
|
/// Returns true if \p e is of the form \p lhs op rhs, where
|
|
/// op in {<=, <, >, >=}, and rhs is a numeric value
|
|
bool is_arith_comp(const expr *e, expr *&lhs, rational &rhs, bool &is_int,
|
|
ast_manager &m) {
|
|
arith_util arith(m);
|
|
expr *e1, *e2;
|
|
if (m.is_not(e, e1)) return is_arith_comp(e1, lhs, rhs, is_int, m);
|
|
if (arith.is_le(e, lhs, e2) || arith.is_lt(e, lhs, e2) ||
|
|
arith.is_ge(e, lhs, e2) || arith.is_gt(e, lhs, e2))
|
|
return arith.is_numeral(e2, rhs, is_int);
|
|
return false;
|
|
}
|
|
|
|
bool is_arith_comp(const expr *e, expr *&lhs, rational &rhs, ast_manager &m) {
|
|
bool is_int;
|
|
return is_arith_comp(e, lhs, rhs, is_int, m);
|
|
}
|
|
bool is_arith_comp(const expr *e, rational &rhs, ast_manager &m) {
|
|
expr *lhs;
|
|
return is_arith_comp(e, lhs, rhs, m);
|
|
}
|
|
/// If \p lit is of the form (x op v), replace v with num
|
|
///
|
|
/// Supports arithmetic literals where op is <, <=, >, >=, or negation
|
|
bool update_bound(const expr *lit, rational num, expr_ref &res,
|
|
bool negate = false) {
|
|
SASSERT(is_app(lit));
|
|
ast_manager &m = res.get_manager();
|
|
expr *e1;
|
|
if (m.is_not(lit, e1)) { return update_bound(e1, num, res, !negate); }
|
|
|
|
arith_util arith(m);
|
|
expr *lhs;
|
|
rational val;
|
|
bool is_int;
|
|
if (!is_arith_comp(lit, lhs, val, is_int, m)) return false;
|
|
|
|
res = m.mk_app(to_app(lit)->get_decl(), lhs, arith.mk_numeral(num, is_int));
|
|
if (negate) { m.mk_not(res); }
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
namespace spacer {
|
|
|
|
namespace collect_rationals_ns {
|
|
|
|
/// Finds rationals in an expression
|
|
struct proc {
|
|
ast_manager &m;
|
|
arith_util m_arith;
|
|
|
|
vector<rational> &m_res;
|
|
proc(ast_manager &a_m, vector<rational> &res)
|
|
: m(a_m), m_arith(m), m_res(res) {}
|
|
void operator()(expr *n) const {}
|
|
void operator()(app *n) {
|
|
rational val;
|
|
if (m_arith.is_numeral(n, val)) m_res.push_back(val);
|
|
}
|
|
};
|
|
} // namespace collect_rationals_ns
|
|
|
|
/// Extract all numerals from an expression
|
|
void collect_rationals(expr *e, vector<rational> &res, ast_manager &m) {
|
|
collect_rationals_ns::proc proc(m, res);
|
|
quick_for_each_expr(proc, e);
|
|
}
|
|
|
|
lemma_expand_bnd_generalizer::lemma_expand_bnd_generalizer(context &ctx)
|
|
: lemma_generalizer(ctx), m(ctx.get_ast_manager()), m_arith(m) {
|
|
// -- collect rationals from initial condition and transition relation
|
|
for (auto &kv : ctx.get_pred_transformers()) {
|
|
collect_rationals(kv.m_value->init(), m_values, m);
|
|
collect_rationals(kv.m_value->transition(), m_values, m);
|
|
}
|
|
|
|
// remove duplicates
|
|
std::sort(m_values.begin(), m_values.end());
|
|
auto last = std::unique(m_values.begin(), m_values.end());
|
|
for (size_t i = 0, sz = std::distance(last, m_values.end()); i < sz; ++i)
|
|
m_values.pop_back();
|
|
}
|
|
|
|
void lemma_expand_bnd_generalizer::operator()(lemma_ref &lemma) {
|
|
scoped_watch _w_(m_st.watch);
|
|
if (!lemma->get_pob()->is_expand_bnd_enabled()) return;
|
|
|
|
expr_ref_vector cube(lemma->get_cube());
|
|
|
|
// -- temporary stores a core
|
|
expr_ref_vector core(m);
|
|
|
|
expr_ref lit(m), new_lit(m);
|
|
rational bnd;
|
|
// for every literal
|
|
for (unsigned i = 0, sz = cube.size(); i < sz; i++) {
|
|
lit = cube.get(i);
|
|
if (m.is_true(lit)) continue;
|
|
if (!is_arith_comp(lit, bnd, m)) continue;
|
|
|
|
TRACE(expand_bnd, tout << "Attempting to expand " << lit << " inside "
|
|
<< cube << "\n";);
|
|
|
|
// for every value
|
|
for (rational n : m_values) {
|
|
if (!is_interesting(lit, bnd, n)) continue;
|
|
m_st.atmpts++;
|
|
TRACE(expand_bnd, tout << "Attempting to expand " << lit
|
|
<< " with numeral " << n << "\n";);
|
|
|
|
// -- update bound on lit
|
|
VERIFY(update_bound(lit, n, new_lit));
|
|
// -- update lit to new_lit for a new candidate lemma
|
|
cube[i] = new_lit;
|
|
|
|
core.reset();
|
|
core.append(cube);
|
|
// -- check that candidate is inductive
|
|
if (check_inductive(lemma, core)) {
|
|
expr_fast_mark1 in_core;
|
|
for (auto *e : core) in_core.mark(e);
|
|
for (unsigned i = 0, sz = cube.size(); i < sz; ++i) {
|
|
if (!in_core.is_marked(cube.get(i))) cube[i] = m.mk_true();
|
|
}
|
|
// move to next literal if the current has been removed
|
|
if (!in_core.is_marked(new_lit)) break;
|
|
} else {
|
|
// -- candidate not inductive, restore original lit
|
|
cube[i] = lit;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Currently, we allow for only one round of expand bound per lemma
|
|
// Mark lemma as already expanded so that it is not generalized in this way
|
|
// again
|
|
lemma->get_pob()->disable_expand_bnd_gen();
|
|
}
|
|
|
|
/// Check whether \p candidate is a possible generalization for \p lemma.
|
|
/// Side-effect: update \p lemma with the new candidate
|
|
bool lemma_expand_bnd_generalizer::check_inductive(lemma_ref &lemma,
|
|
expr_ref_vector &candidate) {
|
|
TRACE(expand_bnd_verb,
|
|
tout << "Attempting to update lemma with " << candidate << "\n";);
|
|
|
|
unsigned uses_level = 0;
|
|
auto &pt = lemma->get_pob()->pt();
|
|
bool res = pt.check_inductive(lemma->level(), candidate, uses_level,
|
|
lemma->weakness());
|
|
if (res) {
|
|
m_st.success++;
|
|
lemma->update_cube(lemma->get_pob(), candidate);
|
|
lemma->set_level(uses_level);
|
|
TRACE(expand_bnd, tout << "expand_bnd succeeded with "
|
|
<< mk_and(candidate) << " at level "
|
|
<< uses_level << "\n";);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Check whether lit ==> lit[val |--> n] (barring special cases). That is,
|
|
/// whether \p lit becomes weaker if \p val is replaced with \p n
|
|
///
|
|
/// \p lit has to be of the form t <= v where v is a numeral.
|
|
/// Special cases:
|
|
/// In the trivial case in which \p val == \p n, return false.
|
|
/// if lit is an equality or the negation of an equality, return true.
|
|
bool lemma_expand_bnd_generalizer::is_interesting(const expr *lit, rational val,
|
|
rational new_val) {
|
|
SASSERT(lit);
|
|
// the only case in which negation and non negation agree
|
|
if (val == new_val) return false;
|
|
|
|
if (m.is_eq(lit)) return true;
|
|
|
|
// negation is the actual negation modulo val == n
|
|
expr *e1;
|
|
if (m.is_not(lit, e1)) {
|
|
return m.is_eq(lit) || !is_interesting(e1, val, new_val);
|
|
}
|
|
|
|
SASSERT(val != new_val);
|
|
SASSERT(is_app(lit));
|
|
|
|
if (to_app(lit)->get_family_id() != m_arith.get_family_id()) return false;
|
|
switch (to_app(lit)->get_decl_kind()) {
|
|
case OP_LE:
|
|
case OP_LT:
|
|
return new_val > val;
|
|
case OP_GT:
|
|
case OP_GE:
|
|
return new_val < val;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void lemma_expand_bnd_generalizer::collect_statistics(statistics &st) const {
|
|
st.update("time.spacer.solve.reach.gen.expand", m_st.watch.get_seconds());
|
|
st.update("SPACER expand_bnd attmpts", m_st.atmpts);
|
|
st.update("SPACER expand_bnd success", m_st.success);
|
|
}
|
|
} // namespace spacer
|