3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-03 05:47:01 +00:00
z3/src/math/polysat/superposition.cpp
2022-11-28 19:13:38 +01:00

209 lines
7.1 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
Conflict explanation by polynomial superposition
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-06
--*/
#include "math/polysat/superposition.h"
#include "math/polysat/log.h"
#include "math/polysat/solver.h"
namespace polysat {
struct inference_sup : public inference {
const char* name;
pvar var;
signed_constraint reduced;
signed_constraint reducer;
inference_sup(const char* name, pvar var, signed_constraint reduced, signed_constraint reducer) : name(name), var(var), reduced(reduced), reducer(reducer) {}
std::ostream& display(std::ostream& out) const override {
return out << "Superposition (" << name << "), reduced v" << var
<< " in " << reduced.blit() << ": " << reduced
<< " by " << reducer.blit() << ": " << reducer;
}
};
signed_constraint ex_polynomial_superposition::resolve1(pvar v, signed_constraint c1, signed_constraint c2) {
// c1 is true, c2 is false
SASSERT(c1.is_currently_true(s));
SASSERT(c2.is_currently_false(s));
LOG_H3("Resolving upon v" << v);
LOG("c1: " << lit_pp(s, c1));
LOG("c2: " << lit_pp(s, c2));
pdd a = c1.eq();
pdd b = c2.eq();
unsigned degree_a = a.degree();
unsigned degree_b = b.degree();
pdd r = a;
if (!a.resolve(v, b, r) && !b.resolve(v, a, r))
return {};
unsigned degree_r = r.degree();
if (degree_a < degree_r && degree_b < degree_r)
return {};
// Only keep result if the degree in c2 was reduced.
// (this condition might be too strict, but we use it for now to prevent looping)
if (b.degree(v) <= r.degree(v))
return {};
if (a.degree(v) <= r.degree(v))
return {};
signed_constraint c = s.eq(r);
LOG("resolved: " << c << " currently false? " << c.is_currently_false(s));
if (!c.is_currently_false(s))
return {};
return c;
}
// c2 ... constraint that is currently false
// Try to replace it with a new false constraint (derived from superposition with a true constraint)
lbool ex_polynomial_superposition::find_replacement(signed_constraint c2, pvar v, conflict& core) {
for (auto c1 : s.m_viable.get_constraints(v)) {
if (!c1->contains_var(v)) // side conditions do not contain v; skip them here
continue;
if (!c1.is_eq())
continue;
SASSERT(c1.is_currently_true(s));
SASSERT(c2.is_currently_false(s));
SASSERT_EQ(c1.bvalue(s), l_true);
SASSERT_EQ(c2.bvalue(s), l_true);
signed_constraint c = resolve1(v, c1, c2);
if (!c)
continue;
SASSERT(c.is_currently_false(s));
switch (c.bvalue(s)) {
case l_false:
core.add_lemma("superposition l_false", {c, ~c1, ~c2});
return l_true;
case l_undef:
core.add_lemma("superposition l_undef", {c, ~c1, ~c2});
break;
case l_true:
break;
default:
UNREACHABLE();
break;
}
// // c alone (+ variables) is now enough to represent the conflict.
// core.log_inference(inference_sup(inf_name, v, c2, c1));
return c->contains_var(v) ? l_undef : l_true;
}
return l_false;
}
// true = done, false = abort, undef = continue
lbool ex_polynomial_superposition::try_explain1(pvar v, conflict& core) {
for (auto c2 : core) {
if (!c2.is_eq())
continue;
if (!c2->contains_var(v))
continue;
if (!c2.is_currently_false(s))
continue;
switch (find_replacement(c2, v, core)) {
case l_undef:
return l_undef;
case l_true:
return l_true;
case l_false:
continue;
}
}
return l_false;
}
#if 0
void ex_polynomial_superposition::reduce_by(pvar v, conflict& core) {
bool progress = true;
while (progress) {
progress = false;
for (auto c : core) {
if (!c->contains_var(v))
continue;
if (!c.is_eq())
continue;
#if 0
if (!c.is_currently_true(s))
continue;
#endif
if (!reduce_by(v, c, core))
continue;
progress = true;
break;
}
}
}
bool ex_polynomial_superposition::reduce_by(pvar v, signed_constraint eq, conflict& core) {
pdd p = eq.eq();
LOG("using v" << v << " " << eq);
for (auto c : core) {
if (c == eq)
continue;
if (!c->contains_var(v))
continue;
if (c.is_eq())
continue;
LOG("try-reduce: " << c << " " << c.is_currently_false(s));
if (!c->is_ule())
continue;
auto const& lhs = c->to_ule().lhs();
auto const& rhs = c->to_ule().rhs();
auto a = lhs.reduce(v, p);
auto b = rhs.reduce(v, p);
LOG("try-reduce: " << c << " " << a << " " << b << " vs " << lhs << " " << rhs);
if (a == lhs && b == rhs)
continue;
auto c2 = s.ule(a, b);
if (!c.is_positive())
c2 = ~c2;
if (!c2.is_currently_false(s))
continue;
if (c2.is_always_false() || c2.bvalue(s) == l_false)
return false;
if (!c2->has_bvar() || l_undef == c2.bvalue(s)) {
vector<signed_constraint> premises;
premises.push_back(c);
premises.push_back(eq);
core.insert(c2, premises); // TODO: insert but then we reset? ... (this call does not insert into the core)
}
// core.keep(c2); // adds propagation of c to the search stack
core.reset();
LOG_H3("Polynomial superposition " << eq << " " << c << " reduced to " << c2);
if (c2.bvalue(s) == l_false) {
// TODO this loops or crashes depending on whether we
// return true or false.
core.insert(eq);
core.insert(c);
core.insert(~c2);
core.log_inference("superposition 4");
return true;
}
core.set(c2);
core.log_inference(inference_sup("5", v, c, eq));
return true;
}
return false;
}
#endif
bool ex_polynomial_superposition::perform(pvar v, conflict& core) {
#if 0
reduce_by(v, core);
#endif
lbool result = l_undef;
while (result == l_undef)
result = try_explain1(v, core);
return result == l_true;
}
}