mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
128 lines
3.5 KiB
Python
128 lines
3.5 KiB
Python
############################################
|
|
# Copyright (c) 2012 Microsoft Corporation
|
|
#
|
|
# Complex numbers in Z3
|
|
# See http://research.microsoft.com/en-us/um/people/leonardo/blog/2013/01/26/complex.html
|
|
#
|
|
# Author: Leonardo de Moura (leonardo)
|
|
############################################
|
|
from __future__ import print_function
|
|
import sys
|
|
if sys.version_info.major >= 3:
|
|
from functools import reduce
|
|
from z3 import *
|
|
|
|
def _to_complex(a):
|
|
if isinstance(a, ComplexExpr):
|
|
return a
|
|
else:
|
|
return ComplexExpr(a, RealVal(0))
|
|
|
|
def _is_zero(a):
|
|
return (isinstance(a, int) and a == 0) or (is_rational_value(a) and a.numerator_as_long() == 0)
|
|
|
|
class ComplexExpr:
|
|
def __init__(self, r, i):
|
|
self.r = r
|
|
self.i = i
|
|
|
|
def __add__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(self.r + other.r, self.i + other.i)
|
|
|
|
def __radd__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(other.r + self.r, other.i + self.i)
|
|
|
|
def __sub__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(self.r - other.r, self.i - other.i)
|
|
|
|
def __rsub__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(other.r - self.r, other.i - self.i)
|
|
|
|
def __mul__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(self.r*other.r - self.i*other.i, self.r*other.i + self.i*other.r)
|
|
|
|
def __mul__(self, other):
|
|
other = _to_complex(other)
|
|
return ComplexExpr(other.r*self.r - other.i*self.i, other.i*self.r + other.r*self.i)
|
|
|
|
def __pow__(self, k):
|
|
if k == 0:
|
|
return ComplexExpr(1, 0)
|
|
if k == 1:
|
|
return self
|
|
if k < 0:
|
|
return (self ** (-k)).inv()
|
|
return reduce(lambda x, y: x * y, [self for _ in range(k)], ComplexExpr(1, 0))
|
|
|
|
def inv(self):
|
|
den = self.r*self.r + self.i*self.i
|
|
return ComplexExpr(self.r/den, -self.i/den)
|
|
|
|
def __div__(self, other):
|
|
inv_other = _to_complex(other).inv()
|
|
return self.__mul__(inv_other)
|
|
|
|
if sys.version_info.major >= 3:
|
|
# In python 3 the meaning of the '/' operator
|
|
# was changed.
|
|
def __truediv__(self, other):
|
|
return self.__div__(other)
|
|
|
|
def __rdiv__(self, other):
|
|
other = _to_complex(other)
|
|
return self.inv().__mul__(other)
|
|
|
|
def __eq__(self, other):
|
|
other = _to_complex(other)
|
|
return And(self.r == other.r, self.i == other.i)
|
|
|
|
def __neq__(self, other):
|
|
return Not(self.__eq__(other))
|
|
|
|
def simplify(self):
|
|
return ComplexExpr(simplify(self.r), simplify(self.i))
|
|
|
|
def repr_i(self):
|
|
if is_rational_value(self.i):
|
|
return "%s*I" % self.i
|
|
else:
|
|
return "(%s)*I" % str(self.i)
|
|
|
|
def __repr__(self):
|
|
if _is_zero(self.i):
|
|
return str(self.r)
|
|
elif _is_zero(self.r):
|
|
return self.repr_i()
|
|
else:
|
|
return "%s + %s" % (self.r, self.repr_i())
|
|
|
|
def Complex(a):
|
|
return ComplexExpr(Real('%s.r' % a), Real('%s.i' % a))
|
|
I = ComplexExpr(RealVal(0), RealVal(1))
|
|
|
|
def evaluate_cexpr(m, e):
|
|
return ComplexExpr(m[e.r], m[e.i])
|
|
|
|
x = Complex("x")
|
|
s = Tactic('qfnra-nlsat').solver()
|
|
s.add(x*x == -2)
|
|
print(s)
|
|
print(s.check())
|
|
m = s.model()
|
|
print('x = %s' % evaluate_cexpr(m, x))
|
|
print((evaluate_cexpr(m,x)*evaluate_cexpr(m,x)).simplify())
|
|
s.add(x.i != -1)
|
|
print(s)
|
|
print(s.check())
|
|
print(s.model())
|
|
s.add(x.i != 1)
|
|
print(s.check())
|
|
# print(s.model())
|
|
print(((3 + I) ** 2)/(5 - I))
|
|
print(((3 + I) ** -3)/(5 - I))
|