3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00
z3/lib/pull_quant.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

386 lines
14 KiB
C++

/*++
Copyright (c) 2007 Microsoft Corporation
Module Name:
pull_quant.cpp
Abstract:
Pull nested quantifiers.
Author:
Leonardo (leonardo) 2008-01-20
Notes:
--*/
#include"pull_quant.h"
#include"ast_pp.h"
#include"for_each_expr.h"
void pull_quant::pull_quant1(func_decl * d, unsigned num_children, expr * const * children, expr_ref & result) {
ptr_buffer<sort> var_sorts;
buffer<symbol> var_names;
symbol qid;
int w = INT_MAX;
// The input formula is in Skolem normal form...
// So all children are forall (positive context) or exists (negative context).
// Remark: (AND a1 ...) may be represented (NOT (OR (NOT a1) ...)))
// So, when pulling a quantifier over a NOT, it becomes an exists.
if (m_manager.is_not(d)) {
SASSERT(num_children == 1);
expr * child = children[0];
if (is_quantifier(child)) {
quantifier * q = to_quantifier(child);
expr * body = q->get_expr();
result = m_manager.update_quantifier(q, !q->is_forall(), m_manager.mk_not(body));
}
else {
result = m_manager.mk_not(child);
}
return;
}
bool found_quantifier = false;
bool forall_children;
for (unsigned i = 0; i < num_children; i++) {
expr * child = children[i];
if (is_quantifier(child)) {
if (!found_quantifier) {
found_quantifier = true;
forall_children = is_forall(child);
}
else {
// Since the initial formula was in SNF, all children must be EXISTS or FORALL.
SASSERT(forall_children == is_forall(child));
}
quantifier * nested_q = to_quantifier(child);
if (var_sorts.empty()) {
// use the qid of one of the nested quantifiers.
qid = nested_q->get_qid();
}
w = std::min(w, nested_q->get_weight());
unsigned j = nested_q->get_num_decls();
while (j > 0) {
--j;
var_sorts.push_back(nested_q->get_decl_sort(j));
symbol s = nested_q->get_decl_name(j);
if (std::find(var_names.begin(), var_names.end(), s) != var_names.end())
var_names.push_back(m_manager.mk_fresh_var_name(s.is_numerical() ? 0 : s.bare_str()));
else
var_names.push_back(s);
}
}
}
if (!var_sorts.empty()) {
SASSERT(found_quantifier);
// adjust the variable ids in formulas in new_children
expr_ref_buffer new_adjusted_children(m_manager);
expr_ref adjusted_child(m_manager);
unsigned num_decls = var_sorts.size();
unsigned shift_amount = 0;
TRACE("pull_quant", tout << "Result num decls:" << num_decls << "\n";);
for (unsigned i = 0; i < num_children; i++) {
expr * child = children[i];
if (!is_quantifier(child)) {
// increment the free variables in child by num_decls because
// child will be in the scope of num_decls bound variables.
m_shift(child, num_decls, adjusted_child);
TRACE("pull_quant", tout << "shifted by: " << num_decls << "\n" <<
mk_pp(child, m_manager) << "\n---->\n" << mk_pp(adjusted_child, m_manager) << "\n";);
}
else {
quantifier * nested_q = to_quantifier(child);
SASSERT(num_decls >= nested_q->get_num_decls());
// Assume nested_q is of the form
// forall xs. P(xs, ys)
// where xs (ys) represents the set of bound (free) variables.
//
// - the index of the variables xs must be increased by shift_amount.
// That is, the number of new bound variables that will precede the bound
// variables xs.
//
// - the index of the variables ys must be increased by num_decls - nested_q->get_num_decls.
// That is, the total number of new bound variables that will be in the scope
// of nested_q->get_expr().
m_shift(nested_q->get_expr(),
nested_q->get_num_decls(), // bound for shift1/shift2
num_decls - nested_q->get_num_decls(), // shift1 (shift by this ammount if var idx >= bound)
shift_amount, // shift2 (shift by this ammount if var idx < bound)
adjusted_child);
TRACE("pull_quant", tout << "shifted bound: " << nested_q->get_num_decls() << " shift1: " << shift_amount <<
" shift2: " << (num_decls - nested_q->get_num_decls()) << "\n" << mk_pp(nested_q->get_expr(), m_manager) <<
"\n---->\n" << mk_pp(adjusted_child, m_manager) << "\n";);
shift_amount += nested_q->get_num_decls();
}
new_adjusted_children.push_back(adjusted_child);
}
// Remark: patterns are ignored.
// This is ok, since this functor is used in one of the following cases:
//
// 1) Superposition calculus is being used, so the
// patterns are useless.
//
// 2) No patterns were provided, and the functor is used
// to increase the effectiveness of the pattern inference
// procedure.
//
// 3) MBQI
std::reverse(var_sorts.begin(), var_sorts.end());
std::reverse(var_names.begin(), var_names.end());
result = m_manager.mk_quantifier(forall_children,
var_sorts.size(),
var_sorts.c_ptr(),
var_names.c_ptr(),
m_manager.mk_app(d, new_adjusted_children.size(), new_adjusted_children.c_ptr()),
w,
qid);
}
else {
SASSERT(!found_quantifier);
result = m_manager.mk_app(d, num_children, children);
}
}
void pull_quant::pull_quant1(quantifier * q, expr * new_expr, expr_ref & result) {
// The original formula was in SNF, so the original quantifiers must be universal.
SASSERT(is_forall(q));
if (is_forall(new_expr)) {
quantifier * nested_q = to_quantifier(new_expr);
ptr_buffer<sort> var_sorts;
buffer<symbol> var_names;
var_sorts.append(q->get_num_decls(), const_cast<sort**>(q->get_decl_sorts()));
var_sorts.append(nested_q->get_num_decls(), const_cast<sort**>(nested_q->get_decl_sorts()));
var_names.append(q->get_num_decls(), const_cast<symbol*>(q->get_decl_names()));
var_names.append(nested_q->get_num_decls(), const_cast<symbol*>(nested_q->get_decl_names()));
// Remark: patterns are ignored.
// See comment in reduce1_app
result = m_manager.mk_forall(var_sorts.size(),
var_sorts.c_ptr(),
var_names.c_ptr(),
nested_q->get_expr(),
std::min(q->get_weight(), nested_q->get_weight()),
q->get_qid());
}
else {
SASSERT(!is_quantifier(new_expr));
result = m_manager.update_quantifier(q, new_expr);
}
}
void pull_quant::pull_quant1(expr * n, expr_ref & result) {
if (is_app(n))
pull_quant1(to_app(n)->get_decl(), to_app(n)->get_num_args(), to_app(n)->get_args(), result);
else if (is_quantifier(n))
pull_quant1(to_quantifier(n), to_quantifier(n)->get_expr(), result);
else
result = n;
}
// Code for proof generation...
void pull_quant::pull_quant2(expr * n, expr_ref & r, proof_ref & pr) {
pr = 0;
if (is_app(n)) {
expr_ref_buffer new_args(m_manager);
expr_ref new_arg(m_manager);
ptr_buffer<proof> proofs;
unsigned num = to_app(n)->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * arg = to_app(n)->get_arg(i);
pull_quant1(arg , new_arg);
new_args.push_back(new_arg);
if (new_arg != arg)
proofs.push_back(m_manager.mk_pull_quant(arg, to_quantifier(new_arg)));
}
pull_quant1(to_app(n)->get_decl(), new_args.size(), new_args.c_ptr(), r);
if (m_manager.fine_grain_proofs()) {
app * r1 = m_manager.mk_app(to_app(n)->get_decl(), new_args.size(), new_args.c_ptr());
proof * p1 = proofs.empty() ? 0 : m_manager.mk_congruence(to_app(n), r1, proofs.size(), proofs.c_ptr());
proof * p2 = r1 == r ? 0 : m_manager.mk_pull_quant(r1, to_quantifier(r));
pr = m_manager.mk_transitivity(p1, p2);
}
}
else if (is_quantifier(n)) {
expr_ref new_expr(m_manager);
pull_quant1(to_quantifier(n)->get_expr(), new_expr);
pull_quant1(to_quantifier(n), new_expr, r);
if (m_manager.fine_grain_proofs()) {
quantifier * q1 = m_manager.update_quantifier(to_quantifier(n), new_expr);
proof * p1 = 0;
if (n != q1) {
proof * p0 = m_manager.mk_pull_quant(to_quantifier(n)->get_expr(), to_quantifier(new_expr));
p1 = m_manager.mk_quant_intro(to_quantifier(n), q1, p0);
}
proof * p2 = q1 == r ? 0 : m_manager.mk_pull_quant(q1, to_quantifier(r));
pr = m_manager.mk_transitivity(p1, p2);
}
}
else {
r = n;
}
}
bool pull_quant::visit_children(expr * n) {
bool visited = true;
unsigned j;
switch(n->get_kind()) {
case AST_APP:
// This transformation is also applied after the formula
// has been converted into a SNF using only OR and NOT.
if (m_manager.is_or(n) || m_manager.is_and(n) || m_manager.is_not(n)) {
j = to_app(n)->get_num_args();
while (j > 0) {
--j;
visit(to_app(n)->get_arg(j), visited);
}
}
else {
// This class assumes the formula is in skolem normal form.
SASSERT(!has_quantifiers(n));
}
break;
case AST_QUANTIFIER:
if (to_quantifier(n)->is_forall())
visit(to_quantifier(n)->get_expr(), visited);
break;
default:
break;
}
return visited;
}
void pull_quant::reduce1(expr * n) {
switch(n->get_kind()) {
case AST_APP:
reduce1_app(to_app(n));
break;
case AST_VAR:
cache_result(n, n, 0);
break;
case AST_QUANTIFIER:
reduce1_quantifier(to_quantifier(n));
break;
default:
UNREACHABLE();
break;
}
}
void pull_quant::reduce1_app(app * n) {
if (m_manager.is_or(n) || m_manager.is_and(n) || m_manager.is_not(n)) {
ptr_buffer<expr> new_children;
ptr_buffer<proof> new_children_proofs;
unsigned num = n->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * new_child = 0;
proof * new_child_pr = 0;
get_cached(n->get_arg(i), new_child, new_child_pr);
new_children.push_back(new_child);
if (new_child_pr) {
new_children_proofs.push_back(new_child_pr);
}
}
expr_ref r(m_manager);
pull_quant1(n->get_decl(), new_children.size(), new_children.c_ptr(), r);
proof * pr = 0;
if (m_manager.fine_grain_proofs()) {
app * n_prime = m_manager.mk_app(n->get_decl(), new_children.size(), new_children.c_ptr());
TRACE("proof_bug", tout << mk_pp(n, m_manager) << "\n";
tout << mk_pp(n_prime, m_manager) << "\n";);
proof * p1 = n == n_prime ? 0 : m_manager.mk_congruence(n, n_prime,
new_children_proofs.size(), new_children_proofs.c_ptr());
proof * p2 = n_prime == r ? 0 : m_manager.mk_pull_quant(n_prime, to_quantifier(r));
pr = m_manager.mk_transitivity(p1, p2);
}
cache_result(n, r, pr);
return;
}
TRACE("proof_bug", tout << mk_pp(n, m_manager) << "\n";);
cache_result(n, n, 0);
}
void pull_quant::reduce1_quantifier(quantifier * q) {
if (q->is_forall()) {
expr * new_expr;
proof * new_expr_pr;
get_cached(q->get_expr(), new_expr, new_expr_pr);
expr_ref r(m_manager);
pull_quant1(q, new_expr, r);
proof * pr = 0;
if (m_manager.fine_grain_proofs()) {
quantifier * q_prime = m_manager.update_quantifier(q, new_expr);
proof * p1 = q == q_prime ? 0 : m_manager.mk_quant_intro(q, q_prime, new_expr_pr);
proof * p2 = q_prime == r ? 0 : m_manager.mk_pull_quant(q_prime, to_quantifier(r));
pr = m_manager.mk_transitivity(p1, p2);
}
cache_result(q, r, pr);
return;
}
// should be unreachable, right?
UNREACHABLE();
cache_result(q, q, 0);
}
pull_quant::pull_quant(ast_manager & m):
base_simplifier(m),
m_shift(m) {
}
void pull_quant::operator()(expr * n, expr_ref & r, proof_ref & p) {
flush_cache();
m_todo.push_back(n);
while (!m_todo.empty()) {
expr * n = m_todo.back();
if (is_cached(n))
m_todo.pop_back();
else if (visit_children(n)) {
m_todo.pop_back();
reduce1(n);
}
}
expr * result;
proof * result_proof;
get_cached(n, result, result_proof);
r = result;
switch (m_manager.proof_mode()) {
case PGM_DISABLED:
p = m_manager.mk_undef_proof();
break;
case PGM_COARSE:
if (result == n)
p = m_manager.mk_reflexivity(n);
else
p = m_manager.mk_pull_quant_star(n, to_quantifier(result));
break;
case PGM_FINE:
SASSERT(result_proof || result == n);
p = result_proof ? result_proof : m_manager.mk_reflexivity(n);
break;
}
}
bool pull_nested_quant::visit_quantifier(quantifier * q) {
// do not recurse.
return true;
}
void pull_nested_quant::reduce1_quantifier(quantifier * q) {
expr_ref r(m_manager);
proof_ref pr(m_manager);
m_pull(q, r, pr);
cache_result(q, r, pr);
}