mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 11:17:07 +00:00
609 lines
20 KiB
C++
609 lines
20 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
proto_model.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2007-03-08.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include"proto_model.h"
|
|
#include"ast_pp.h"
|
|
#include"ast_ll_pp.h"
|
|
#include"var_subst.h"
|
|
#include"front_end_params.h"
|
|
#include"array_decl_plugin.h"
|
|
#include"well_sorted.h"
|
|
#include"used_symbols.h"
|
|
#include"model_v2_pp.h"
|
|
|
|
proto_model::proto_model(ast_manager & m, simplifier & s, model_params const & p):
|
|
model_core(m),
|
|
m_params(p),
|
|
m_asts(m),
|
|
m_simplifier(s),
|
|
m_afid(m.get_family_id(symbol("array"))) {
|
|
register_factory(alloc(basic_factory, m));
|
|
m_user_sort_factory = alloc(user_sort_factory, m);
|
|
register_factory(m_user_sort_factory);
|
|
}
|
|
|
|
void proto_model::reset_finterp() {
|
|
decl2finterp::iterator it = m_finterp.begin();
|
|
decl2finterp::iterator end = m_finterp.end();
|
|
for (; it != end; ++it) {
|
|
dealloc(it->m_value);
|
|
}
|
|
}
|
|
|
|
proto_model::~proto_model() {
|
|
reset_finterp();
|
|
}
|
|
|
|
void proto_model::register_decl(func_decl * d, expr * v) {
|
|
SASSERT(d->get_arity() == 0);
|
|
if (m_interp.contains(d)) {
|
|
DEBUG_CODE({
|
|
expr * old_v = 0;
|
|
m_interp.find(d, old_v);
|
|
SASSERT(old_v == v);
|
|
});
|
|
return;
|
|
}
|
|
SASSERT(!m_interp.contains(d));
|
|
m_decls.push_back(d);
|
|
m_asts.push_back(d);
|
|
m_asts.push_back(v);
|
|
m_interp.insert(d, v);
|
|
m_const_decls.push_back(d);
|
|
}
|
|
|
|
void proto_model::register_decl(func_decl * d, func_interp * fi, bool aux) {
|
|
SASSERT(d->get_arity() > 0);
|
|
SASSERT(!m_finterp.contains(d));
|
|
m_decls.push_back(d);
|
|
m_asts.push_back(d);
|
|
m_finterp.insert(d, fi);
|
|
m_func_decls.push_back(d);
|
|
if (aux)
|
|
m_aux_decls.insert(d);
|
|
}
|
|
|
|
/**
|
|
\brief Set new_fi as the new interpretation for f.
|
|
If f_aux != 0, then assign the old interpretation of f to f_aux.
|
|
If f_aux == 0, then delete the old interpretation of f.
|
|
|
|
f_aux is marked as a auxiliary declaration.
|
|
*/
|
|
void proto_model::reregister_decl(func_decl * f, func_interp * new_fi, func_decl * f_aux) {
|
|
func_interp * fi = get_func_interp(f);
|
|
if (fi == 0) {
|
|
register_decl(f, new_fi);
|
|
}
|
|
else {
|
|
if (f_aux != 0) {
|
|
register_decl(f_aux, fi);
|
|
m_aux_decls.insert(f_aux);
|
|
}
|
|
else {
|
|
dealloc(fi);
|
|
}
|
|
m_finterp.insert(f, new_fi);
|
|
}
|
|
}
|
|
|
|
expr * proto_model::mk_some_interp_for(func_decl * d) {
|
|
SASSERT(!has_interpretation(d));
|
|
expr * r = get_some_value(d->get_range()); // if t is a function, then it will be the constant function.
|
|
if (d->get_arity() == 0) {
|
|
register_decl(d, r);
|
|
}
|
|
else {
|
|
func_interp * new_fi = alloc(func_interp, m_manager, d->get_arity());
|
|
new_fi->set_else(r);
|
|
register_decl(d, new_fi);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
\brief Evaluate the expression e in the current model, and store the result in \c result.
|
|
It returns \c true if succeeded, and false otherwise. If the evaluation fails,
|
|
then r contains a term that is simplified as much as possible using the interpretations
|
|
available in the model.
|
|
|
|
When model_completion == true, if the model does not assign an interpretation to a
|
|
declaration it will build one for it. Moreover, partial functions will also be completed.
|
|
So, if model_completion == true, the evaluator never fails if it doesn't contain quantifiers.
|
|
*/
|
|
bool proto_model::eval(expr * e, expr_ref & result, bool model_completion) {
|
|
bool is_ok = true;
|
|
SASSERT(is_well_sorted(m_manager, e));
|
|
TRACE("model_eval", tout << mk_pp(e, m_manager) << "\n";
|
|
tout << "sort: " << mk_pp(m_manager.get_sort(e), m_manager) << "\n";);
|
|
|
|
obj_map<expr, expr*> eval_cache;
|
|
expr_ref_vector trail(m_manager);
|
|
sbuffer<std::pair<expr*, expr*>, 128> todo;
|
|
ptr_buffer<expr> args;
|
|
expr * null = static_cast<expr*>(0);
|
|
todo.push_back(std::make_pair(e, null));
|
|
|
|
expr * a;
|
|
expr * expanded_a;
|
|
while (!todo.empty()) {
|
|
std::pair<expr *, expr *> & p = todo.back();
|
|
a = p.first;
|
|
expanded_a = p.second;
|
|
if (expanded_a != 0) {
|
|
expr * r = 0;
|
|
eval_cache.find(expanded_a, r);
|
|
SASSERT(r != 0);
|
|
todo.pop_back();
|
|
eval_cache.insert(a, r);
|
|
TRACE("model_eval",
|
|
tout << "orig:\n" << mk_pp(a, m_manager) << "\n";
|
|
tout << "after beta reduction:\n" << mk_pp(expanded_a, m_manager) << "\n";
|
|
tout << "new:\n" << mk_pp(r, m_manager) << "\n";);
|
|
}
|
|
else {
|
|
switch(a->get_kind()) {
|
|
case AST_APP: {
|
|
app * t = to_app(a);
|
|
bool visited = true;
|
|
args.reset();
|
|
unsigned num_args = t->get_num_args();
|
|
for (unsigned i = 0; i < num_args; ++i) {
|
|
expr * arg = 0;
|
|
if (!eval_cache.find(t->get_arg(i), arg)) {
|
|
visited = false;
|
|
todo.push_back(std::make_pair(t->get_arg(i), null));
|
|
}
|
|
else {
|
|
args.push_back(arg);
|
|
}
|
|
}
|
|
if (!visited) {
|
|
continue;
|
|
}
|
|
SASSERT(args.size() == t->get_num_args());
|
|
expr_ref new_t(m_manager);
|
|
func_decl * f = t->get_decl();
|
|
|
|
if (!has_interpretation(f)) {
|
|
// the model does not assign an interpretation to f.
|
|
SASSERT(new_t.get() == 0);
|
|
if (f->get_family_id() == null_family_id) {
|
|
if (model_completion) {
|
|
// create an interpretation for f.
|
|
new_t = mk_some_interp_for(f);
|
|
}
|
|
else {
|
|
is_ok = false;
|
|
}
|
|
}
|
|
if (new_t.get() == 0) {
|
|
// t is interpreted or model completion is disabled.
|
|
m_simplifier.mk_app(f, num_args, args.c_ptr(), new_t);
|
|
trail.push_back(new_t);
|
|
if (!is_app(new_t) || to_app(new_t)->get_decl() != f) {
|
|
// if the result is not of the form (f ...), then assume we must simplify it.
|
|
expr * new_new_t = 0;
|
|
if (!eval_cache.find(new_t.get(), new_new_t)) {
|
|
todo.back().second = new_t;
|
|
todo.push_back(std::make_pair(new_t, null));
|
|
continue;
|
|
}
|
|
else {
|
|
new_t = new_new_t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// the model has an interpretaion for f.
|
|
if (num_args == 0) {
|
|
// t is a constant
|
|
new_t = get_const_interp(f);
|
|
}
|
|
else {
|
|
// t is a function application
|
|
SASSERT(new_t.get() == 0);
|
|
// try to use function graph first
|
|
func_interp * fi = get_func_interp(f);
|
|
SASSERT(fi->get_arity() == num_args);
|
|
expr_ref r1(m_manager);
|
|
// fi may be partial...
|
|
if (!fi->eval(m_simplifier, args.c_ptr(), r1)) {
|
|
SASSERT(fi->is_partial()); // fi->eval only fails when fi is partial.
|
|
if (model_completion) {
|
|
expr * r = get_some_value(f->get_range());
|
|
fi->set_else(r);
|
|
SASSERT(!fi->is_partial());
|
|
new_t = r;
|
|
}
|
|
else {
|
|
// f is an uninterpreted function, there is no need to use m_simplifier.mk_app
|
|
new_t = m_manager.mk_app(f, num_args, args.c_ptr());
|
|
trail.push_back(new_t);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
else {
|
|
SASSERT(r1);
|
|
trail.push_back(r1);
|
|
expr * r2 = 0;
|
|
if (!eval_cache.find(r1.get(), r2)) {
|
|
todo.back().second = r1;
|
|
todo.push_back(std::make_pair(r1, null));
|
|
continue;
|
|
}
|
|
else {
|
|
new_t = r2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
TRACE("model_eval",
|
|
tout << "orig:\n" << mk_pp(t, m_manager) << "\n";
|
|
tout << "new:\n" << mk_pp(new_t, m_manager) << "\n";);
|
|
todo.pop_back();
|
|
SASSERT(new_t.get() != 0);
|
|
eval_cache.insert(t, new_t);
|
|
break;
|
|
}
|
|
case AST_VAR:
|
|
SASSERT(a != 0);
|
|
eval_cache.insert(a, a);
|
|
todo.pop_back();
|
|
break;
|
|
case AST_QUANTIFIER:
|
|
is_ok = false; // evaluator does not handle quantifiers.
|
|
SASSERT(a != 0);
|
|
eval_cache.insert(a, a);
|
|
todo.pop_back();
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!eval_cache.find(e, a)) {
|
|
TRACE("model_eval", tout << "FAILED e: " << mk_bounded_pp(e, m_manager) << "\n";);
|
|
UNREACHABLE();
|
|
}
|
|
|
|
result = a;
|
|
TRACE("model_eval",
|
|
ast_ll_pp(tout << "original: ", m_manager, e);
|
|
ast_ll_pp(tout << "evaluated: ", m_manager, a);
|
|
ast_ll_pp(tout << "reduced: ", m_manager, result.get());
|
|
tout << "sort: " << mk_pp(m_manager.get_sort(e), m_manager) << "\n";
|
|
);
|
|
SASSERT(is_well_sorted(m_manager, result.get()));
|
|
return is_ok;
|
|
}
|
|
|
|
/**
|
|
\brief Replace uninterpreted constants occurring in fi->get_else()
|
|
by their interpretations.
|
|
*/
|
|
void proto_model::cleanup_func_interp(func_interp * fi, func_decl_set & found_aux_fs) {
|
|
if (fi->is_partial())
|
|
return;
|
|
expr * fi_else = fi->get_else();
|
|
TRACE("model_bug", tout << "cleaning up:\n" << mk_pp(fi_else, m_manager) << "\n";);
|
|
|
|
obj_map<expr, expr*> cache;
|
|
expr_ref_vector trail(m_manager);
|
|
ptr_buffer<expr, 128> todo;
|
|
ptr_buffer<expr> args;
|
|
todo.push_back(fi_else);
|
|
|
|
expr * a;
|
|
while (!todo.empty()) {
|
|
a = todo.back();
|
|
if (is_uninterp_const(a)) {
|
|
todo.pop_back();
|
|
func_decl * a_decl = to_app(a)->get_decl();
|
|
expr * ai = get_const_interp(a_decl);
|
|
if (ai == 0) {
|
|
ai = get_some_value(a_decl->get_range());
|
|
register_decl(a_decl, ai);
|
|
}
|
|
cache.insert(a, ai);
|
|
}
|
|
else {
|
|
switch(a->get_kind()) {
|
|
case AST_APP: {
|
|
app * t = to_app(a);
|
|
bool visited = true;
|
|
args.reset();
|
|
unsigned num_args = t->get_num_args();
|
|
for (unsigned i = 0; i < num_args; ++i) {
|
|
expr * arg = 0;
|
|
if (!cache.find(t->get_arg(i), arg)) {
|
|
visited = false;
|
|
todo.push_back(t->get_arg(i));
|
|
}
|
|
else {
|
|
args.push_back(arg);
|
|
}
|
|
}
|
|
if (!visited) {
|
|
continue;
|
|
}
|
|
func_decl * f = t->get_decl();
|
|
if (m_aux_decls.contains(f))
|
|
found_aux_fs.insert(f);
|
|
expr_ref new_t(m_manager);
|
|
m_simplifier.mk_app(f, num_args, args.c_ptr(), new_t);
|
|
if (t != new_t.get())
|
|
trail.push_back(new_t);
|
|
todo.pop_back();
|
|
cache.insert(t, new_t);
|
|
break;
|
|
}
|
|
default:
|
|
SASSERT(a != 0);
|
|
cache.insert(a, a);
|
|
todo.pop_back();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cache.find(fi_else, a)) {
|
|
UNREACHABLE();
|
|
}
|
|
|
|
fi->set_else(a);
|
|
}
|
|
|
|
void proto_model::remove_aux_decls_not_in_set(ptr_vector<func_decl> & decls, func_decl_set const & s) {
|
|
unsigned sz = decls.size();
|
|
unsigned i = 0;
|
|
unsigned j = 0;
|
|
for (; i < sz; i++) {
|
|
func_decl * f = decls[i];
|
|
if (!m_aux_decls.contains(f) || s.contains(f)) {
|
|
decls[j] = f;
|
|
j++;
|
|
}
|
|
}
|
|
decls.shrink(j);
|
|
}
|
|
|
|
|
|
/**
|
|
\brief Replace uninterpreted constants occurring in the func_interp's get_else()
|
|
by their interpretations.
|
|
*/
|
|
void proto_model::cleanup() {
|
|
func_decl_set found_aux_fs;
|
|
decl2finterp::iterator it = m_finterp.begin();
|
|
decl2finterp::iterator end = m_finterp.end();
|
|
for (; it != end; ++it) {
|
|
func_interp * fi = (*it).m_value;
|
|
cleanup_func_interp(fi, found_aux_fs);
|
|
}
|
|
|
|
// remove auxiliary declarations that are not used.
|
|
if (found_aux_fs.size() != m_aux_decls.size()) {
|
|
remove_aux_decls_not_in_set(m_decls, found_aux_fs);
|
|
remove_aux_decls_not_in_set(m_func_decls, found_aux_fs);
|
|
|
|
func_decl_set::iterator it2 = m_aux_decls.begin();
|
|
func_decl_set::iterator end2 = m_aux_decls.end();
|
|
for (; it2 != end2; ++it2) {
|
|
func_decl * faux = *it2;
|
|
if (!found_aux_fs.contains(faux)) {
|
|
TRACE("cleanup_bug", tout << "eliminating " << faux->get_name() << "\n";);
|
|
func_interp * fi = 0;
|
|
m_finterp.find(faux, fi);
|
|
SASSERT(fi != 0);
|
|
m_finterp.erase(faux);
|
|
dealloc(fi);
|
|
}
|
|
}
|
|
m_aux_decls.swap(found_aux_fs);
|
|
}
|
|
}
|
|
|
|
value_factory * proto_model::get_factory(family_id fid) {
|
|
return m_factories.get_plugin(fid);
|
|
}
|
|
|
|
void proto_model::freeze_universe(sort * s) {
|
|
SASSERT(m_manager.is_uninterp(s));
|
|
m_user_sort_factory->freeze_universe(s);
|
|
}
|
|
|
|
/**
|
|
\brief Return the known universe of an uninterpreted sort.
|
|
*/
|
|
obj_hashtable<expr> const & proto_model::get_known_universe(sort * s) const {
|
|
SASSERT(m_manager.is_uninterp(s));
|
|
return m_user_sort_factory->get_known_universe(s);
|
|
}
|
|
|
|
ptr_vector<expr> const & proto_model::get_universe(sort * s) const {
|
|
ptr_vector<expr> & tmp = const_cast<proto_model*>(this)->m_tmp;
|
|
tmp.reset();
|
|
obj_hashtable<expr> const & u = get_known_universe(s);
|
|
obj_hashtable<expr>::iterator it = u.begin();
|
|
obj_hashtable<expr>::iterator end = u.end();
|
|
for (; it != end; ++it)
|
|
tmp.push_back(*it);
|
|
return tmp;
|
|
}
|
|
|
|
unsigned proto_model::get_num_uninterpreted_sorts() const {
|
|
return m_user_sort_factory->get_num_sorts();
|
|
}
|
|
|
|
sort * proto_model::get_uninterpreted_sort(unsigned idx) const {
|
|
SASSERT(idx < get_num_uninterpreted_sorts());
|
|
return m_user_sort_factory->get_sort(idx);
|
|
}
|
|
|
|
/**
|
|
\brief Return true if the given sort is uninterpreted and has a finite interpretation
|
|
in the model.
|
|
*/
|
|
bool proto_model::is_finite(sort * s) const {
|
|
return m_manager.is_uninterp(s) && m_user_sort_factory->is_finite(s);
|
|
}
|
|
|
|
expr * proto_model::get_some_value(sort * s) {
|
|
family_id fid = s->get_family_id();
|
|
if (fid == null_family_id) {
|
|
return m_user_sort_factory->get_some_value(s);
|
|
}
|
|
value_factory * f = get_factory(fid);
|
|
if (f)
|
|
return f->get_some_value(s);
|
|
// there is no factory for the family id, then assume s is uninterpreted.
|
|
return m_user_sort_factory->get_some_value(s);
|
|
}
|
|
|
|
bool proto_model::get_some_values(sort * s, expr_ref & v1, expr_ref & v2) {
|
|
family_id fid = s->get_family_id();
|
|
if (fid == null_family_id) {
|
|
return m_user_sort_factory->get_some_values(s, v1, v2);
|
|
}
|
|
value_factory * f = get_factory(fid);
|
|
if (f)
|
|
return f->get_some_values(s, v1, v2);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
expr * proto_model::get_fresh_value(sort * s) {
|
|
family_id fid = s->get_family_id();
|
|
if (fid == null_family_id)
|
|
return m_user_sort_factory->get_fresh_value(s);
|
|
value_factory * f = get_factory(fid);
|
|
if (f)
|
|
return f->get_fresh_value(s);
|
|
else
|
|
// Use user_sort_factory if the theory has no support for model construnction.
|
|
// This is needed when dummy theories are used for arithmetic or arrays.
|
|
return m_user_sort_factory->get_fresh_value(s);
|
|
}
|
|
|
|
void proto_model::register_value(expr * n) {
|
|
sort * s = m_manager.get_sort(n);
|
|
family_id fid = s->get_family_id();
|
|
if (fid == null_family_id) {
|
|
m_user_sort_factory->register_value(n);
|
|
}
|
|
else {
|
|
value_factory * f = get_factory(fid);
|
|
if (f)
|
|
f->register_value(n);
|
|
}
|
|
}
|
|
|
|
bool proto_model::is_array_value(expr * v) const {
|
|
return is_app_of(v, m_afid, OP_AS_ARRAY);
|
|
}
|
|
|
|
void proto_model::compress() {
|
|
ptr_vector<func_decl>::iterator it = m_func_decls.begin();
|
|
ptr_vector<func_decl>::iterator end = m_func_decls.end();
|
|
for (; it != end; ++it) {
|
|
func_decl * f = *it;
|
|
func_interp * fi = get_func_interp(f);
|
|
SASSERT(fi != 0);
|
|
fi->compress();
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Complete the interpretation fi of f if it is partial.
|
|
If f does not have an interpretation in the given model, then this is a noop.
|
|
*/
|
|
void proto_model::complete_partial_func(func_decl * f) {
|
|
func_interp * fi = get_func_interp(f);
|
|
if (fi && fi->is_partial()) {
|
|
expr * else_value = 0;
|
|
#if 0
|
|
// For UFBV benchmarks, setting the "else" to false is not a good idea.
|
|
// TODO: find a permanent solution. A possibility is to add another option.
|
|
if (m_manager.is_bool(f->get_range())) {
|
|
else_value = m_manager.mk_false();
|
|
}
|
|
else {
|
|
else_value = fi->get_max_occ_result();
|
|
if (else_value == 0)
|
|
else_value = get_some_value(f->get_range());
|
|
}
|
|
#else
|
|
else_value = fi->get_max_occ_result();
|
|
if (else_value == 0)
|
|
else_value = get_some_value(f->get_range());
|
|
#endif
|
|
fi->set_else(else_value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Set the (else) field of function interpretations...
|
|
*/
|
|
void proto_model::complete_partial_funcs() {
|
|
if (m_params.m_model_partial)
|
|
return;
|
|
|
|
ptr_vector<func_decl>::iterator it = m_func_decls.begin();
|
|
ptr_vector<func_decl>::iterator end = m_func_decls.end();
|
|
for (; it != end; ++it)
|
|
complete_partial_func(*it);
|
|
}
|
|
|
|
model * proto_model::mk_model() {
|
|
TRACE("proto_model", tout << "mk_model\n"; model_v2_pp(tout, *this););
|
|
model * m = alloc(model, m_manager);
|
|
|
|
decl2expr::iterator it1 = m_interp.begin();
|
|
decl2expr::iterator end1 = m_interp.end();
|
|
for (; it1 != end1; ++it1) {
|
|
m->register_decl(it1->m_key, it1->m_value);
|
|
}
|
|
|
|
decl2finterp::iterator it2 = m_finterp.begin();
|
|
decl2finterp::iterator end2 = m_finterp.end();
|
|
for (; it2 != end2; ++it2) {
|
|
m->register_decl(it2->m_key, it2->m_value);
|
|
}
|
|
m_finterp.reset(); // m took the ownership of the func_interp's
|
|
|
|
unsigned sz = get_num_uninterpreted_sorts();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
sort * s = get_uninterpreted_sort(i);
|
|
TRACE("proto_model", tout << "copying uninterpreted sorts...\n" << mk_pp(s, m_manager) << "\n";);
|
|
ptr_buffer<expr> buf;
|
|
obj_hashtable<expr> const & u = get_known_universe(s);
|
|
obj_hashtable<expr>::iterator it = u.begin();
|
|
obj_hashtable<expr>::iterator end = u.end();
|
|
for (; it != end; ++it) {
|
|
buf.push_back(*it);
|
|
}
|
|
m->register_usort(s, buf.size(), buf.c_ptr());
|
|
}
|
|
|
|
return m;
|
|
}
|