3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
z3/lib/dl_mk_subsumption_checker.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

368 lines
12 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
dl_mk_subsumption_checker.cpp
Abstract:
Rule transformer which checks for subsumption
(currently just for subsumption with total relations)
Author:
Krystof Hoder (t-khoder) 2011-10-01.
Revision History:
--*/
#include <sstream>
#include"ast_pp.h"
#include "rewriter.h"
#include "rewriter_def.h"
#include"dl_mk_subsumption_checker.h"
#include"dl_table_relation.h"
namespace datalog {
// -----------------------------------
//
// mk_subsumption_checker
//
// -----------------------------------
bool mk_subsumption_checker::is_total_rule(const rule * r) {
if(r->get_tail_size()!=0) { return false; }
unsigned pt_len = r->get_positive_tail_size();
if(pt_len!=r->get_uninterpreted_tail_size()) {
//we dont' expect rules with negative tails to be total
return false;
}
for(unsigned i=0; i<pt_len; i++) {
func_decl * tail_pred = r->get_tail(i)->get_decl();
if(!m_total_relations.contains(tail_pred)) {
//this rule has a non-total predicate in the tail
return false;
}
}
unsigned t_len = r->get_positive_tail_size();
for(unsigned i=pt_len; i<t_len; i++) {
SASSERT(!r->is_neg_tail(i)); //we assume interpreted tail not to be negated
if(!m.is_true(r->get_tail(i))) {
//this rule has an interpreted tail which is not constant true
return false;
}
}
var_idx_set head_vars;
app * head = r->get_head();
unsigned arity = head->get_num_args();
for(unsigned i=0; i<arity; i++) {
expr * arg = head->get_arg(i);
if(!is_var(arg)) { return false; }
unsigned idx = to_var(arg)->get_idx();
if(head_vars.contains(idx)) { return false; }
head_vars.insert(idx);
}
SASSERT(head_vars.num_elems()==arity);
return true;
}
void mk_subsumption_checker::on_discovered_total_relation(func_decl * pred, rule * r) {
//this should be rule marking a new relation as total
SASSERT(!m_total_relations.contains(pred));
SASSERT(!r || pred==r->get_head()->get_decl());
SASSERT(!r || is_total_rule(r));
m_total_relations.insert(pred);
m_total_relation_defining_rules.insert(pred, r);
m_have_new_total_rule = true;
if(r) {
m_ref_holder.push_back(r);
}
}
void mk_subsumption_checker::scan_for_total_rules(const rule_set & rules) {
bool new_discovered;
//we cycle through the rules until we keep discovering new total relations
//(discovering a total relation migh reveal other total relations)
do {
new_discovered = false;
rule_set::iterator rend = rules.end();
for(rule_set::iterator rit = rules.begin(); rit!=rend; ++rit) {
rule * r = *rit;
func_decl * head_pred = r->get_head()->get_decl();
if(is_total_rule(r) && !m_total_relations.contains(head_pred)) {
on_discovered_total_relation(head_pred, r);
new_discovered = true;
}
}
} while(new_discovered);
}
bool mk_subsumption_checker::transform_rule(rule * r,
rule_subsumption_index& subs_index, rule_ref & res)
{
unsigned u_len = r->get_uninterpreted_tail_size();
unsigned len = r->get_tail_size();
if(u_len==0) {
res = r;
return true;
}
app_ref head(r->get_head(), m);
app_ref_vector tail(m);
svector<bool> tail_neg;
for(unsigned i=0; i<u_len; i++) {
app * tail_atom = r->get_tail(i);
bool neg = r->is_neg_tail(i);
if(m_total_relations.contains(tail_atom->get_decl())
|| subs_index.is_subsumed(tail_atom)) {
if(neg) {
//rule contains negated total relation, this means that it is unsatisfiable
//and can be removed
return false;
}
else {
//we remove total relations from the tail
continue;
}
}
if(!neg && head.get()==tail_atom) {
//rule contains its head positively in the tail, therefore
//it will never add any new facts to the relation, so it
//can be removed
return false;
}
tail.push_back(tail_atom);
tail_neg.push_back(neg);
}
if(tail.size()==u_len) {
res = r;
return true;
}
//we just copy the interpreted part of the tail
for(unsigned i=u_len; i<len; i++) {
tail.push_back(r->get_tail(i));
tail_neg.push_back(r->is_neg_tail(i));
}
SASSERT(tail.size()==tail_neg.size());
res = m_context.get_rule_manager().mk(head, tail.size(), tail.c_ptr(), tail_neg.c_ptr());
res->set_accounting_parent_object(m_context, r);
m_context.get_rule_manager().fix_unbound_vars(res, true);
return true;
}
bool rule_size_comparator(rule * r1, rule * r2) {
return r1->get_tail_size() < r2->get_tail_size();
}
bool mk_subsumption_checker::transform_rules(const rule_set & orig, rule_set & tgt) {
bool modified = false;
func_decl_set total_relations_with_included_rules;
rule_subsumption_index subs_index(m_context);
rule_ref_vector orig_rules(m_context.get_rule_manager());
orig_rules.append(orig.get_num_rules(), orig.begin());
rule * * rbegin = orig_rules.c_ptr();
rule * * rend = rbegin + orig_rules.size();
//before traversing we sort rules so that the shortest are in the beginning.
//this will help make subsumption checks more efficient
std::sort(rbegin, rend, rule_size_comparator);
for(rule_set::iterator rit = rbegin; rit!=rend; ++rit) {
rule * r = *rit;
func_decl * head_pred = r->get_head()->get_decl();
if(m_total_relations.contains(head_pred)) {
if(!m_context.is_output_predicate(head_pred) ||
total_relations_with_included_rules.contains(head_pred)) {
//We just skip definitions of total non-output relations as
//we'll eliminate them from the problem.
//We also skip rules of total output relations for which we have
//already output the rule which implies their totality.
modified = true;
continue;
}
rule * defining_rule;
TRUSTME(m_total_relation_defining_rules.find(head_pred, defining_rule));
if(defining_rule) {
rule_ref totality_rule(m_context.get_rule_manager());
TRUSTME(transform_rule(defining_rule, subs_index, totality_rule));
if(defining_rule!=totality_rule) {
modified = true;
}
tgt.add_rule(totality_rule);
SASSERT(totality_rule->get_head()->get_decl()==head_pred);
}
else {
modified = true;
}
total_relations_with_included_rules.insert(head_pred);
continue;
}
rule_ref new_rule(m_context.get_rule_manager());
if(!transform_rule(r, subs_index, new_rule)) {
modified = true;
continue;
}
if(m_new_total_relation_discovery_during_transformation && is_total_rule(new_rule)) {
on_discovered_total_relation(head_pred, new_rule.get());
}
if(subs_index.is_subsumed(new_rule)) {
modified = true;
continue;
}
if(new_rule.get()!=r) {
modified = true;
}
tgt.add_rule(new_rule);
subs_index.add(new_rule);
}
TRACE("dl",
tout << "original set size: "<<orig.get_num_rules()<<"\n"
<< "reduced set size: "<<tgt.get_num_rules()<<"\n"; );
return modified;
}
void mk_subsumption_checker::scan_for_relations_total_due_to_facts() {
relation_manager& rm = m_context.get_rmanager();
decl_set candidate_preds;
m_context.collect_predicates(candidate_preds);
decl_set::iterator end = candidate_preds.end();
for(decl_set::iterator it = candidate_preds.begin(); it!=end; ++it) {
func_decl * pred = *it;
if(m_total_relations.contains(pred)) { continue; } //already total
relation_base * rel = rm.try_get_relation(pred);
if(!rel || !rel->knows_exact_size()) { continue; }
unsigned arity = pred->get_arity();
if(arity>30) { continue; }
//for now we only check booleans domains
for(unsigned i=0; i<arity; i++) {
if(!m.is_bool(pred->get_domain(i))) {
goto next_pred;
}
}
{
unsigned total_size = 1<<arity;
//by calling rel.knows_exact_size() we got assured that the estimate is exact
unsigned rel_sz = rel->get_size_estimate_rows();
obj_hashtable<app> * head_store;
if(m_ground_unconditional_rule_heads.find(pred, head_store)) {
//Some relations may receive facts by ground unconditioned rules.
//We scanned for those earlier, so now we check whether we cannot get a
//better estimate of relation size from these.
unsigned gnd_rule_cnt = head_store->size();
if(gnd_rule_cnt>rel_sz) {
rel_sz = gnd_rule_cnt;
}
}
SASSERT(total_size>=rel_sz);
if(total_size==rel_sz) {
on_discovered_total_relation(pred, 0);
}
}
next_pred:;
}
}
void mk_subsumption_checker::collect_ground_unconditional_rule_heads(const rule_set & rules)
{
rule_set::iterator rend = rules.end();
for(rule_set::iterator rit = rules.begin(); rit!=rend; ++rit) {
rule * r = *rit;
func_decl * pred = r->get_head()->get_decl();
if(r->get_tail_size()!=0) { continue; }
app * head = r->get_head();
unsigned arity = pred->get_arity();
for(unsigned i=0; i<arity; i++) {
expr * arg = head->get_arg(i);
if(!is_app(arg)) {
goto next_rule;
}
}
if(!m_ground_unconditional_rule_heads.contains(pred)) {
m_ground_unconditional_rule_heads.insert(pred, alloc(obj_hashtable<app>));
}
obj_hashtable<app> * head_store;
m_ground_unconditional_rule_heads.find(pred, head_store);
head_store->insert(head);
next_rule:;
}
}
rule_set * mk_subsumption_checker::operator()(rule_set const & source, model_converter_ref& mc, proof_converter_ref& pc) {
// TODO mc, pc
m_have_new_total_rule = false;
collect_ground_unconditional_rule_heads(source);
scan_for_relations_total_due_to_facts();
scan_for_total_rules(source);
m_have_new_total_rule = false;
rule_set * res = alloc(rule_set, m_context);
bool modified = transform_rules(source, *res);
if(!m_have_new_total_rule && !modified) {
dealloc(res);
return 0;
}
//During the construction of the new set we may discover new total relations
//(by quantifier elimination on the uninterpreted tails).
SASSERT(m_new_total_relation_discovery_during_transformation || !m_have_new_total_rule);
while(m_have_new_total_rule) {
m_have_new_total_rule = false;
rule_set * old = res;
res = alloc(rule_set, m_context);
transform_rules(*old, *res);
dealloc(old);
}
return res;
}
};