mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 18:05:21 +00:00
527 lines
18 KiB
C++
527 lines
18 KiB
C++
/*++
|
|
Copyright (c) 2006 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
cnf.cpp
|
|
|
|
Abstract:
|
|
|
|
<abstract>
|
|
|
|
Author:
|
|
|
|
Leonardo de Moura (leonardo) 2008-01-23.
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
|
|
#include"cnf.h"
|
|
#include"ast_pp.h"
|
|
#include"ast_ll_pp.h"
|
|
|
|
unsigned cnf_entry::hash() const {
|
|
unsigned a = m_node->get_id();
|
|
unsigned b = m_polarity;
|
|
unsigned c = m_in_q;
|
|
mix(a,b,c);
|
|
return c;
|
|
}
|
|
|
|
bool cnf_entry::operator==(cnf_entry const & k) const {
|
|
return m_node == k.m_node && m_polarity == k.m_polarity && m_in_q == k.m_in_q;
|
|
}
|
|
|
|
cnf_cache::cnf_cache(ast_manager & m):
|
|
m_manager(m) {
|
|
}
|
|
|
|
void cnf_cache::insert(cnf_entry const & k, expr * r, proof * pr) {
|
|
SASSERT(!m_cache.contains(k));
|
|
m_manager.inc_ref(r);
|
|
m_manager.inc_ref(pr);
|
|
m_cache.insert(k, expr_proof_pair(r, pr));
|
|
}
|
|
|
|
void cnf_cache::reset() {
|
|
cache::iterator it = m_cache.begin();
|
|
cache::iterator end = m_cache.end();
|
|
for (; it != end; ++it) {
|
|
expr_proof_pair & pair = (*it).m_value;
|
|
m_manager.dec_ref(pair.first);
|
|
m_manager.dec_ref(pair.second);
|
|
}
|
|
m_cache.reset();
|
|
}
|
|
|
|
void cnf::cache_result(expr * e, bool in_q, expr * r, proof * pr) {
|
|
SASSERT(r);
|
|
TRACE("cnf", tout << "caching result for: " << e->get_id() << " " << r->get_id() << "\n";);
|
|
m_cache.insert(cnf_entry(e, true, in_q), r, pr);
|
|
}
|
|
|
|
void cnf::visit(expr * n, bool in_q, bool & visited) {
|
|
if (!is_cached(n, in_q)) {
|
|
m_todo.push_back(std::make_pair(n, in_q));
|
|
visited = false;
|
|
}
|
|
}
|
|
|
|
bool cnf::visit_children(expr * n, bool in_q) {
|
|
bool visited = true;
|
|
switch(n->get_kind()) {
|
|
case AST_APP:
|
|
if (m_manager.is_or(n) || m_manager.is_and(n) || m_manager.is_label(n)) {
|
|
unsigned j = to_app(n)->get_num_args();
|
|
while (j > 0) {
|
|
--j;
|
|
visit(to_app(n)->get_arg(j), in_q, visited);
|
|
}
|
|
}
|
|
break;
|
|
case AST_QUANTIFIER:
|
|
visit(to_quantifier(n)->get_expr(), true, visited);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return visited;
|
|
}
|
|
|
|
void cnf::reduce1(expr * n, bool in_q) {
|
|
switch(n->get_kind()) {
|
|
case AST_APP:
|
|
if (m_manager.is_or(n))
|
|
reduce1_or(to_app(n), in_q);
|
|
else if (m_manager.is_and(n))
|
|
reduce1_and(to_app(n), in_q);
|
|
else if (m_manager.is_label(n))
|
|
reduce1_label(to_app(n), in_q);
|
|
else
|
|
cache_result(n, in_q, n, 0);
|
|
break;
|
|
case AST_QUANTIFIER:
|
|
reduce1_quantifier(to_quantifier(n), in_q);
|
|
break;
|
|
default:
|
|
cache_result(n, in_q, n, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void cnf::get_args(app * n, bool in_q, ptr_buffer<expr> & new_args, ptr_buffer<proof> & new_arg_prs) {
|
|
unsigned num = n->get_num_args();
|
|
for (unsigned i = 0; i < num; i++) {
|
|
expr * new_arg = 0;
|
|
proof * new_arg_pr = 0;
|
|
get_cached(n->get_arg(i), in_q, new_arg, new_arg_pr);
|
|
SASSERT(new_arg);
|
|
new_args.push_back(new_arg);
|
|
if (new_arg_pr)
|
|
new_arg_prs.push_back(new_arg_pr);
|
|
}
|
|
}
|
|
|
|
void cnf::flat_args(func_decl * d, ptr_buffer<expr> const & args, ptr_buffer<expr> & flat_args) {
|
|
ptr_buffer<expr>::const_iterator it = args.begin();
|
|
ptr_buffer<expr>::const_iterator end = args.end();
|
|
for (; it != end; ++it) {
|
|
expr * arg = *it;
|
|
if (is_app_of(arg, d))
|
|
flat_args.append(to_app(arg)->get_num_args(), to_app(arg)->get_args());
|
|
else
|
|
flat_args.push_back(arg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Return the approximated size of distributing OR over AND on
|
|
(OR args[0] .... args[sz-1])
|
|
*/
|
|
approx_nat cnf::approx_result_size_for_disj(ptr_buffer<expr> const & args) {
|
|
approx_nat r(1);
|
|
ptr_buffer<expr>::const_iterator it = args.begin();
|
|
ptr_buffer<expr>::const_iterator end = args.end();
|
|
for (; it != end; ++it) {
|
|
expr * arg = *it;
|
|
if (m_manager.is_and(arg))
|
|
r *= to_app(arg)->get_num_args();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
\brief Return true if it is too expensive to process the disjunction of args
|
|
*/
|
|
inline bool cnf::is_too_expensive(approx_nat approx_result_size, ptr_buffer<expr> const & args) {
|
|
// (OR A (AND B C)) is always considered cheap.
|
|
if (args.size() == 2 && (!m_manager.is_and(args[0]) || !m_manager.is_and(args[1])))
|
|
return false;
|
|
return !(approx_result_size < m_params.m_cnf_factor);
|
|
}
|
|
|
|
/**
|
|
\brief Create a (positive) name for the expressions of the form (AND ...) in args.
|
|
Store the result in new_args.
|
|
*/
|
|
void cnf::name_args(ptr_buffer<expr> const & args, expr_ref_buffer & new_args, proof_ref_buffer & new_arg_prs) {
|
|
ptr_buffer<expr>::const_iterator it = args.begin();
|
|
ptr_buffer<expr>::const_iterator end = args.end();
|
|
for (; it != end; ++it) {
|
|
expr * arg = *it;
|
|
if (m_manager.is_and(arg)) {
|
|
expr_ref new_def(m_manager);
|
|
proof_ref new_def_pr(m_manager);
|
|
app_ref new_arg(m_manager);
|
|
proof_ref new_arg_pr(m_manager);
|
|
|
|
if (m_defined_names.mk_pos_name(to_app(arg), new_def, new_def_pr, new_arg, new_arg_pr)) {
|
|
m_todo_defs.push_back(new_def);
|
|
if (m_manager.proofs_enabled())
|
|
m_todo_proofs.push_back(new_def_pr);
|
|
}
|
|
new_args.push_back(new_arg);
|
|
|
|
if (m_manager.fine_grain_proofs())
|
|
new_arg_prs.push_back(new_arg_pr);
|
|
else
|
|
m_coarse_proofs.push_back(new_arg_pr);
|
|
}
|
|
else
|
|
new_args.push_back(arg);
|
|
}
|
|
}
|
|
|
|
void cnf::distribute(app * n, app * & r, proof * & pr) {
|
|
SASSERT(m_manager.is_or(n));
|
|
buffer<unsigned> sz;
|
|
buffer<unsigned> it;
|
|
ptr_buffer<expr> new_args;
|
|
unsigned num = n->get_num_args();
|
|
for (unsigned i = 0; i < num; i++) {
|
|
expr * arg = n->get_arg(i);
|
|
it.push_back(0);
|
|
if (m_manager.is_and(arg))
|
|
sz.push_back(to_app(arg)->get_num_args());
|
|
else
|
|
sz.push_back(1);
|
|
}
|
|
|
|
do {
|
|
ptr_buffer<expr> lits;
|
|
for (unsigned i = 0; i < num; i++) {
|
|
expr * arg = n->get_arg(i);
|
|
if (m_manager.is_and(arg)) {
|
|
SASSERT(it[i] < to_app(arg)->get_num_args());
|
|
lits.push_back(to_app(arg)->get_arg(it[i]));
|
|
}
|
|
else {
|
|
SASSERT(it[i] == 0);
|
|
lits.push_back(arg);
|
|
}
|
|
}
|
|
app * n = m_manager.mk_or(lits.size(), lits.c_ptr());
|
|
new_args.push_back(n);
|
|
}
|
|
while (product_iterator_next(sz.size(), sz.c_ptr(), it.c_ptr()));
|
|
SASSERT(!new_args.empty());
|
|
if (new_args.size() == 1)
|
|
r = to_app(new_args[0]);
|
|
else
|
|
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
|
|
pr = 0;
|
|
if (m_manager.fine_grain_proofs() && r != n)
|
|
pr = m_manager.mk_iff_oeq(m_manager.mk_distributivity(n, r));
|
|
}
|
|
|
|
void cnf::push_quant(quantifier * q, expr * & r, proof * & pr) {
|
|
SASSERT(is_forall(q));
|
|
expr * e = q->get_expr();
|
|
pr = 0;
|
|
if (m_manager.is_and(e)) {
|
|
expr_ref_buffer new_args(m_manager);
|
|
unsigned num = to_app(e)->get_num_args();
|
|
for (unsigned i = 0; i < num; i++) {
|
|
quantifier_ref aux(m_manager);
|
|
aux = m_manager.update_quantifier(q, 0, 0, 0, 0, to_app(e)->get_arg(i));
|
|
expr_ref new_arg(m_manager);
|
|
elim_unused_vars(m_manager, aux, new_arg);
|
|
new_args.push_back(new_arg);
|
|
}
|
|
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
|
|
if (m_manager.fine_grain_proofs())
|
|
pr = m_manager.mk_iff_oeq(m_manager.mk_push_quant(q, r));
|
|
}
|
|
else {
|
|
r = q;
|
|
}
|
|
}
|
|
|
|
void cnf::reduce1_or(app * n, bool in_q) {
|
|
ptr_buffer<expr> new_args;
|
|
ptr_buffer<proof> new_arg_prs;
|
|
get_args(n, in_q, new_args, new_arg_prs);
|
|
expr * r;
|
|
proof * pr = 0;
|
|
if (in_q || m_params.m_cnf_mode == CNF_OPPORTUNISTIC || m_params.m_cnf_mode == CNF_FULL) {
|
|
ptr_buffer<expr> f_args;
|
|
flat_args(n->get_decl(), new_args, f_args);
|
|
TRACE("cnf_or", for (unsigned i = 0; i < f_args.size(); i++) tout << mk_pp(f_args[i], m_manager) << "\n";);
|
|
approx_nat result_size = approx_result_size_for_disj(f_args);
|
|
TRACE("cnf_or", tout << mk_pp(n, m_manager) << "\napprox. result: " << result_size << "\n";);
|
|
if (m_params.m_cnf_mode != CNF_OPPORTUNISTIC || result_size < m_params.m_cnf_factor) {
|
|
expr_ref_buffer cheap_args(m_manager);
|
|
proof_ref_buffer cheap_args_pr(m_manager);
|
|
bool named_args;
|
|
if (is_too_expensive(result_size, f_args)) {
|
|
named_args = true;
|
|
name_args(f_args, cheap_args, cheap_args_pr);
|
|
}
|
|
else {
|
|
named_args = false;
|
|
cheap_args.append(f_args.size(), f_args.c_ptr());
|
|
}
|
|
|
|
app_ref r1(m_manager);
|
|
r1 = m_manager.mk_or(cheap_args.size(), cheap_args.c_ptr());
|
|
|
|
// Proof gen support ---------------------------
|
|
// r1 is (OR cheap_args) it is only built if proofs are enabled.
|
|
// p1 is a proof for (= n r1)
|
|
proof * p1 = 0;
|
|
if (m_manager.fine_grain_proofs()) {
|
|
proof * prs[3];
|
|
app * r[2];
|
|
r[0] = m_manager.mk_or(new_args.size(), new_args.c_ptr());
|
|
prs[0] = n == r[0] ? 0 : m_manager.mk_oeq_congruence(n, r[0], new_arg_prs.size(), new_arg_prs.c_ptr());
|
|
r[1] = m_manager.mk_or(f_args.size(), f_args.c_ptr());
|
|
prs[1] = r[0] == r[1] ? 0 : m_manager.mk_iff_oeq(m_manager.mk_rewrite(r[0], r[1]));
|
|
prs[2] = r[1] == r1 ? 0 : m_manager.mk_oeq_congruence(r[1], r1, cheap_args_pr.size(), cheap_args_pr.c_ptr());
|
|
p1 = m_manager.mk_transitivity(3, prs);
|
|
}
|
|
// --------------------------------------------
|
|
|
|
expr_ref r2(m_manager);
|
|
proof_ref p2(m_manager);
|
|
m_pull.pull_quant2(r1, r2, p2);
|
|
|
|
if (is_quantifier(r2)) {
|
|
expr * e = to_quantifier(r2)->get_expr();
|
|
SASSERT(m_manager.is_or(e));
|
|
app * d_r;
|
|
proof * d_pr;
|
|
distribute(to_app(e), d_r, d_pr);
|
|
quantifier_ref r3(m_manager);
|
|
r3 = m_manager.update_quantifier(to_quantifier(r2), d_r);
|
|
proof * push_pr;
|
|
push_quant(r3, r, push_pr);
|
|
if (m_manager.fine_grain_proofs()) {
|
|
// p1 is a proof of n == r1
|
|
// p2 is a proof of r1 == r2
|
|
p2 = p2 == 0 ? 0 : m_manager.mk_iff_oeq(p2);
|
|
proof * p3 = r2 == r3 ? 0 : m_manager.mk_oeq_quant_intro(to_quantifier(r2), r3, d_pr);
|
|
CTRACE("cnf_or", p1, tout << "p1:\n" << mk_pp(m_manager.get_fact(p1), m_manager) << "\n";);
|
|
CTRACE("cnf_or", p2, tout << "p2:\n" << mk_pp(m_manager.get_fact(p2), m_manager) << "\n";);
|
|
CTRACE("cnf_or", p3, tout << "p3:\n" << mk_pp(m_manager.get_fact(p3), m_manager) << "\n";);
|
|
TRACE("cnf_or", tout << "r2 == r3: " << (r2 == r3) << "\n"
|
|
<< mk_pp(r2, m_manager) << "\n" << mk_pp(r3, m_manager) << "\n";);
|
|
pr = m_manager.mk_transitivity(p1, p2, p3, push_pr);
|
|
}
|
|
cache_result(n, in_q, r, pr);
|
|
}
|
|
else {
|
|
SASSERT(p2 == 0);
|
|
SASSERT(r1 == r2);
|
|
SASSERT(m_manager.is_or(r2));
|
|
app * r3;
|
|
distribute(to_app(r2), r3, pr);
|
|
r = r3;
|
|
pr = m_manager.mk_transitivity(p1, pr);
|
|
cache_result(n, in_q, r, pr);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
r = m_manager.mk_or(new_args.size(), new_args.c_ptr());
|
|
if (m_manager.fine_grain_proofs() && n != r)
|
|
pr = m_manager.mk_oeq_congruence(n, to_app(r), new_arg_prs.size(), new_arg_prs.c_ptr());
|
|
cache_result(n, in_q, r, pr);
|
|
}
|
|
|
|
void cnf::reduce1_and(app * n, bool in_q) {
|
|
ptr_buffer<expr> new_args;
|
|
ptr_buffer<proof> new_arg_prs;
|
|
get_args(n, in_q, new_args, new_arg_prs);
|
|
app * r;
|
|
proof * pr = 0;
|
|
if (in_q || m_params.m_cnf_mode == CNF_OPPORTUNISTIC || m_params.m_cnf_mode == CNF_FULL) {
|
|
ptr_buffer<expr> f_args;
|
|
flat_args(n->get_decl(), new_args, f_args);
|
|
r = m_manager.mk_and(f_args.size(), f_args.c_ptr());
|
|
if (m_manager.fine_grain_proofs() && n != r) {
|
|
app * r0 = m_manager.mk_and(new_args.size(), new_args.c_ptr());
|
|
proof * p0 = r0 == n ? 0 : m_manager.mk_oeq_congruence(n, r0, new_arg_prs.size(), new_arg_prs.c_ptr());
|
|
proof * p1 = r0 == r ? 0 : m_manager.mk_iff_oeq(m_manager.mk_rewrite(r0, r));
|
|
pr = m_manager.mk_transitivity(p0, p1);
|
|
}
|
|
}
|
|
else {
|
|
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
|
|
if (m_manager.fine_grain_proofs() && n != r)
|
|
pr = m_manager.mk_oeq_congruence(n, r, new_arg_prs.size(), new_arg_prs.c_ptr());
|
|
}
|
|
cache_result(n, in_q, r, pr);
|
|
}
|
|
|
|
void cnf::reduce1_label(app * n, bool in_q) {
|
|
expr * r;
|
|
proof * pr = 0;
|
|
expr * new_arg;
|
|
proof * new_arg_pr;
|
|
get_cached(n->get_arg(0), true, new_arg, new_arg_pr);
|
|
if (in_q || m_params.m_cnf_mode == CNF_FULL) {
|
|
// TODO: in the current implementation, labels are removed during CNF translation.
|
|
// This is satisfactory for Boogie, since it does not use labels inside quantifiers,
|
|
// and we only need CNF_QUANT for Superposition Calculus.
|
|
r = new_arg;
|
|
if (m_manager.fine_grain_proofs()) {
|
|
proof * p0 = m_manager.mk_iff_oeq(m_manager.mk_rewrite(n, n->get_arg(0)));
|
|
pr = m_manager.mk_transitivity(p0, new_arg_pr);
|
|
}
|
|
}
|
|
else {
|
|
r = m_manager.mk_app(n->get_decl(), new_arg);
|
|
if (m_manager.fine_grain_proofs() && n != r)
|
|
pr = m_manager.mk_oeq_congruence(n, to_app(r), 1, &new_arg_pr);
|
|
}
|
|
cache_result(n, in_q, r, pr);
|
|
}
|
|
|
|
void cnf::reduce1_quantifier(quantifier * q, bool in_q) {
|
|
expr * new_expr;
|
|
proof * new_expr_pr;
|
|
get_cached(q->get_expr(), true, new_expr, new_expr_pr);
|
|
expr_ref r(m_manager);
|
|
proof_ref pr(m_manager);
|
|
if (m_manager.is_and(new_expr) && q->is_forall()) {
|
|
quantifier_ref q1(m_manager);
|
|
q1 = m_manager.update_quantifier(q, new_expr);
|
|
expr_ref q2(m_manager);
|
|
proof_ref p2(m_manager);
|
|
m_pull.pull_quant2(q1, q2, p2);
|
|
expr * q3;
|
|
proof * p3;
|
|
push_quant(to_quantifier(q2), q3, p3);
|
|
r = q3;
|
|
if (m_manager.fine_grain_proofs()) {
|
|
proof * p1 = q == q1 ? 0 : m_manager.mk_oeq_quant_intro(q, q1, new_expr_pr);
|
|
p2 = p2 == 0 ? 0 : m_manager.mk_iff_oeq(p2);
|
|
pr = m_manager.mk_transitivity(p1, p2, p3);
|
|
}
|
|
}
|
|
else if ((m_manager.is_or(new_expr) || is_forall(new_expr)) && q->is_forall()) {
|
|
quantifier_ref q1(m_manager);
|
|
q1 = m_manager.update_quantifier(q, new_expr);
|
|
m_pull.pull_quant2(q1, r, pr);
|
|
if (m_manager.fine_grain_proofs()) {
|
|
pr = pr == 0 ? 0 : m_manager.mk_iff_oeq(pr);
|
|
proof * p1 = q == q1 ? 0 : m_manager.mk_oeq_quant_intro(q, q1, new_expr_pr);
|
|
pr = m_manager.mk_transitivity(p1, pr);
|
|
}
|
|
}
|
|
else {
|
|
r = m_manager.update_quantifier(q, new_expr);
|
|
if (m_manager.fine_grain_proofs() && r != q)
|
|
pr = q == r ? 0 : m_manager.mk_oeq_quant_intro(q, to_quantifier(r), new_expr_pr);
|
|
}
|
|
|
|
cache_result(q, in_q, r, pr);
|
|
TRACE("cnf_quant", tout << mk_pp(q, m_manager) << "\n" << mk_pp(r, m_manager) << "\n";);
|
|
}
|
|
|
|
cnf::cnf(ast_manager & m, defined_names & n, cnf_params & params):
|
|
m_params(params),
|
|
m_manager(m),
|
|
m_defined_names(n),
|
|
m_pull(m),
|
|
m_cache(m),
|
|
m_todo_defs(m),
|
|
m_todo_proofs(m),
|
|
m_coarse_proofs(m) {
|
|
}
|
|
|
|
cnf::~cnf() {
|
|
}
|
|
|
|
void cnf::reduce(expr * n, expr_ref & r, proof_ref & pr) {
|
|
m_coarse_proofs.reset();
|
|
m_todo.reset();
|
|
m_todo.push_back(expr_bool_pair(n, false));
|
|
while (!m_todo.empty()) {
|
|
expr_bool_pair pair = m_todo.back();
|
|
expr * n = pair.first;
|
|
bool in_q = pair.second;
|
|
if (is_cached(n, in_q)) {
|
|
m_todo.pop_back();
|
|
}
|
|
else if (visit_children(n, in_q)) {
|
|
m_todo.pop_back();
|
|
reduce1(n, in_q);
|
|
}
|
|
}
|
|
expr * r2;
|
|
proof * pr2;
|
|
get_cached(n, false, r2, pr2);
|
|
r = r2;
|
|
switch (m_manager.proof_mode()) {
|
|
case PGM_DISABLED:
|
|
pr = m_manager.mk_undef_proof();
|
|
break;
|
|
case PGM_COARSE:
|
|
remove_duplicates(m_coarse_proofs);
|
|
pr = n == r2 ? m_manager.mk_reflexivity(n) : m_manager.mk_cnf_star(n, r2, m_coarse_proofs.size(), m_coarse_proofs.c_ptr());
|
|
break;
|
|
case PGM_FINE:
|
|
pr = pr2 == 0 ? m_manager.mk_reflexivity(n) : pr2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void cnf::operator()(expr * n, expr_ref_vector & new_defs, proof_ref_vector & new_def_proofs, expr_ref & r, proof_ref & pr) {
|
|
if (m_params.m_cnf_mode == CNF_DISABLED) {
|
|
r = n;
|
|
pr = m_manager.mk_reflexivity(n);
|
|
return;
|
|
}
|
|
|
|
reset();
|
|
reduce(n, r, pr);
|
|
for (unsigned i = 0; i < m_todo_defs.size(); i++) {
|
|
expr_ref dr(m_manager);
|
|
proof_ref dpr(m_manager);
|
|
reduce(m_todo_defs.get(i), dr, dpr);
|
|
m_result_defs.push_back(dr);
|
|
if (m_manager.proofs_enabled()) {
|
|
proof * new_pr = m_manager.mk_modus_ponens(m_todo_proofs.get(i), dpr);
|
|
m_result_def_proofs.push_back(new_pr);
|
|
}
|
|
else
|
|
m_result_def_proofs.push_back(m_manager.mk_undef_proof());
|
|
}
|
|
std::reverse(m_result_defs.begin(), m_result_defs.end());
|
|
new_defs.append(m_result_defs.size(), m_result_defs.c_ptr());
|
|
std::reverse(m_result_def_proofs.begin(), m_result_def_proofs.end());
|
|
new_def_proofs.append(m_result_def_proofs.size(), m_result_def_proofs.c_ptr());
|
|
}
|
|
|
|
void cnf::reset() {
|
|
m_cache.reset();
|
|
m_todo.reset();
|
|
m_todo_defs.reset();
|
|
m_todo_proofs.reset();
|
|
m_result_defs.reset();
|
|
m_result_def_proofs.reset();
|
|
}
|