3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00
z3/lib/cnf.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

527 lines
18 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
cnf.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-01-23.
Revision History:
--*/
#include"cnf.h"
#include"ast_pp.h"
#include"ast_ll_pp.h"
unsigned cnf_entry::hash() const {
unsigned a = m_node->get_id();
unsigned b = m_polarity;
unsigned c = m_in_q;
mix(a,b,c);
return c;
}
bool cnf_entry::operator==(cnf_entry const & k) const {
return m_node == k.m_node && m_polarity == k.m_polarity && m_in_q == k.m_in_q;
}
cnf_cache::cnf_cache(ast_manager & m):
m_manager(m) {
}
void cnf_cache::insert(cnf_entry const & k, expr * r, proof * pr) {
SASSERT(!m_cache.contains(k));
m_manager.inc_ref(r);
m_manager.inc_ref(pr);
m_cache.insert(k, expr_proof_pair(r, pr));
}
void cnf_cache::reset() {
cache::iterator it = m_cache.begin();
cache::iterator end = m_cache.end();
for (; it != end; ++it) {
expr_proof_pair & pair = (*it).m_value;
m_manager.dec_ref(pair.first);
m_manager.dec_ref(pair.second);
}
m_cache.reset();
}
void cnf::cache_result(expr * e, bool in_q, expr * r, proof * pr) {
SASSERT(r);
TRACE("cnf", tout << "caching result for: " << e->get_id() << " " << r->get_id() << "\n";);
m_cache.insert(cnf_entry(e, true, in_q), r, pr);
}
void cnf::visit(expr * n, bool in_q, bool & visited) {
if (!is_cached(n, in_q)) {
m_todo.push_back(std::make_pair(n, in_q));
visited = false;
}
}
bool cnf::visit_children(expr * n, bool in_q) {
bool visited = true;
switch(n->get_kind()) {
case AST_APP:
if (m_manager.is_or(n) || m_manager.is_and(n) || m_manager.is_label(n)) {
unsigned j = to_app(n)->get_num_args();
while (j > 0) {
--j;
visit(to_app(n)->get_arg(j), in_q, visited);
}
}
break;
case AST_QUANTIFIER:
visit(to_quantifier(n)->get_expr(), true, visited);
break;
default:
break;
}
return visited;
}
void cnf::reduce1(expr * n, bool in_q) {
switch(n->get_kind()) {
case AST_APP:
if (m_manager.is_or(n))
reduce1_or(to_app(n), in_q);
else if (m_manager.is_and(n))
reduce1_and(to_app(n), in_q);
else if (m_manager.is_label(n))
reduce1_label(to_app(n), in_q);
else
cache_result(n, in_q, n, 0);
break;
case AST_QUANTIFIER:
reduce1_quantifier(to_quantifier(n), in_q);
break;
default:
cache_result(n, in_q, n, 0);
break;
}
}
void cnf::get_args(app * n, bool in_q, ptr_buffer<expr> & new_args, ptr_buffer<proof> & new_arg_prs) {
unsigned num = n->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * new_arg = 0;
proof * new_arg_pr = 0;
get_cached(n->get_arg(i), in_q, new_arg, new_arg_pr);
SASSERT(new_arg);
new_args.push_back(new_arg);
if (new_arg_pr)
new_arg_prs.push_back(new_arg_pr);
}
}
void cnf::flat_args(func_decl * d, ptr_buffer<expr> const & args, ptr_buffer<expr> & flat_args) {
ptr_buffer<expr>::const_iterator it = args.begin();
ptr_buffer<expr>::const_iterator end = args.end();
for (; it != end; ++it) {
expr * arg = *it;
if (is_app_of(arg, d))
flat_args.append(to_app(arg)->get_num_args(), to_app(arg)->get_args());
else
flat_args.push_back(arg);
}
}
/**
\brief Return the approximated size of distributing OR over AND on
(OR args[0] .... args[sz-1])
*/
approx_nat cnf::approx_result_size_for_disj(ptr_buffer<expr> const & args) {
approx_nat r(1);
ptr_buffer<expr>::const_iterator it = args.begin();
ptr_buffer<expr>::const_iterator end = args.end();
for (; it != end; ++it) {
expr * arg = *it;
if (m_manager.is_and(arg))
r *= to_app(arg)->get_num_args();
}
return r;
}
/**
\brief Return true if it is too expensive to process the disjunction of args
*/
inline bool cnf::is_too_expensive(approx_nat approx_result_size, ptr_buffer<expr> const & args) {
// (OR A (AND B C)) is always considered cheap.
if (args.size() == 2 && (!m_manager.is_and(args[0]) || !m_manager.is_and(args[1])))
return false;
return !(approx_result_size < m_params.m_cnf_factor);
}
/**
\brief Create a (positive) name for the expressions of the form (AND ...) in args.
Store the result in new_args.
*/
void cnf::name_args(ptr_buffer<expr> const & args, expr_ref_buffer & new_args, proof_ref_buffer & new_arg_prs) {
ptr_buffer<expr>::const_iterator it = args.begin();
ptr_buffer<expr>::const_iterator end = args.end();
for (; it != end; ++it) {
expr * arg = *it;
if (m_manager.is_and(arg)) {
expr_ref new_def(m_manager);
proof_ref new_def_pr(m_manager);
app_ref new_arg(m_manager);
proof_ref new_arg_pr(m_manager);
if (m_defined_names.mk_pos_name(to_app(arg), new_def, new_def_pr, new_arg, new_arg_pr)) {
m_todo_defs.push_back(new_def);
if (m_manager.proofs_enabled())
m_todo_proofs.push_back(new_def_pr);
}
new_args.push_back(new_arg);
if (m_manager.fine_grain_proofs())
new_arg_prs.push_back(new_arg_pr);
else
m_coarse_proofs.push_back(new_arg_pr);
}
else
new_args.push_back(arg);
}
}
void cnf::distribute(app * n, app * & r, proof * & pr) {
SASSERT(m_manager.is_or(n));
buffer<unsigned> sz;
buffer<unsigned> it;
ptr_buffer<expr> new_args;
unsigned num = n->get_num_args();
for (unsigned i = 0; i < num; i++) {
expr * arg = n->get_arg(i);
it.push_back(0);
if (m_manager.is_and(arg))
sz.push_back(to_app(arg)->get_num_args());
else
sz.push_back(1);
}
do {
ptr_buffer<expr> lits;
for (unsigned i = 0; i < num; i++) {
expr * arg = n->get_arg(i);
if (m_manager.is_and(arg)) {
SASSERT(it[i] < to_app(arg)->get_num_args());
lits.push_back(to_app(arg)->get_arg(it[i]));
}
else {
SASSERT(it[i] == 0);
lits.push_back(arg);
}
}
app * n = m_manager.mk_or(lits.size(), lits.c_ptr());
new_args.push_back(n);
}
while (product_iterator_next(sz.size(), sz.c_ptr(), it.c_ptr()));
SASSERT(!new_args.empty());
if (new_args.size() == 1)
r = to_app(new_args[0]);
else
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
pr = 0;
if (m_manager.fine_grain_proofs() && r != n)
pr = m_manager.mk_iff_oeq(m_manager.mk_distributivity(n, r));
}
void cnf::push_quant(quantifier * q, expr * & r, proof * & pr) {
SASSERT(is_forall(q));
expr * e = q->get_expr();
pr = 0;
if (m_manager.is_and(e)) {
expr_ref_buffer new_args(m_manager);
unsigned num = to_app(e)->get_num_args();
for (unsigned i = 0; i < num; i++) {
quantifier_ref aux(m_manager);
aux = m_manager.update_quantifier(q, 0, 0, 0, 0, to_app(e)->get_arg(i));
expr_ref new_arg(m_manager);
elim_unused_vars(m_manager, aux, new_arg);
new_args.push_back(new_arg);
}
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
if (m_manager.fine_grain_proofs())
pr = m_manager.mk_iff_oeq(m_manager.mk_push_quant(q, r));
}
else {
r = q;
}
}
void cnf::reduce1_or(app * n, bool in_q) {
ptr_buffer<expr> new_args;
ptr_buffer<proof> new_arg_prs;
get_args(n, in_q, new_args, new_arg_prs);
expr * r;
proof * pr = 0;
if (in_q || m_params.m_cnf_mode == CNF_OPPORTUNISTIC || m_params.m_cnf_mode == CNF_FULL) {
ptr_buffer<expr> f_args;
flat_args(n->get_decl(), new_args, f_args);
TRACE("cnf_or", for (unsigned i = 0; i < f_args.size(); i++) tout << mk_pp(f_args[i], m_manager) << "\n";);
approx_nat result_size = approx_result_size_for_disj(f_args);
TRACE("cnf_or", tout << mk_pp(n, m_manager) << "\napprox. result: " << result_size << "\n";);
if (m_params.m_cnf_mode != CNF_OPPORTUNISTIC || result_size < m_params.m_cnf_factor) {
expr_ref_buffer cheap_args(m_manager);
proof_ref_buffer cheap_args_pr(m_manager);
bool named_args;
if (is_too_expensive(result_size, f_args)) {
named_args = true;
name_args(f_args, cheap_args, cheap_args_pr);
}
else {
named_args = false;
cheap_args.append(f_args.size(), f_args.c_ptr());
}
app_ref r1(m_manager);
r1 = m_manager.mk_or(cheap_args.size(), cheap_args.c_ptr());
// Proof gen support ---------------------------
// r1 is (OR cheap_args) it is only built if proofs are enabled.
// p1 is a proof for (= n r1)
proof * p1 = 0;
if (m_manager.fine_grain_proofs()) {
proof * prs[3];
app * r[2];
r[0] = m_manager.mk_or(new_args.size(), new_args.c_ptr());
prs[0] = n == r[0] ? 0 : m_manager.mk_oeq_congruence(n, r[0], new_arg_prs.size(), new_arg_prs.c_ptr());
r[1] = m_manager.mk_or(f_args.size(), f_args.c_ptr());
prs[1] = r[0] == r[1] ? 0 : m_manager.mk_iff_oeq(m_manager.mk_rewrite(r[0], r[1]));
prs[2] = r[1] == r1 ? 0 : m_manager.mk_oeq_congruence(r[1], r1, cheap_args_pr.size(), cheap_args_pr.c_ptr());
p1 = m_manager.mk_transitivity(3, prs);
}
// --------------------------------------------
expr_ref r2(m_manager);
proof_ref p2(m_manager);
m_pull.pull_quant2(r1, r2, p2);
if (is_quantifier(r2)) {
expr * e = to_quantifier(r2)->get_expr();
SASSERT(m_manager.is_or(e));
app * d_r;
proof * d_pr;
distribute(to_app(e), d_r, d_pr);
quantifier_ref r3(m_manager);
r3 = m_manager.update_quantifier(to_quantifier(r2), d_r);
proof * push_pr;
push_quant(r3, r, push_pr);
if (m_manager.fine_grain_proofs()) {
// p1 is a proof of n == r1
// p2 is a proof of r1 == r2
p2 = p2 == 0 ? 0 : m_manager.mk_iff_oeq(p2);
proof * p3 = r2 == r3 ? 0 : m_manager.mk_oeq_quant_intro(to_quantifier(r2), r3, d_pr);
CTRACE("cnf_or", p1, tout << "p1:\n" << mk_pp(m_manager.get_fact(p1), m_manager) << "\n";);
CTRACE("cnf_or", p2, tout << "p2:\n" << mk_pp(m_manager.get_fact(p2), m_manager) << "\n";);
CTRACE("cnf_or", p3, tout << "p3:\n" << mk_pp(m_manager.get_fact(p3), m_manager) << "\n";);
TRACE("cnf_or", tout << "r2 == r3: " << (r2 == r3) << "\n"
<< mk_pp(r2, m_manager) << "\n" << mk_pp(r3, m_manager) << "\n";);
pr = m_manager.mk_transitivity(p1, p2, p3, push_pr);
}
cache_result(n, in_q, r, pr);
}
else {
SASSERT(p2 == 0);
SASSERT(r1 == r2);
SASSERT(m_manager.is_or(r2));
app * r3;
distribute(to_app(r2), r3, pr);
r = r3;
pr = m_manager.mk_transitivity(p1, pr);
cache_result(n, in_q, r, pr);
}
return;
}
}
r = m_manager.mk_or(new_args.size(), new_args.c_ptr());
if (m_manager.fine_grain_proofs() && n != r)
pr = m_manager.mk_oeq_congruence(n, to_app(r), new_arg_prs.size(), new_arg_prs.c_ptr());
cache_result(n, in_q, r, pr);
}
void cnf::reduce1_and(app * n, bool in_q) {
ptr_buffer<expr> new_args;
ptr_buffer<proof> new_arg_prs;
get_args(n, in_q, new_args, new_arg_prs);
app * r;
proof * pr = 0;
if (in_q || m_params.m_cnf_mode == CNF_OPPORTUNISTIC || m_params.m_cnf_mode == CNF_FULL) {
ptr_buffer<expr> f_args;
flat_args(n->get_decl(), new_args, f_args);
r = m_manager.mk_and(f_args.size(), f_args.c_ptr());
if (m_manager.fine_grain_proofs() && n != r) {
app * r0 = m_manager.mk_and(new_args.size(), new_args.c_ptr());
proof * p0 = r0 == n ? 0 : m_manager.mk_oeq_congruence(n, r0, new_arg_prs.size(), new_arg_prs.c_ptr());
proof * p1 = r0 == r ? 0 : m_manager.mk_iff_oeq(m_manager.mk_rewrite(r0, r));
pr = m_manager.mk_transitivity(p0, p1);
}
}
else {
r = m_manager.mk_and(new_args.size(), new_args.c_ptr());
if (m_manager.fine_grain_proofs() && n != r)
pr = m_manager.mk_oeq_congruence(n, r, new_arg_prs.size(), new_arg_prs.c_ptr());
}
cache_result(n, in_q, r, pr);
}
void cnf::reduce1_label(app * n, bool in_q) {
expr * r;
proof * pr = 0;
expr * new_arg;
proof * new_arg_pr;
get_cached(n->get_arg(0), true, new_arg, new_arg_pr);
if (in_q || m_params.m_cnf_mode == CNF_FULL) {
// TODO: in the current implementation, labels are removed during CNF translation.
// This is satisfactory for Boogie, since it does not use labels inside quantifiers,
// and we only need CNF_QUANT for Superposition Calculus.
r = new_arg;
if (m_manager.fine_grain_proofs()) {
proof * p0 = m_manager.mk_iff_oeq(m_manager.mk_rewrite(n, n->get_arg(0)));
pr = m_manager.mk_transitivity(p0, new_arg_pr);
}
}
else {
r = m_manager.mk_app(n->get_decl(), new_arg);
if (m_manager.fine_grain_proofs() && n != r)
pr = m_manager.mk_oeq_congruence(n, to_app(r), 1, &new_arg_pr);
}
cache_result(n, in_q, r, pr);
}
void cnf::reduce1_quantifier(quantifier * q, bool in_q) {
expr * new_expr;
proof * new_expr_pr;
get_cached(q->get_expr(), true, new_expr, new_expr_pr);
expr_ref r(m_manager);
proof_ref pr(m_manager);
if (m_manager.is_and(new_expr) && q->is_forall()) {
quantifier_ref q1(m_manager);
q1 = m_manager.update_quantifier(q, new_expr);
expr_ref q2(m_manager);
proof_ref p2(m_manager);
m_pull.pull_quant2(q1, q2, p2);
expr * q3;
proof * p3;
push_quant(to_quantifier(q2), q3, p3);
r = q3;
if (m_manager.fine_grain_proofs()) {
proof * p1 = q == q1 ? 0 : m_manager.mk_oeq_quant_intro(q, q1, new_expr_pr);
p2 = p2 == 0 ? 0 : m_manager.mk_iff_oeq(p2);
pr = m_manager.mk_transitivity(p1, p2, p3);
}
}
else if ((m_manager.is_or(new_expr) || is_forall(new_expr)) && q->is_forall()) {
quantifier_ref q1(m_manager);
q1 = m_manager.update_quantifier(q, new_expr);
m_pull.pull_quant2(q1, r, pr);
if (m_manager.fine_grain_proofs()) {
pr = pr == 0 ? 0 : m_manager.mk_iff_oeq(pr);
proof * p1 = q == q1 ? 0 : m_manager.mk_oeq_quant_intro(q, q1, new_expr_pr);
pr = m_manager.mk_transitivity(p1, pr);
}
}
else {
r = m_manager.update_quantifier(q, new_expr);
if (m_manager.fine_grain_proofs() && r != q)
pr = q == r ? 0 : m_manager.mk_oeq_quant_intro(q, to_quantifier(r), new_expr_pr);
}
cache_result(q, in_q, r, pr);
TRACE("cnf_quant", tout << mk_pp(q, m_manager) << "\n" << mk_pp(r, m_manager) << "\n";);
}
cnf::cnf(ast_manager & m, defined_names & n, cnf_params & params):
m_params(params),
m_manager(m),
m_defined_names(n),
m_pull(m),
m_cache(m),
m_todo_defs(m),
m_todo_proofs(m),
m_coarse_proofs(m) {
}
cnf::~cnf() {
}
void cnf::reduce(expr * n, expr_ref & r, proof_ref & pr) {
m_coarse_proofs.reset();
m_todo.reset();
m_todo.push_back(expr_bool_pair(n, false));
while (!m_todo.empty()) {
expr_bool_pair pair = m_todo.back();
expr * n = pair.first;
bool in_q = pair.second;
if (is_cached(n, in_q)) {
m_todo.pop_back();
}
else if (visit_children(n, in_q)) {
m_todo.pop_back();
reduce1(n, in_q);
}
}
expr * r2;
proof * pr2;
get_cached(n, false, r2, pr2);
r = r2;
switch (m_manager.proof_mode()) {
case PGM_DISABLED:
pr = m_manager.mk_undef_proof();
break;
case PGM_COARSE:
remove_duplicates(m_coarse_proofs);
pr = n == r2 ? m_manager.mk_reflexivity(n) : m_manager.mk_cnf_star(n, r2, m_coarse_proofs.size(), m_coarse_proofs.c_ptr());
break;
case PGM_FINE:
pr = pr2 == 0 ? m_manager.mk_reflexivity(n) : pr2;
break;
}
}
void cnf::operator()(expr * n, expr_ref_vector & new_defs, proof_ref_vector & new_def_proofs, expr_ref & r, proof_ref & pr) {
if (m_params.m_cnf_mode == CNF_DISABLED) {
r = n;
pr = m_manager.mk_reflexivity(n);
return;
}
reset();
reduce(n, r, pr);
for (unsigned i = 0; i < m_todo_defs.size(); i++) {
expr_ref dr(m_manager);
proof_ref dpr(m_manager);
reduce(m_todo_defs.get(i), dr, dpr);
m_result_defs.push_back(dr);
if (m_manager.proofs_enabled()) {
proof * new_pr = m_manager.mk_modus_ponens(m_todo_proofs.get(i), dpr);
m_result_def_proofs.push_back(new_pr);
}
else
m_result_def_proofs.push_back(m_manager.mk_undef_proof());
}
std::reverse(m_result_defs.begin(), m_result_defs.end());
new_defs.append(m_result_defs.size(), m_result_defs.c_ptr());
std::reverse(m_result_def_proofs.begin(), m_result_def_proofs.end());
new_def_proofs.append(m_result_def_proofs.size(), m_result_def_proofs.c_ptr());
}
void cnf::reset() {
m_cache.reset();
m_todo.reset();
m_todo_defs.reset();
m_todo_proofs.reset();
m_result_defs.reset();
m_result_def_proofs.reset();
}