mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 01:54:08 +00:00
793 lines
24 KiB
C++
793 lines
24 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
duality.h
|
|
|
|
Abstract:
|
|
|
|
main header for duality
|
|
|
|
Author:
|
|
|
|
Ken McMillan (kenmcmil)
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
|
|
#pragma once
|
|
|
|
#include "duality_wrapper.h"
|
|
#include <list>
|
|
#include <map>
|
|
|
|
// make hash_map and hash_set available
|
|
#ifndef WIN32
|
|
using namespace stl_ext;
|
|
#endif
|
|
|
|
namespace Duality {
|
|
|
|
/* Generic operations on Z3 formulas */
|
|
|
|
struct Z3User {
|
|
|
|
context &ctx;
|
|
solver &slvr;
|
|
|
|
typedef func_decl FuncDecl;
|
|
typedef expr Term;
|
|
|
|
Z3User(context &_ctx, solver &_slvr) : ctx(_ctx), slvr(_slvr){}
|
|
|
|
const char *string_of_int(int n);
|
|
|
|
Term conjoin(const std::vector<Term> &args);
|
|
|
|
Term sum(const std::vector<Term> &args);
|
|
|
|
Term CloneQuantifier(const Term &t, const Term &new_body);
|
|
|
|
Term SubstRec(hash_map<ast, Term> &memo, const Term &t);
|
|
|
|
void Strengthen(Term &x, const Term &y);
|
|
|
|
// return the func_del of an app if it is uninterpreted
|
|
|
|
bool get_relation(const Term &t, func_decl &R);
|
|
|
|
// return true if term is an individual variable
|
|
// TODO: have to check that it is not a background symbol
|
|
|
|
bool is_variable(const Term &t);
|
|
|
|
FuncDecl SuffixFuncDecl(Term t, int n);
|
|
|
|
|
|
Term SubstRecHide(hash_map<ast, Term> &memo, const Term &t, int number);
|
|
|
|
void CollectConjuncts(const Term &f, std::vector<Term> &lits, bool pos = true);
|
|
|
|
void SortTerms(std::vector<Term> &terms);
|
|
|
|
Term SortSum(const Term &t);
|
|
|
|
void Summarize(const Term &t);
|
|
|
|
int CumulativeDecisions();
|
|
|
|
Term SubstBoundRec(hash_map<int,hash_map<ast,Term> > &memo, hash_map<int,Term> &subst, int level, const Term &t);
|
|
|
|
Term SubstBound(hash_map<int,Term> &subst, const Term &t);
|
|
|
|
private:
|
|
|
|
void SummarizeRec(hash_set<ast> &memo, std::vector<expr> &lits, int &ops, const Term &t);
|
|
|
|
};
|
|
|
|
/** This class represents a relation post-fixed point (RPFP) problem as
|
|
* a "problem graph". The graph consists of Nodes and hyper-edges.
|
|
*
|
|
* A node consists of
|
|
* - Annotation, a symbolic relation
|
|
* - Bound, a symbolic relation giving an upper bound on Annotation
|
|
*
|
|
*
|
|
* A hyper-edge consists of:
|
|
* - Children, a sequence of children Nodes,
|
|
* - F, a symbolic relational transformer,
|
|
* - Parent, a single parent Node.
|
|
*
|
|
* The graph is "solved" when:
|
|
* - For every Node n, n.Annotation subseteq n.Bound
|
|
* - For every hyperedge e, e.F(e.Children.Annotation) subseteq e.Parent.Annotation
|
|
*
|
|
* where, if x is a sequence of Nodes, x.Annotation is the sequences
|
|
* of Annotations of the nodes in the sequence.
|
|
*
|
|
* A symbolic Transformer consists of
|
|
* - RelParams, a sequence of relational symbols
|
|
* - IndParams, a sequence of individual symbols
|
|
* - Formula, a formula over RelParams and IndParams
|
|
*
|
|
* A Transformer t represents a function that takes sequence R of relations
|
|
* and yields the relation lambda (t.Indparams). Formula(R/RelParams).
|
|
*
|
|
* As a special case, a nullary Transformer (where RelParams is the empty sequence)
|
|
* represents a fixed relation.
|
|
*
|
|
* An RPFP consists of
|
|
* - Nodes, a set of Nodes
|
|
* - Edges, a set of hyper-edges
|
|
* - Context, a prover context that contains formula AST's
|
|
*
|
|
* Multiple RPFP's can use the same Context, but you should be careful
|
|
* that only one RPFP asserts constraints in the context at any time.
|
|
*
|
|
* */
|
|
class RPFP : public Z3User
|
|
{
|
|
public:
|
|
|
|
class Edge;
|
|
class Node;
|
|
bool HornClauses;
|
|
|
|
|
|
/** Interface class for interpolating solver. */
|
|
|
|
class LogicSolver {
|
|
public:
|
|
|
|
context *ctx; /** Z3 context for formulas */
|
|
solver *slvr; /** Z3 solver */
|
|
bool need_goals; /** Can the solver use the goal tree to optimize interpolants? */
|
|
|
|
/** Tree interpolation. This method assumes the formulas in TermTree
|
|
"assumptions" are currently asserted in the solver. The return
|
|
value indicates whether the assertions are satisfiable. In the
|
|
UNSAT case, a tree interpolant is returned in "interpolants".
|
|
In the SAT case, a model is returned.
|
|
*/
|
|
|
|
virtual
|
|
lbool interpolate_tree(TermTree *assumptions,
|
|
TermTree *&interpolants,
|
|
model &_model,
|
|
TermTree *goals = 0
|
|
) = 0;
|
|
|
|
/** Assert a background axiom. */
|
|
virtual void assert_axiom(const expr &axiom) = 0;
|
|
|
|
/** Return a string describing performance. */
|
|
virtual std::string profile() = 0;
|
|
|
|
virtual void write_interpolation_problem(const std::string &file_name,
|
|
const std::vector<expr> &assumptions,
|
|
const std::vector<expr> &theory
|
|
){}
|
|
};
|
|
|
|
/** This solver uses iZ3. */
|
|
class iZ3LogicSolver : public LogicSolver {
|
|
public:
|
|
interpolating_context *ictx; /** iZ3 context for formulas */
|
|
interpolating_solver *islvr; /** iZ3 solver */
|
|
|
|
lbool interpolate_tree(TermTree *assumptions,
|
|
TermTree *&interpolants,
|
|
model &_model,
|
|
TermTree *goals = 0)
|
|
{
|
|
literals _labels;
|
|
return islvr->interpolate_tree(assumptions,interpolants,_model,_labels,true);
|
|
}
|
|
|
|
void assert_axiom(const expr &axiom){
|
|
islvr->AssertInterpolationAxiom(axiom);
|
|
}
|
|
|
|
std::string profile(){
|
|
return islvr->profile();
|
|
}
|
|
|
|
#if 0
|
|
iZ3LogicSolver(config &_config){
|
|
ctx = ictx = new interpolating_context(_config);
|
|
slvr = islvr = new interpolating_solver(*ictx);
|
|
need_goals = false;
|
|
islvr->SetWeakInterpolants(true);
|
|
}
|
|
#endif
|
|
|
|
iZ3LogicSolver(context c){
|
|
ctx = ictx = new interpolating_context(c);
|
|
slvr = islvr = new interpolating_solver(*ictx);
|
|
need_goals = false;
|
|
islvr->SetWeakInterpolants(true);
|
|
}
|
|
|
|
void write_interpolation_problem(const std::string &file_name,
|
|
const std::vector<expr> &assumptions,
|
|
const std::vector<expr> &theory
|
|
){
|
|
#if 0
|
|
islvr->write_interpolation_problem(file_name,assumptions,theory);
|
|
#endif
|
|
}
|
|
~iZ3LogicSolver(){
|
|
delete ictx;
|
|
delete islvr;
|
|
}
|
|
};
|
|
|
|
#if 0
|
|
/** Create a logic solver from a Z3 configuration. */
|
|
static iZ3LogicSolver *CreateLogicSolver(config &_config){
|
|
return new iZ3LogicSolver(_config);
|
|
}
|
|
#endif
|
|
|
|
/** Create a logic solver from a low-level Z3 context.
|
|
Only use this if you know what you're doing. */
|
|
static iZ3LogicSolver *CreateLogicSolver(context c){
|
|
return new iZ3LogicSolver(c);
|
|
}
|
|
|
|
LogicSolver *ls;
|
|
|
|
private:
|
|
int nodeCount;
|
|
int edgeCount;
|
|
|
|
class stack_entry
|
|
{
|
|
public:
|
|
std::list<Edge *> edges;
|
|
std::list<Node *> nodes;
|
|
};
|
|
|
|
|
|
model dualModel;
|
|
literals dualLabels;
|
|
std::list<stack_entry> stack;
|
|
std::vector<Term> axioms; // only saved here for printing purposes
|
|
|
|
public:
|
|
|
|
/** Construct an RPFP graph with a given interpolating prover context. It is allowed to
|
|
have multiple RPFP's use the same context, but you should never have teo RPFP's
|
|
with the same conext asserting nodes or edges at the same time. Note, if you create
|
|
axioms in one RPFP, them create a second RPFP with the same context, the second will
|
|
inherit the axioms.
|
|
*/
|
|
|
|
RPFP(LogicSolver *_ls) : Z3User(*(_ls->ctx), *(_ls->slvr)), dualModel(*(_ls->ctx))
|
|
{
|
|
ls = _ls;
|
|
nodeCount = 0;
|
|
edgeCount = 0;
|
|
stack.push_back(stack_entry());
|
|
HornClauses = false;
|
|
}
|
|
|
|
~RPFP();
|
|
|
|
/** Symbolic representation of a relational transformer */
|
|
class Transformer
|
|
{
|
|
public:
|
|
std::vector<FuncDecl> RelParams;
|
|
std::vector<Term> IndParams;
|
|
Term Formula;
|
|
RPFP *owner;
|
|
hash_map<std::string,Term> labels;
|
|
|
|
Transformer *Clone()
|
|
{
|
|
return new Transformer(*this);
|
|
}
|
|
|
|
void SetEmpty(){
|
|
Formula = owner->ctx.bool_val(false);
|
|
}
|
|
|
|
void SetFull(){
|
|
Formula = owner->ctx.bool_val(true);
|
|
}
|
|
|
|
bool IsEmpty(){
|
|
return eq(Formula,owner->ctx.bool_val(false));
|
|
}
|
|
|
|
bool IsFull(){
|
|
return eq(Formula,owner->ctx.bool_val(true));
|
|
}
|
|
|
|
void UnionWith(const Transformer &other){
|
|
Term t = owner->SubstParams(other.IndParams,IndParams,other.Formula);
|
|
Formula = Formula || t;
|
|
}
|
|
|
|
void IntersectWith(const Transformer &other){
|
|
Term t = owner->SubstParams(other.IndParams,IndParams,other.Formula);
|
|
Formula = Formula && t;
|
|
}
|
|
|
|
bool SubsetEq(const Transformer &other){
|
|
Term t = owner->SubstParams(other.IndParams,IndParams,other.Formula);
|
|
expr test = Formula && !t;
|
|
owner->slvr.push();
|
|
owner->slvr.add(test);
|
|
check_result res = owner->slvr.check();
|
|
owner->slvr.pop(1);
|
|
return res == unsat;
|
|
}
|
|
|
|
void Complement(){
|
|
Formula = !Formula;
|
|
}
|
|
|
|
void Simplify(){
|
|
Formula = Formula.simplify();
|
|
}
|
|
|
|
Transformer(const std::vector<FuncDecl> &_RelParams, const std::vector<Term> &_IndParams, const Term &_Formula, RPFP *_owner)
|
|
: RelParams(_RelParams), IndParams(_IndParams), Formula(_Formula) {owner = _owner;}
|
|
};
|
|
|
|
/** Create a symbolic transformer. */
|
|
Transformer CreateTransformer(const std::vector<FuncDecl> &_RelParams, const std::vector<Term> &_IndParams, const Term &_Formula)
|
|
{
|
|
// var ops = new Util.ContextOps(ctx);
|
|
// var foo = ops.simplify_lhs(_Formula);
|
|
// t.Formula = foo.Item1;
|
|
// t.labels = foo.Item2;
|
|
return Transformer(_RelParams,_IndParams,_Formula,this);
|
|
}
|
|
|
|
/** Create a relation (nullary relational transformer) */
|
|
Transformer CreateRelation(const std::vector<Term> &_IndParams, const Term &_Formula)
|
|
{
|
|
return CreateTransformer(std::vector<FuncDecl>(), _IndParams, _Formula);
|
|
}
|
|
|
|
/** A node in the RPFP graph */
|
|
class Node
|
|
{
|
|
public:
|
|
FuncDecl Name;
|
|
Transformer Annotation;
|
|
Transformer Bound;
|
|
Transformer Underapprox;
|
|
RPFP *owner;
|
|
int number;
|
|
Edge *Outgoing;
|
|
std::vector<Edge *> Incoming;
|
|
Term dual;
|
|
Node *map;
|
|
|
|
Node(const FuncDecl &_Name, const Transformer &_Annotation, const Transformer &_Bound, const Transformer &_Underapprox, const Term &_dual, RPFP *_owner, int _number)
|
|
: Name(_Name), Annotation(_Annotation), Bound(_Bound), Underapprox(_Underapprox), dual(_dual) {owner = _owner; number = _number; Outgoing = 0;}
|
|
};
|
|
|
|
/** Create a node in the graph. The input is a term R(v_1...v_n)
|
|
* where R is an arbitrary relational symbol and v_1...v_n are
|
|
* arbitary distinct variables. The names are only of mnemonic value,
|
|
* however, the number and type of arguments determine the type
|
|
* of the relation at this node. */
|
|
|
|
Node *CreateNode(const Term &t)
|
|
{
|
|
std::vector<Term> _IndParams;
|
|
int nargs = t.num_args();
|
|
for(int i = 0; i < nargs; i++)
|
|
_IndParams.push_back(t.arg(i));
|
|
Node *n = new Node(t.decl(),
|
|
CreateRelation(_IndParams,ctx.bool_val(true)),
|
|
CreateRelation(_IndParams,ctx.bool_val(true)),
|
|
CreateRelation(_IndParams,ctx.bool_val(false)),
|
|
expr(ctx), this, ++nodeCount
|
|
);
|
|
nodes.push_back(n);
|
|
return n;
|
|
}
|
|
|
|
/** Clone a node (can be from another graph). */
|
|
|
|
Node *CloneNode(Node *old)
|
|
{
|
|
Node *n = new Node(old->Name,
|
|
old->Annotation,
|
|
old->Bound,
|
|
old->Underapprox,
|
|
expr(ctx),
|
|
this,
|
|
++nodeCount
|
|
);
|
|
nodes.push_back(n);
|
|
n->map = old;
|
|
return n;
|
|
}
|
|
|
|
/** This class represents a hyper-edge in the RPFP graph */
|
|
|
|
class Edge
|
|
{
|
|
public:
|
|
Transformer F;
|
|
Node *Parent;
|
|
std::vector<Node *> Children;
|
|
RPFP *owner;
|
|
int number;
|
|
// these should be internal...
|
|
Term dual;
|
|
hash_map<func_decl,int> relMap;
|
|
hash_map<ast,Term> varMap;
|
|
Edge *map;
|
|
|
|
Edge(Node *_Parent, const Transformer &_F, const std::vector<Node *> &_Children, RPFP *_owner, int _number)
|
|
: F(_F), Parent(_Parent), Children(_Children), dual(expr(_owner->ctx)) {
|
|
owner = _owner;
|
|
number = _number;
|
|
}
|
|
};
|
|
|
|
|
|
/** Create a hyper-edge. */
|
|
Edge *CreateEdge(Node *_Parent, const Transformer &_F, const std::vector<Node *> &_Children)
|
|
{
|
|
Edge *e = new Edge(_Parent,_F,_Children,this,++edgeCount);
|
|
_Parent->Outgoing = e;
|
|
for(unsigned i = 0; i < _Children.size(); i++)
|
|
_Children[i]->Incoming.push_back(e);
|
|
edges.push_back(e);
|
|
return e;
|
|
}
|
|
|
|
/** Create an edge that lower-bounds its parent. */
|
|
Edge *CreateLowerBoundEdge(Node *_Parent)
|
|
{
|
|
return CreateEdge(_Parent, _Parent->Annotation, std::vector<Node *>());
|
|
}
|
|
|
|
|
|
/** For incremental solving, asserts the constraint associated
|
|
* with this edge in the SMT context. If this edge is removed,
|
|
* you must pop the context accordingly. The second argument is
|
|
* the number of pushes we are inside. */
|
|
|
|
void AssertEdge(Edge *e, int persist = 0, bool with_children = false, bool underapprox = false);
|
|
|
|
|
|
/** For incremental solving, asserts the negation of the upper bound associated
|
|
* with a node.
|
|
* */
|
|
|
|
void AssertNode(Node *n);
|
|
|
|
/** Assert a background axiom. Background axioms can be used to provide the
|
|
* theory of auxilliary functions or relations. All symbols appearing in
|
|
* background axioms are considered global, and may appear in both transformer
|
|
* and relational solutions. Semantically, a solution to the RPFP gives
|
|
* an interpretation of the unknown relations for each interpretation of the
|
|
* auxilliary symbols that is consistent with the axioms. Axioms should be
|
|
* asserted before any calls to Push. They cannot be de-asserted by Pop. */
|
|
|
|
void AssertAxiom(const Term &t);
|
|
|
|
#if 0
|
|
/** Do not call this. */
|
|
|
|
void RemoveAxiom(const Term &t);
|
|
#endif
|
|
|
|
/** Solve an RPFP graph. This means either strengthen the annotation
|
|
* so that the bound at the given root node is satisfied, or
|
|
* show that this cannot be done by giving a dual solution
|
|
* (i.e., a counterexample).
|
|
*
|
|
* In the current implementation, this only works for graphs that
|
|
* are:
|
|
* - tree-like
|
|
*
|
|
* - closed.
|
|
*
|
|
* In a tree-like graph, every nod has out most one incoming and one out-going edge,
|
|
* and there are no cycles. In a closed graph, every node has exactly one out-going
|
|
* edge. This means that the leaves of the tree are all hyper-edges with no
|
|
* children. Such an edge represents a relation (nullary transformer) and thus
|
|
* a lower bound on its parent. The parameter root must be the root of this tree.
|
|
*
|
|
* If Solve returns LBool.False, this indicates success. The annotation of the tree
|
|
* has been updated to satisfy the upper bound at the root.
|
|
*
|
|
* If Solve returns LBool.True, this indicates a counterexample. For each edge,
|
|
* you can then call Eval to determine the values of symbols in the transformer formula.
|
|
* You can also call Empty on a node to determine if its value in the counterexample
|
|
* is the empty relation.
|
|
*
|
|
* \param root The root of the tree
|
|
* \param persist Number of context pops through which result should persist
|
|
*
|
|
*
|
|
*/
|
|
|
|
lbool Solve(Node *root, int persist);
|
|
|
|
/** Get the constraint tree (but don't solve it) */
|
|
|
|
TermTree *GetConstraintTree(Node *root);
|
|
|
|
/** Dispose of the dual model (counterexample) if there is one. */
|
|
|
|
void DisposeDualModel();
|
|
|
|
/** Check satisfiability of asserted edges and nodes. Same functionality as
|
|
* Solve, except no primal solution (interpolant) is generated in the unsat case. */
|
|
|
|
check_result Check(Node *root, std::vector<Node *> underapproxes = std::vector<Node *>(),
|
|
std::vector<Node *> *underapprox_core = 0);
|
|
|
|
/** Update the model, attempting to make the propositional literals in assumps true. If possible,
|
|
return sat, else return unsat and keep the old model. */
|
|
|
|
check_result CheckUpdateModel(Node *root, std::vector<expr> assumps);
|
|
|
|
/** Determines the value in the counterexample of a symbol occuring in the transformer formula of
|
|
* a given edge. */
|
|
|
|
Term Eval(Edge *e, Term t);
|
|
|
|
/** Return the fact derived at node p in a counterexample. */
|
|
|
|
Term EvalNode(Node *p);
|
|
|
|
/** Returns true if the given node is empty in the primal solution. For proecudure summaries,
|
|
this means that the procedure is not called in the current counter-model. */
|
|
|
|
bool Empty(Node *p);
|
|
|
|
/** Compute an underapproximation of every node in a tree rooted at "root",
|
|
based on a previously computed counterexample. */
|
|
|
|
Term ComputeUnderapprox(Node *root, int persist);
|
|
|
|
/** Push a scope. Assertions made after Push can be undone by Pop. */
|
|
|
|
void Push();
|
|
|
|
/** Exception thrown when bad clause is encountered */
|
|
|
|
struct bad_clause {
|
|
std::string msg;
|
|
int i;
|
|
bad_clause(const std::string &_msg, int _i){
|
|
msg = _msg;
|
|
i = _i;
|
|
}
|
|
};
|
|
|
|
struct parse_error {
|
|
std::string msg;
|
|
parse_error(const std::string &_msg){
|
|
msg = _msg;
|
|
}
|
|
};
|
|
|
|
struct file_not_found {
|
|
};
|
|
|
|
struct bad_format {
|
|
};
|
|
|
|
/** Pop a scope (see Push). Note, you cannot pop axioms. */
|
|
|
|
void Pop(int num_scopes);
|
|
|
|
/** Convert a collection of clauses to Nodes and Edges in the RPFP.
|
|
|
|
Predicate unknowns are uninterpreted predicates not
|
|
occurring in the background theory.
|
|
|
|
Clauses are of the form
|
|
|
|
B => P(t_1,...,t_k)
|
|
|
|
where P is a predicate unknown and predicate unknowns
|
|
occur only positivey in H and only under existential
|
|
quantifiers in prenex form.
|
|
|
|
Each predicate unknown maps to a node. Each clause maps to
|
|
an edge. Let C be a clause B => P(t_1,...,t_k) where the
|
|
sequence of predicate unknowns occurring in B (in order
|
|
of occurrence) is P_1..P_n. The clause maps to a transformer
|
|
T where:
|
|
|
|
T.Relparams = P_1..P_n
|
|
T.Indparams = x_1...x+k
|
|
T.Formula = B /\ t_1 = x_1 /\ ... /\ t_k = x_k
|
|
|
|
Throws exception bad_clause(msg,i) if a clause i is
|
|
in the wrong form.
|
|
|
|
*/
|
|
|
|
|
|
#ifdef WIN32
|
|
__declspec(dllexport)
|
|
#endif
|
|
void FromClauses(const std::vector<Term> &clauses);
|
|
|
|
void FromFixpointContext(fixedpoint fp, std::vector<Term> &queries);
|
|
|
|
void WriteSolution(std::ostream &s);
|
|
|
|
void WriteCounterexample(std::ostream &s, Node *node);
|
|
|
|
enum FileFormat {DualityFormat, SMT2Format, HornFormat};
|
|
|
|
/** Write the RPFP to a file (currently in SMTLIB 1.2 format) */
|
|
void WriteProblemToFile(std::string filename, FileFormat format = DualityFormat);
|
|
|
|
/** Read the RPFP from a file (in specificed format) */
|
|
void ReadProblemFromFile(std::string filename, FileFormat format = DualityFormat);
|
|
|
|
/** Translate problem to Horn clause form */
|
|
void ToClauses(std::vector<Term> &cnsts, FileFormat format = DualityFormat);
|
|
|
|
/** Translate the RPFP to a fixed point context, with queries */
|
|
fixedpoint ToFixedPointProblem(std::vector<expr> &queries);
|
|
|
|
/** Nodes of the graph. */
|
|
std::vector<Node *> nodes;
|
|
|
|
/** Edges of the graph. */
|
|
std::vector<Edge *> edges;
|
|
|
|
Term SubstParams(const std::vector<Term> &from,
|
|
const std::vector<Term> &to, const Term &t);
|
|
|
|
Term Localize(Edge *e, const Term &t);
|
|
|
|
void EvalNodeAsConstraint(Node *p, Transformer &res);
|
|
|
|
TermTree *GetGoalTree(Node *root);
|
|
|
|
private:
|
|
|
|
|
|
Term SuffixVariable(const Term &t, int n);
|
|
|
|
Term HideVariable(const Term &t, int n);
|
|
|
|
void RedVars(Node *node, Term &b, std::vector<Term> &v);
|
|
|
|
Term RedDualRela(Edge *e, std::vector<Term> &args, int idx);
|
|
|
|
Term LocalizeRec(Edge *e, hash_map<ast,Term> &memo, const Term &t);
|
|
|
|
void SetEdgeMaps(Edge *e);
|
|
|
|
Term ReducedDualEdge(Edge *e);
|
|
|
|
TermTree *ToTermTree(Node *root);
|
|
|
|
TermTree *ToGoalTree(Node *root);
|
|
|
|
void DecodeTree(Node *root, TermTree *interp, int persist);
|
|
|
|
Term GetUpperBound(Node *n);
|
|
|
|
TermTree *AddUpperBound(Node *root, TermTree *t);
|
|
|
|
#if 0
|
|
void WriteInterps(System.IO.StreamWriter f, TermTree t);
|
|
#endif
|
|
|
|
void WriteEdgeVars(Edge *e, hash_map<ast,int> &memo, const Term &t, std::ostream &s);
|
|
|
|
void WriteEdgeAssignment(std::ostream &s, Edge *e);
|
|
|
|
|
|
// Scan the clause body for occurrences of the predicate unknowns
|
|
|
|
Term ScanBody(hash_map<ast,Term> &memo,
|
|
const Term &t,
|
|
hash_map<func_decl,Node *> &pmap,
|
|
std::vector<func_decl> &res,
|
|
std::vector<Node *> &nodes);
|
|
|
|
|
|
Term RemoveLabelsRec(hash_map<ast,Term> &memo, const Term &t);
|
|
|
|
Term RemoveLabels(const Term &t);
|
|
|
|
Term GetAnnotation(Node *n);
|
|
|
|
|
|
Term GetUnderapprox(Node *n);
|
|
|
|
Term UnderapproxFlag(Node *n);
|
|
|
|
hash_map<ast,Node *> underapprox_flag_rev;
|
|
|
|
Node *UnderapproxFlagRev(const Term &flag);
|
|
|
|
Term ProjectFormula(std::vector<Term> &keep_vec, const Term &f);
|
|
|
|
int SubtermTruth(hash_map<ast,int> &memo, const Term &);
|
|
|
|
void ImplicantRed(hash_map<ast,int> &memo, const Term &f, std::vector<Term> &lits,
|
|
hash_set<ast> *done, bool truth, hash_set<ast> &dont_cares);
|
|
|
|
void Implicant(hash_map<ast,int> &memo, const Term &f, std::vector<Term> &lits, hash_set<ast> &dont_cares);
|
|
|
|
Term UnderapproxFormula(const Term &f, hash_set<ast> &dont_cares);
|
|
|
|
Term ToRuleRec(Edge *e, hash_map<ast,Term> &memo, const Term &t, std::vector<expr> &quants);
|
|
|
|
hash_map<ast,Term> resolve_ite_memo;
|
|
|
|
Term ResolveIte(hash_map<ast,int> &memo, const Term &t, std::vector<Term> &lits,
|
|
hash_set<ast> *done, hash_set<ast> &dont_cares);
|
|
|
|
struct ArrayValue {
|
|
bool defined;
|
|
std::map<ast,ast> entries;
|
|
expr def_val;
|
|
};
|
|
|
|
void EvalArrayTerm(const Term &t, ArrayValue &res);
|
|
|
|
Term EvalArrayEquality(const Term &f);
|
|
|
|
Term ModelValueAsConstraint(const Term &t);
|
|
|
|
};
|
|
|
|
/** RPFP solver base class. */
|
|
|
|
class Solver {
|
|
|
|
public:
|
|
|
|
struct Counterexample {
|
|
RPFP *tree;
|
|
RPFP::Node *root;
|
|
Counterexample(){
|
|
tree = 0;
|
|
root = 0;
|
|
}
|
|
};
|
|
|
|
/** Solve the problem. You can optionally give an old
|
|
counterexample to use as a guide. This is chiefly useful for
|
|
abstraction refinement metholdologies, and is only used as a
|
|
heuristic. */
|
|
|
|
virtual bool Solve() = 0;
|
|
|
|
virtual Counterexample GetCounterexample() = 0;
|
|
|
|
virtual bool SetOption(const std::string &option, const std::string &value) = 0;
|
|
|
|
/** Learn heuristic information from another solver. This
|
|
is chiefly useful for abstraction refinement, when we want to
|
|
solve a series of similar problems. */
|
|
|
|
virtual void LearnFrom(Solver *old_solver) = 0;
|
|
|
|
virtual ~Solver(){}
|
|
|
|
static Solver *Create(const std::string &solver_class, RPFP *rpfp);
|
|
|
|
|
|
};
|
|
}
|