3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-18 22:54:21 +00:00
z3/src/ast/array_decl_plugin.h
Nikolaj Bjorner 62b3668beb remove set cardinality operators from array theory. Make final-check use priority levels
Issue #7502 shows that running nlsat eagerly during final check can block quantifier instantiation.
To give space for quantifier instances we introduce two levels for final check such that nlsat is only applied in the second and final level.
2025-11-26 15:35:19 -08:00

321 lines
10 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
array_decl_plugin.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-01-09.
Revision History:
--*/
#pragma once
#include "ast/ast.h"
inline sort* get_array_range(sort const * s) {
return to_sort(s->get_parameter(s->get_num_parameters() - 1).get_ast());
}
inline unsigned get_array_arity(sort const * s) {
return s->get_num_parameters() -1;
}
inline sort* get_array_domain(sort const * s, unsigned idx) {
return to_sort(s->get_parameter(idx).get_ast());
}
inline expr_container array_select_indices(app* e) {
return expr_container(e->get_args() + 1, e->get_args() + e->get_num_args());
}
inline expr_container array_store_indices(app* e) {
return expr_container(e->get_args() + 1, e->get_args() + e->get_num_args() - 1);
}
inline expr* array_store_elem(app* e) {
return e->get_arg(e->get_num_args() - 1);
}
enum array_sort_kind {
ARRAY_SORT,
_SET_SORT
};
enum array_op_kind {
OP_STORE,
OP_SELECT,
OP_CONST_ARRAY,
OP_ARRAY_EXT,
OP_ARRAY_DEFAULT,
OP_ARRAY_MAP,
OP_SET_UNION,
OP_SET_INTERSECT,
OP_SET_DIFFERENCE,
OP_SET_COMPLEMENT,
OP_SET_SUBSET,
OP_AS_ARRAY, // used for model construction
LAST_ARRAY_OP
};
class array_decl_plugin : public decl_plugin {
symbol m_store_sym;
symbol m_select_sym;
symbol m_const_sym;
symbol m_default_sym;
symbol m_map_sym;
symbol m_set_union_sym;
symbol m_set_intersect_sym;
symbol m_set_difference_sym;
symbol m_set_complement_sym;
symbol m_set_subset_sym;
symbol m_array_ext_sym;
symbol m_as_array_sym;
bool check_set_arguments(unsigned arity, sort * const * domain);
func_decl * mk_const(sort* ty, unsigned arity, sort * const * domain);
func_decl * mk_map(func_decl* f, unsigned arity, sort* const* domain);
func_decl * mk_default(unsigned arity, sort* const* domain);
func_decl * mk_select(unsigned arity, sort * const * domain);
func_decl * mk_store(unsigned arity, sort * const * domain);
func_decl * mk_array_ext(unsigned arity, sort * const * domain, unsigned i);
func_decl * mk_set_union(unsigned arity, sort * const * domain);
func_decl * mk_set_intersect(unsigned arity, sort * const * domain);
func_decl * mk_set_difference(unsigned arity, sort * const * domain);
func_decl * mk_set_complement(unsigned arity, sort * const * domain);
func_decl * mk_set_subset(unsigned arity, sort * const * domain);
func_decl * mk_as_array(func_decl * f);
bool is_array_sort(sort* s) const;
public:
array_decl_plugin();
decl_plugin * mk_fresh() override {
return alloc(array_decl_plugin);
}
//
// Contract for sort:
// parameters[0] - 1st dimension
// ...
// parameters[n-1] - nth dimension
// parameters[n] - range
//
sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) override;
//
// Contract for func_decl:
// parameters[0] - array sort
// Contract for others:
// no parameters
func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) override;
void get_op_names(svector<builtin_name> & op_names, symbol const & logic) override;
void get_sort_names(svector<builtin_name> & sort_names, symbol const & logic) override;
expr * get_some_value(sort * s) override;
bool is_fully_interp(sort * s) const override;
bool is_value(app * e) const override;
bool is_unique_value(app* e) const override;
};
class array_recognizers {
protected:
family_id m_fid;
public:
array_recognizers(family_id fid):m_fid(fid) {}
family_id get_family_id() const { return m_fid; }
bool is_array(sort* s) const { return is_sort_of(s, m_fid, ARRAY_SORT);}
bool is_array(expr* n) const { return is_array(n->get_sort()); }
bool is_select(expr* n) const { return is_app_of(n, m_fid, OP_SELECT); }
bool is_store(expr* n) const { return is_app_of(n, m_fid, OP_STORE); }
bool is_const(expr* n) const { return is_app_of(n, m_fid, OP_CONST_ARRAY); }
bool is_ext(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_EXT); }
bool is_ext(func_decl const* f) const { return is_decl_of(f, m_fid, OP_ARRAY_EXT); }
bool is_map(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_MAP); }
bool is_union(expr* n) const { return is_app_of(n, m_fid, OP_SET_UNION); }
bool is_intersect(expr* n) const { return is_app_of(n, m_fid, OP_SET_INTERSECT); }
bool is_difference(expr* n) const { return is_app_of(n, m_fid, OP_SET_DIFFERENCE); }
bool is_complement(expr* n) const { return is_app_of(n, m_fid, OP_SET_COMPLEMENT); }
bool is_as_array(expr * n) const { return is_app_of(n, m_fid, OP_AS_ARRAY); }
bool is_as_array(expr * n, func_decl*& f) const { return is_as_array(n) && (f = get_as_array_func_decl(n), true); }
bool is_select(func_decl* f) const { return is_decl_of(f, m_fid, OP_SELECT); }
bool is_store(func_decl* f) const { return is_decl_of(f, m_fid, OP_STORE); }
bool is_const(func_decl* f) const { return is_decl_of(f, m_fid, OP_CONST_ARRAY); }
bool is_map(func_decl* f) const { return is_decl_of(f, m_fid, OP_ARRAY_MAP); }
bool is_union(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_UNION); }
bool is_intersect(func_decl* f) const { return is_decl_of(f, m_fid, OP_SET_INTERSECT); }
bool is_as_array(func_decl* f) const { return is_decl_of(f, m_fid, OP_AS_ARRAY); }
bool is_default(func_decl* f) const { return is_decl_of(f, m_fid, OP_ARRAY_DEFAULT); }
bool is_default(expr* n) const { return is_app_of(n, m_fid, OP_ARRAY_DEFAULT); }
bool is_subset(expr const* n) const { return is_app_of(n, m_fid, OP_SET_SUBSET); }
bool is_as_array(func_decl* f, func_decl*& g) const { return is_decl_of(f, m_fid, OP_AS_ARRAY) && (g = get_as_array_func_decl(f), true); }
bool is_map(func_decl* f, func_decl*& g) const { return is_map(f) && (g = get_map_func_decl(f), true); }
func_decl * get_as_array_func_decl(expr * n) const;
func_decl * get_as_array_func_decl(func_decl* f) const;
func_decl * get_map_func_decl(func_decl* f) const;
func_decl * get_map_func_decl(expr* e) const { return get_map_func_decl(to_app(e)->get_decl()); }
bool is_const(expr* e, expr*& v) const;
bool is_store_ext(expr* e, expr_ref& a, expr_ref_vector& args, expr_ref& value);
bool is_select1(expr* n) const { return is_select(n) && to_app(n)->get_num_args() == 2; }
bool is_select1(expr* n, expr*& a, expr*& i) const {
return is_select1(n) && (a = to_app(n)->get_arg(0), i = to_app(n)->get_arg(1), true);
}
bool is_store1(expr* n) const { return is_store(n) && to_app(n)->get_num_args() == 3; }
bool is_store1(expr* n, expr*& a, expr*& i, expr*& v) const {
app* _n;
return is_store1(n) && (_n = to_app(n), a = _n->get_arg(0), i = _n->get_arg(1), v = _n->get_arg(2), true);
}
MATCH_BINARY(is_subset);
};
class array_util : public array_recognizers {
ast_manager & m_manager;
public:
array_util(ast_manager& m);
ast_manager & get_manager() const { return m_manager; }
bool is_as_array_tree(expr * n);
app * mk_store(unsigned num_args, expr * const * args) const {
return m_manager.mk_app(m_fid, OP_STORE, 0, nullptr, num_args, args);
}
app * mk_store(expr_ref_vector const& args) const {
return mk_store(args.size(), args.data());
}
app * mk_store(ptr_vector<expr> const& args) const {
return mk_store(args.size(), args.data());
}
app* mk_store(ptr_buffer<expr> const& args) const {
return mk_store(args.size(), args.data());
}
app * mk_select(expr* a, expr* i) const {
expr* args[2] = { a, i };
return mk_select(2, args);
}
app* mk_select(expr* a, expr* i, expr* j) const {
expr* args[3] = { a, i, j };
return mk_select(3, args);
}
app * mk_select(unsigned num_args, expr * const * args) const {
return m_manager.mk_app(m_fid, OP_SELECT, 0, nullptr, num_args, args);
}
app * mk_select(ptr_vector<expr> const& args) const {
return mk_select(args.size(), args.data());
}
app * mk_select(ptr_buffer<expr> const& args) const {
return mk_select(args.size(), args.data());
}
app * mk_select(expr_ref_vector const& args) const {
return mk_select(args.size(), args.data());
}
app * mk_map(func_decl * f, unsigned num_args, expr * const * args) {
parameter p(f);
return m_manager.mk_app(m_fid, OP_ARRAY_MAP, 1, &p, num_args, args);
}
expr * mk_map_assoc(func_decl * f, unsigned num_args, expr * const * args) {
expr* r = args[0];
for (unsigned i = 1; i < num_args; ++i) {
expr* es[2] = { r, args[i] };
r = mk_map(f, 2, es);
}
return r;
}
app * mk_default(expr * a) {
return m_manager.mk_app(m_fid, OP_ARRAY_DEFAULT, 0, nullptr, 1, &a);
}
app * mk_const_array(sort * s, expr * v) {
parameter param(s);
return m_manager.mk_app(m_fid, OP_CONST_ARRAY, 1, &param, 1, &v);
}
app * mk_empty_set(sort * s) {
return mk_const_array(s, m_manager.mk_false());
}
app * mk_full_set(sort * s) {
return mk_const_array(s, m_manager.mk_true());
}
app * mk_setminus(expr* s1, expr* s2) {
return m_manager.mk_app(m_fid, OP_SET_DIFFERENCE, s1, s2);
}
app * mk_intersection(expr* s1, expr* s2) {
return m_manager.mk_app(m_fid, OP_SET_INTERSECT, s1, s2);
}
app * mk_union(expr* s1, expr* s2) {
return m_manager.mk_app(m_fid, OP_SET_UNION, s1, s2);
}
func_decl * mk_array_ext(sort* domain, unsigned i);
sort * mk_array_sort(sort* dom, sort* range) { return mk_array_sort(1, &dom, range); }
sort * mk_array_sort(sort* a, sort* b, sort* range) { sort* dom[2] = { a, b }; return mk_array_sort(2, dom, range); }
sort * mk_array_sort(sort* a, sort* b, sort* c, sort* range) { sort* dom[3] = { a, b, c}; return mk_array_sort(3, dom, range); }
sort * mk_array_sort(unsigned arity, sort* const* domain, sort* range);
app * mk_as_array(func_decl * f) {
parameter param(f);
return m_manager.mk_app(m_fid, OP_AS_ARRAY, 1, &param, 0, nullptr, nullptr);
}
sort* get_array_range_rec(sort* s) {
while (is_array(s)) {
s = get_array_range(s);
}
return s;
}
};