3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00
z3/src/smt/theory_lra.cpp
Nikolaj Bjorner 833b54a12c fix dotnet build
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-02-26 09:44:21 -08:00

4003 lines
144 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
theory_lra.cpp
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach) 2016-25-3
Nikolaj Bjorner (nbjorner)
Revision History:
--*/
#include "util/stopwatch.h"
#include "math/lp/lp_solver.h"
#include "math/lp/lp_primal_simplex.h"
#include "math/lp/lp_dual_simplex.h"
#include "math/lp/indexed_value.h"
#include "math/lp/lar_solver.h"
#include "util/nat_set.h"
#include "util/optional.h"
#include "util/inf_rational.h"
#include "util/cancel_eh.h"
#include "util/scoped_timer.h"
#include "util/nat_set.h"
#include "ast/ast_pp.h"
#include "model/numeral_factory.h"
#include "smt/smt_theory.h"
#include "smt/smt_context.h"
#include "smt/theory_lra.h"
#include "smt/smt_model_generator.h"
#include "smt/arith_eq_adapter.h"
#include "util/nat_set.h"
#include "math/lp/nra_solver.h"
#include "tactic/generic_model_converter.h"
#include "math/polynomial/algebraic_numbers.h"
#include "math/polynomial/polynomial.h"
#include "ast/ast_pp.h"
#include "util/cancel_eh.h"
#include "util/scoped_timer.h"
#include "math/lp/nla_solver.h"
typedef lp::var_index lpvar;
namespace lp_api {
enum bound_kind { lower_t, upper_t };
std::ostream& operator<<(std::ostream& out, bound_kind const& k) {
switch (k) {
case lower_t: return out << "<=";
case upper_t: return out << ">=";
}
return out;
}
class bound {
smt::bool_var m_bv;
smt::theory_var m_var;
lpvar m_vi;
bool m_is_int;
rational m_value;
bound_kind m_bound_kind;
lp::constraint_index m_constraints[2];
public:
bound(smt::bool_var bv, smt::theory_var v, lpvar vi, bool is_int, rational const & val, bound_kind k, lp::constraint_index ct, lp::constraint_index cf):
m_bv(bv),
m_var(v),
m_vi(vi),
m_is_int(is_int),
m_value(val),
m_bound_kind(k) {
m_constraints[0] = cf;
m_constraints[1] = ct;
}
virtual ~bound() {}
smt::theory_var get_var() const { return m_var; }
lpvar lp_solver_var() const { return m_vi; }
smt::bool_var get_bv() const { return m_bv; }
bound_kind get_bound_kind() const { return m_bound_kind; }
bool is_int() const { return m_is_int; }
rational const& get_value() const { return m_value; }
lp::constraint_index get_constraint(bool b) const { return m_constraints[b]; }
inf_rational get_value(bool is_true) const {
if (is_true) return inf_rational(m_value); // v >= value or v <= value
if (m_is_int) {
SASSERT(m_value.is_int());
if (m_bound_kind == lower_t) return inf_rational(m_value - rational::one()); // v <= value - 1
return inf_rational(m_value + rational::one()); // v >= value + 1
}
else {
if (m_bound_kind == lower_t) return inf_rational(m_value, false); // v <= value - epsilon
return inf_rational(m_value, true); // v >= value + epsilon
}
}
virtual std::ostream& display(std::ostream& out) const {
return out << m_value << " " << get_bound_kind() << " v" << get_var();
}
};
std::ostream& operator<<(std::ostream& out, bound const& b) {
return b.display(out);
}
struct stats {
unsigned m_assert_lower;
unsigned m_assert_upper;
unsigned m_add_rows;
unsigned m_bounds_propagations;
unsigned m_num_iterations;
unsigned m_num_iterations_with_no_progress;
unsigned m_need_to_solve_inf;
unsigned m_fixed_eqs;
unsigned m_conflicts;
unsigned m_bound_propagations1;
unsigned m_bound_propagations2;
unsigned m_assert_diseq;
unsigned m_gomory_cuts;
unsigned m_nla_explanations;
unsigned m_nla_lemmas;
unsigned m_assume_eqs;
unsigned m_branch;
stats() { reset(); }
void reset() {
memset(this, 0, sizeof(*this));
}
};
typedef optional<inf_rational> opt_inf_rational;
}
namespace smt {
typedef ptr_vector<lp_api::bound> lp_bounds;
class theory_lra::imp {
struct scope {
unsigned m_bounds_lim;
unsigned m_idiv_lim;
unsigned m_asserted_qhead;
unsigned m_asserted_atoms_lim;
unsigned m_underspecified_lim;
expr* m_not_handled;
};
struct delayed_atom {
unsigned m_bv;
bool m_is_true;
delayed_atom(unsigned b, bool t): m_bv(b), m_is_true(t) {}
};
class resource_limit : public lp::lp_resource_limit {
imp& m_imp;
public:
resource_limit(imp& i): m_imp(i) { }
bool get_cancel_flag() override { return m_imp.m.canceled(); }
};
theory_lra& th;
ast_manager& m;
theory_arith_params& m_arith_params;
arith_util a;
arith_eq_adapter m_arith_eq_adapter;
vector<rational> m_columns;
// temporary values kept during internalization
struct internalize_state {
expr_ref_vector m_terms;
vector<rational> m_coeffs;
svector<theory_var> m_vars;
rational m_offset;
ptr_vector<expr> m_terms_to_internalize;
internalize_state(ast_manager& m): m_terms(m) {}
void reset() {
m_terms.reset();
m_coeffs.reset();
m_offset.reset();
m_vars.reset();
m_terms_to_internalize.reset();
}
};
ptr_vector<internalize_state> m_internalize_states;
unsigned m_internalize_head;
class scoped_internalize_state {
imp& m_imp;
internalize_state& m_st;
internalize_state& push_internalize(imp& i) {
if (i.m_internalize_head == i.m_internalize_states.size()) {
i.m_internalize_states.push_back(alloc(internalize_state, i.m));
}
internalize_state& st = *i.m_internalize_states[i.m_internalize_head++];
st.reset();
return st;
}
public:
scoped_internalize_state(imp& i): m_imp(i), m_st(push_internalize(i)) {}
~scoped_internalize_state() { --m_imp.m_internalize_head; }
expr_ref_vector& terms() { return m_st.m_terms; }
vector<rational>& coeffs() { return m_st.m_coeffs; }
svector<theory_var>& vars() { return m_st.m_vars; }
rational& offset() { return m_st.m_offset; }
ptr_vector<expr>& terms_to_internalize() { return m_st.m_terms_to_internalize; }
void push(expr* e, rational c) { m_st.m_terms.push_back(e); m_st.m_coeffs.push_back(c); }
void set_back(unsigned i) {
if (terms().size() == i + 1) return;
terms()[i] = terms().back();
coeffs()[i] = coeffs().back();
terms().pop_back();
coeffs().pop_back();
}
};
typedef vector<std::pair<rational, lpvar>> var_coeffs;
var_coeffs m_left_side; // constraint left side
mutable std::unordered_map<lpvar, rational> m_variable_values; // current model
lpvar m_one_var;
lpvar m_zero_var;
lpvar m_rone_var;
lpvar m_rzero_var;
enum constraint_source {
inequality_source,
equality_source,
definition_source,
null_source
};
svector<constraint_source> m_constraint_sources;
svector<literal> m_inequalities; // asserted rows corresponding to inequality literals.
svector<enode_pair> m_equalities; // asserted rows corresponding to equalities.
svector<theory_var> m_definitions; // asserted rows corresponding to definitions
svector<delayed_atom> m_asserted_atoms;
expr* m_not_handled;
ptr_vector<app> m_underspecified;
ptr_vector<expr> m_idiv_terms;
vector<ptr_vector<lp_api::bound> > m_use_list; // bounds where variables are used.
// attributes for incremental version:
u_map<lp_api::bound*> m_bool_var2bound;
vector<lp_bounds> m_bounds;
unsigned_vector m_unassigned_bounds;
unsigned_vector m_bounds_trail;
unsigned m_asserted_qhead;
svector<unsigned> m_to_check; // rows that should be checked for theory propagation
svector<std::pair<theory_var, theory_var> > m_assume_eq_candidates;
unsigned m_assume_eq_head;
unsigned m_num_conflicts;
// non-linear arithmetic
scoped_ptr<nra::solver> m_nra;
scoped_ptr<nla::solver> m_nla;
bool m_use_nra_model;
scoped_ptr<scoped_anum> m_a1, m_a2;
struct switcher {
theory_lra::imp& m_th_imp;
scoped_ptr<nra::solver>* m_nra;
scoped_ptr<nla::solver>* m_nla;
bool m_use_nla;
switcher(theory_lra::imp& i): m_th_imp(i), m_nra(nullptr), m_nla(nullptr) {
}
bool need_check() {
if (m_use_nla) {
if (m_nla != nullptr)
return (*m_nla)->need_check();
}
else {
if (m_nra != nullptr)
return (*m_nra)->need_check();
}
return false;
}
void push() {
if (m_nla != nullptr)
(*m_nla)->push();
if (m_nra != nullptr)
(*m_nra)->push();
}
void pop(unsigned scopes) {
if (m_nla != nullptr)
(*m_nla)->pop(scopes);
if (m_nra != nullptr)
(*m_nra)->pop(scopes);
}
void add_monic(lpvar v, unsigned sz, lpvar const* vs) {
if (m_use_nla) {
m_th_imp.ensure_nla();
(*m_nla)->add_monic(v, sz, vs);
}
else {
m_th_imp.ensure_nra();
(*m_nra)->add_monic(v, sz, vs);
}
}
};
// integer arithmetic
scoped_ptr<lp::int_solver> m_lia;
struct var_value_eq {
imp & m_th;
var_value_eq(imp & th):m_th(th) {}
bool operator()(theory_var v1, theory_var v2) const {
if (m_th.is_int(v1) != m_th.is_int(v2)) {
return false;
}
return m_th.is_eq(v1, v2);
}
};
struct var_value_hash {
imp & m_th;
var_value_hash(imp & th):m_th(th) {}
unsigned operator()(theory_var v) const {
if (m_th.m_use_nra_model) {
return m_th.is_int(v);
}
else {
return (unsigned)std::hash<lp::mpq>()(m_th.get_value(v));
}
}
};
int_hashtable<var_value_hash, var_value_eq> m_model_eqs;
svector<scope> m_scopes;
lp_api::stats m_stats;
arith_factory* m_factory;
scoped_ptr<lp::lar_solver> m_solver;
resource_limit m_resource_limit;
lp_bounds m_new_bounds;
switcher m_switcher;
symbol m_farkas;
context& ctx() const { return th.get_context(); }
theory_id get_id() const { return th.get_id(); }
bool is_int(theory_var v) const { return is_int(get_enode(v)); }
bool is_int(enode* n) const { return a.is_int(n->get_owner()); }
enode* get_enode(theory_var v) const { return th.get_enode(v); }
enode* get_enode(expr* e) const { return ctx().get_enode(e); }
expr* get_owner(theory_var v) const { return get_enode(v)->get_owner(); }
lp::lar_solver& lp(){ return *m_solver.get(); }
const lp::lar_solver& lp() const { return *m_solver.get(); }
void init_solver() {
if (m_solver) return;
reset_variable_values();
m_solver = alloc(lp::lar_solver);
// initialize 0, 1 variables:
get_one(true);
get_one(false);
get_zero(true);
get_zero(false);
smt_params_helper lpar(ctx().get_params());
lp().settings().set_resource_limit(m_resource_limit);
lp().settings().simplex_strategy() = static_cast<lp::simplex_strategy_enum>(lpar.arith_simplex_strategy());
lp().settings().bound_propagation() = BP_NONE != propagation_mode();
lp().settings().m_enable_hnf = lpar.arith_enable_hnf();
lp().settings().m_print_external_var_name = lpar.arith_print_ext_var_names();
lp().set_track_pivoted_rows(lpar.arith_bprop_on_pivoted_rows());
lp().settings().report_frequency = lpar.arith_rep_freq();
lp().settings().print_statistics = lpar.arith_print_stats();
// todo : do not use m_arith_branch_cut_ratio for deciding on cheap cuts
unsigned branch_cut_ratio = ctx().get_fparams().m_arith_branch_cut_ratio;
lp().set_cut_strategy(branch_cut_ratio);
lp().settings().m_int_run_gcd_test = ctx().get_fparams().m_arith_gcd_test;
lp().settings().set_random_seed(ctx().get_fparams().m_random_seed);
m_switcher.m_use_nla = lpar.arith_nla();
m_lia = alloc(lp::int_solver, *m_solver.get());
get_one(true);
get_zero(true);
get_one(false);
get_zero(false);
}
void ensure_nra() {
if (!m_nra) {
m_nra = alloc(nra::solver, *m_solver.get(), m.limit(), ctx().get_params());
m_switcher.m_nra = &m_nra;
for (auto const& _s : m_scopes) {
(void)_s;
m_nra->push();
}
}
}
lpvar add_const(int c, lpvar& var, bool is_int) {
if (var != UINT_MAX) {
return var;
}
app_ref cnst(a.mk_numeral(rational(c), is_int), m);
mk_enode(cnst);
theory_var v = mk_var(cnst);
var = lp().add_var(v, true);
lp().push();
add_def_constraint(lp().add_var_bound(var, lp::GE, rational(c)));
add_def_constraint(lp().add_var_bound(var, lp::LE, rational(c)));
TRACE("arith", tout << "add " << cnst << ", var = " << var << "\n";);
return var;
}
lpvar get_one(bool is_int) {
return add_const(1, is_int ? m_one_var : m_rone_var, is_int);
}
lpvar get_zero(bool is_int) {
return add_const(0, is_int ? m_zero_var : m_rzero_var, is_int);
}
void ensure_nla() {
if (!m_nla) {
m_nla = alloc(nla::solver, *m_solver.get());
m_switcher.m_nla = &m_nla;
for (auto const& _s : m_scopes) {
(void)_s;
m_nla->push();
}
smt_params_helper prms(ctx().get_params());
m_nla->get_core()->m_nla_settings.run_order() = prms.arith_nl_order();
m_nla->get_core()->m_nla_settings.run_tangents() = prms.arith_nl_tangents();
m_nla->get_core()->m_nla_settings.run_horner() = prms.arith_nl_horner();
m_nla->get_core()->m_nla_settings.horner_subs_fixed() = prms.arith_nl_horner_subs_fixed();
m_nla->get_core()->m_nla_settings.horner_frequency() = prms.arith_nl_horner_frequency();
m_nla->get_core()->m_nla_settings.horner_row_length_limit() = prms.arith_nl_horner_row_length_limit();
m_nla->get_core()->m_nla_settings.run_grobner() = prms.arith_nl_grobner();
m_nla->get_core()->m_nla_settings.grobner_subs_fixed() = prms.arith_nl_grobner_subs_fixed();
m_nla->get_core()->m_nla_settings.grobner_eqs_growth() = prms.arith_nl_grobner_eqs_growth();
m_nla->get_core()->m_nla_settings.grobner_expr_size_growth() = prms.arith_nl_grobner_expr_size_growth();
m_nla->get_core()->m_nla_settings.grobner_expr_degree_growth() = prms.arith_nl_grobner_expr_degree_growth();
m_nla->get_core()->m_nla_settings.grobner_max_simplified() = prms.arith_nl_grobner_max_simplified();
m_nla->get_core()->m_nla_settings.grobner_number_of_conflicts_to_report() = prms.arith_nl_grobner_cnfl_to_report();
m_nla->get_core()->m_grobner_quota = prms.arith_nl_gr_q();
}
}
void found_unsupported(expr* n) {
ctx().push_trail(value_trail<context, expr*>(m_not_handled));
m_not_handled = n;
}
void found_underspecified(expr* n) {
if (is_app(n) && is_underspecified(to_app(n))) {
TRACE("arith", tout << "Unhandled: " << mk_pp(n, m) << "\n";);
m_underspecified.push_back(to_app(n));
}
expr* e = nullptr;
if (a.is_div(n)) {
e = a.mk_div0(to_app(n)->get_arg(0), to_app(n)->get_arg(1));
}
else if (a.is_idiv(n)) {
e = a.mk_idiv0(to_app(n)->get_arg(0), to_app(n)->get_arg(1));
}
else if (a.is_rem(n)) {
e = a.mk_rem0(to_app(n)->get_arg(0), to_app(n)->get_arg(1));
}
else if (a.is_mod(n)) {
e = a.mk_mod0(to_app(n)->get_arg(0), to_app(n)->get_arg(1));
}
else if (a.is_power(n)) {
e = a.mk_power0(to_app(n)->get_arg(0), to_app(n)->get_arg(1));
}
if (e) {
literal lit = th.mk_eq(e, n, false);
ctx().mark_as_relevant(lit);
ctx().assign(lit, nullptr);
}
}
bool is_numeral(expr* term, rational& r) {
rational mul(1);
do {
if (a.is_numeral(term, r)) {
r *= mul;
return true;
}
if (a.is_uminus(term, term)) {
mul.neg();
continue;
}
if (a.is_to_real(term, term)) {
continue;
}
return false;
}
while (false);
return false;
}
void linearize_term(expr* term, scoped_internalize_state& st) {
st.push(term, rational::one());
linearize(st);
}
void linearize_ineq(expr* lhs, expr* rhs, scoped_internalize_state& st) {
st.push(lhs, rational::one());
st.push(rhs, rational::minus_one());
linearize(st);
}
void linearize(scoped_internalize_state& st) {
expr_ref_vector & terms = st.terms();
svector<theory_var>& vars = st.vars();
vector<rational>& coeffs = st.coeffs();
rational& offset = st.offset();
rational r;
expr* n1, *n2;
unsigned index = 0;
while (index < terms.size()) {
SASSERT(index >= vars.size());
expr* n = terms[index].get();
st.terms_to_internalize().push_back(n);
if (a.is_add(n)) {
for (expr* arg : *to_app(n)) {
st.push(arg, coeffs[index]);
}
st.set_back(index);
}
else if (a.is_sub(n)) {
unsigned sz = to_app(n)->get_num_args();
terms[index] = to_app(n)->get_arg(0);
for (unsigned i = 1; i < sz; ++i) {
st.push(to_app(n)->get_arg(i), -coeffs[index]);
}
}
else if (a.is_mul(n, n1, n2) && is_numeral(n1, r)) {
coeffs[index] *= r;
terms[index] = n2;
st.terms_to_internalize().push_back(n1);
}
else if (a.is_mul(n, n1, n2) && is_numeral(n2, r)) {
coeffs[index] *= r;
terms[index] = n1;
st.terms_to_internalize().push_back(n2);
}
else if (a.is_mul(n)) {
theory_var v;
internalize_mul(to_app(n), v, r);
coeffs[index] *= r;
coeffs[vars.size()] = coeffs[index];
vars.push_back(v);
++index;
}
else if (a.is_numeral(n, r)) {
offset += coeffs[index]*r;
++index;
}
else if (a.is_uminus(n, n1)) {
coeffs[index].neg();
terms[index] = n1;
}
else if (is_app(n) && a.get_family_id() == to_app(n)->get_family_id()) {
bool is_first = !ctx().e_internalized(n);
app* t = to_app(n);
internalize_args(t);
mk_enode(t);
theory_var v;
if (a.is_to_real(n, n1)) {
v = mk_var(n1);
}
else {
v = mk_var(n);
}
coeffs[vars.size()] = coeffs[index];
vars.push_back(v);
++index;
if (!is_first) {
// skip recursive internalization
}
else if (a.is_to_int(n, n1)) {
if (!ctx().relevancy())
mk_to_int_axiom(t);
}
else if (a.is_to_real(n, n1)) {
// already handled
}
else if (a.is_idiv(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
m_idiv_terms.push_back(n);
app * mod = a.mk_mod(n1, n2);
ctx().internalize(mod, false);
if (ctx().relevancy()) ctx().add_relevancy_dependency(n, mod);
}
else if (a.is_mod(n, n1, n2)) {
if (!ctx().relevancy()) mk_idiv_mod_axioms(n1, n2);
}
else if (a.is_rem(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
if (!ctx().relevancy()) mk_rem_axiom(n1, n2);
}
else if (a.is_div(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
if (!ctx().relevancy()) mk_div_axiom(n1, n2);
}
else if (!a.is_div0(n) && !a.is_mod0(n) && !a.is_idiv0(n) && !a.is_rem0(n)) {
found_unsupported(n);
}
else {
// no-op
}
}
else {
if (is_app(n)) {
internalize_args(to_app(n));
}
theory_var v = mk_var(n);
coeffs[vars.size()] = coeffs[index];
vars.push_back(v);
++index;
}
}
for (unsigned i = st.terms_to_internalize().size(); i-- > 0; ) {
expr* n = st.terms_to_internalize()[i];
if (is_app(n)) {
mk_enode(to_app(n));
}
}
st.terms_to_internalize().reset();
}
void internalize_args(app* t) {
for (unsigned i = 0; reflect(t) && i < t->get_num_args(); ++i) {
if (!ctx().e_internalized(t->get_arg(i))) {
ctx().internalize(t->get_arg(i), false);
}
}
}
void internalize_mul(app* t, theory_var& v, rational& r) {
SASSERT(a.is_mul(t));
bool _has_var = has_var(t);
if (!_has_var) {
internalize_args(t);
mk_enode(t);
}
r = rational::one();
rational r1;
v = mk_var(t);
svector<lpvar> vars;
ptr_buffer<expr> todo;
todo.push_back(t);
while (!todo.empty()) {
expr* n = todo.back();
todo.pop_back();
if (a.is_mul(n)) {
for (expr* arg : *to_app(n)) {
todo.push_back(arg);
}
}
else if (a.is_numeral(n, r1)) {
r *= r1;
}
else {
if (!ctx().e_internalized(n)) {
ctx().internalize(n, false);
}
vars.push_back(register_theory_var_in_lar_solver(mk_var(n)));
}
}
TRACE("arith", tout << "v" << v << " := " << mk_pp(t, m) << " " << _has_var << "\n";);
if (!_has_var) {
if (m_solver->m_need_register_terms == false) {
m_solver->m_need_register_terms = true;
m_solver->register_existing_terms();
}
m_switcher.add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
}
}
enode * mk_enode(app * n) {
TRACE("arith", tout << expr_ref(n, m) << "\n";);
if (ctx().e_internalized(n)) {
return get_enode(n);
}
else {
return ctx().mk_enode(n, !reflect(n), false, enable_cgc_for(n));
}
}
bool enable_cgc_for(app * n) const {
// Congruence closure is not enabled for (+ ...) and (* ...) applications.
return !(n->get_family_id() == get_id() && (n->get_decl_kind() == OP_ADD || n->get_decl_kind() == OP_MUL));
}
void mk_clause(literal l1, literal l2, unsigned num_params, parameter * params) {
TRACE("arith", literal lits[2]; lits[0] = l1; lits[1] = l2; ctx().display_literals_verbose(tout, 2, lits); tout << "\n";);
ctx().mk_th_axiom(get_id(), l1, l2, num_params, params);
}
void mk_clause(literal l1, literal l2, literal l3, unsigned num_params, parameter * params) {
TRACE("arith", literal lits[3]; lits[0] = l1; lits[1] = l2; lits[2] = l3; ctx().display_literals_verbose(tout, 3, lits); tout << "\n";);
ctx().mk_th_axiom(get_id(), l1, l2, l3, num_params, params);
}
bool is_underspecified(app* n) const {
if (n->get_family_id() == get_id()) {
switch (n->get_decl_kind()) {
case OP_DIV:
case OP_IDIV:
case OP_REM:
case OP_MOD:
case OP_DIV0:
case OP_IDIV0:
case OP_REM0:
case OP_MOD0:
return true;
default:
break;
}
}
return false;
}
bool reflect(app* n) const {
return m_arith_params.m_arith_reflect || is_underspecified(n);
}
bool has_var(expr* n) {
if (!ctx().e_internalized(n)) {
return false;
}
enode* e = get_enode(n);
return th.is_attached_to_var(e);
}
theory_var mk_var(expr* n, bool internalize = true) {
if (!ctx().e_internalized(n)) {
ctx().internalize(n, false);
}
enode* e = get_enode(n);
theory_var v;
if (!th.is_attached_to_var(e)) {
v = th.mk_var(e);
SASSERT(m_bounds.size() <= static_cast<unsigned>(v) || m_bounds[v].empty());
if (m_bounds.size() <= static_cast<unsigned>(v)) {
m_bounds.push_back(lp_bounds());
m_unassigned_bounds.push_back(0);
}
ctx().attach_th_var(e, &th, v);
}
else {
v = e->get_th_var(get_id());
}
SASSERT(null_theory_var != v);
return v;
}
bool theory_var_is_registered_in_lar_solver(theory_var v) const {
return lp().external_is_used(v);
}
bool const has_int() const { return lp().has_int_var(); }
lpvar register_theory_var_in_lar_solver(theory_var v) {
lpvar lpv = lp().external_to_local(v);
if (lpv != lp::null_lpvar)
return lpv;
return lp().add_var(v, is_int(v));
}
void init_left_side(scoped_internalize_state& st) {
SASSERT(all_zeros(m_columns));
svector<theory_var> const& vars = st.vars();
vector<rational> const& coeffs = st.coeffs();
for (unsigned i = 0; i < vars.size(); ++i) {
theory_var var = vars[i];
rational const& coeff = coeffs[i];
if (m_columns.size() <= static_cast<unsigned>(var)) {
m_columns.setx(var, coeff, rational::zero());
}
else {
m_columns[var] += coeff;
}
}
m_left_side.clear();
// reset the coefficients after they have been used.
for (unsigned i = 0; i < vars.size(); ++i) {
theory_var var = vars[i];
rational const& r = m_columns[var];
if (!r.is_zero()) {
m_left_side.push_back(std::make_pair(r, register_theory_var_in_lar_solver(var)));
m_columns[var].reset();
}
}
SASSERT(all_zeros(m_columns));
}
bool all_zeros(vector<rational> const& v) const {
for (rational const& r : v) {
if (!r.is_zero()) {
return false;
}
}
return true;
}
void add_eq_constraint(lp::constraint_index index, enode* n1, enode* n2) {
m_constraint_sources.setx(index, equality_source, null_source);
m_equalities.setx(index, enode_pair(n1, n2), enode_pair(0, 0));
++m_stats.m_add_rows;
}
void add_ineq_constraint(lp::constraint_index index, literal lit) {
m_constraint_sources.setx(index, inequality_source, null_source);
m_inequalities.setx(index, lit, null_literal);
++m_stats.m_add_rows;
TRACE("arith", lp().constraints().display(tout, index) << " m_stats.m_add_rows = " << m_stats.m_add_rows << "\n";);
}
void add_def_constraint(lp::constraint_index index) {
m_constraint_sources.setx(index, definition_source, null_source);
m_definitions.setx(index, null_theory_var, null_theory_var);
++m_stats.m_add_rows;
}
void add_def_constraint(lp::constraint_index index, theory_var v) {
m_constraint_sources.setx(index, definition_source, null_source);
m_definitions.setx(index, v, null_theory_var);
++m_stats.m_add_rows;
}
bool is_infeasible() const {
return lp().get_status() == lp::lp_status::INFEASIBLE;
}
void internalize_eq(theory_var v1, theory_var v2) {
app_ref term(m.mk_fresh_const("eq", a.mk_real()), m);
scoped_internalize_state st(*this);
st.vars().push_back(v1);
st.vars().push_back(v2);
st.coeffs().push_back(rational::one());
st.coeffs().push_back(rational::minus_one());
theory_var z = internalize_linearized_def(term, st);
lpvar vi = register_theory_var_in_lar_solver(z);
add_def_constraint(lp().add_var_bound(vi, lp::LE, rational::zero()));
// if (is_infeasible()) {
// process_conflict(); // exit here?
// }
add_def_constraint(lp().add_var_bound(vi, lp::GE, rational::zero()));
// if (is_infeasible()) {
// process_conflict();
// }
TRACE("arith",
{
expr* o1 = get_enode(v1)->get_owner();
expr* o2 = get_enode(v2)->get_owner();
tout << "v" << v1 << " = " << "v" << v2 << ": "
<< mk_pp(o1, m) << " = " << mk_pp(o2, m) << "\n";
});
}
void del_bounds(unsigned old_size) {
for (unsigned i = m_bounds_trail.size(); i > old_size; ) {
--i;
unsigned v = m_bounds_trail[i];
lp_api::bound* b = m_bounds[v].back();
// del_use_lists(b);
dealloc(b);
m_bounds[v].pop_back();
}
m_bounds_trail.shrink(old_size);
}
void updt_unassigned_bounds(theory_var v, int inc) {
TRACE("arith", tout << "v" << v << " " << m_unassigned_bounds[v] << " += " << inc << "\n";);
ctx().push_trail(vector_value_trail<smt::context, unsigned, false>(m_unassigned_bounds, v));
m_unassigned_bounds[v] += inc;
}
bool is_unit_var(scoped_internalize_state& st) {
return st.offset().is_zero() && st.vars().size() == 1 && st.coeffs()[0].is_one();
}
bool is_one(scoped_internalize_state& st) {
return st.offset().is_one() && st.vars().empty();
}
bool is_zero(scoped_internalize_state& st) {
return st.offset().is_zero() && st.vars().empty();
}
theory_var internalize_def(app* term, scoped_internalize_state& st) {
TRACE("arith", tout << expr_ref(term, m) << "\n";);
if (ctx().e_internalized(term)) {
IF_VERBOSE(0, verbose_stream() << "repeated term\n";);
return mk_var(term, false);
}
linearize_term(term, st);
if (is_unit_var(st)) {
return st.vars()[0];
}
else {
theory_var v = mk_var(term);
SASSERT(null_theory_var != v);
st.coeffs().resize(st.vars().size() + 1);
st.coeffs()[st.vars().size()] = rational::minus_one();
st.vars().push_back(v);
return v;
}
}
// term - v = 0
theory_var internalize_def(app* term) {
scoped_internalize_state st(*this);
linearize_term(term, st);
return internalize_linearized_def(term, st);
}
lpvar get_lpvar(theory_var v) const {
return lp().external_to_local(v);
}
theory_var internalize_linearized_def(app* term, scoped_internalize_state& st) {
if (is_unit_var(st)) {
return st.vars()[0];
}
else if (is_one(st)) {
return get_one(a.is_int(term));
}
else if (is_zero(st)) {
return get_zero(a.is_int(term));
}
else {
init_left_side(st);
theory_var v = mk_var(term);
lpvar vi = get_lpvar(v);
TRACE("arith", tout << mk_pp(term, m) << " v" << v << " vi " << vi << "\n";);
if (vi == UINT_MAX) {
rational const& offset = st.offset();
if (!offset.is_zero()) {
m_left_side.push_back(std::make_pair(offset, get_one(a.is_int(term))));
}
SASSERT(!m_left_side.empty());
vi = lp().add_term(m_left_side, v);
SASSERT (lp().is_term(vi));
TRACE("arith_verbose", tout << "v" << v << " := " << mk_pp(term, m) << " slack: " << vi << " scopes: " << m_scopes.size() << "\n";
lp().print_term(lp().get_term(vi), tout) << "\n";);
}
rational val;
if (a.is_numeral(term, val)) {
m_fixed_var_table.insert(value_sort_pair(val, is_int(v)), v);
}
return v;
}
}
public:
imp(theory_lra& th, ast_manager& m, theory_arith_params& ap):
th(th), m(m),
m_arith_params(ap),
a(m),
m_arith_eq_adapter(th, ap, a),
m_internalize_head(0),
m_one_var(UINT_MAX),
m_zero_var(UINT_MAX),
m_rone_var(UINT_MAX),
m_rzero_var(UINT_MAX),
m_not_handled(nullptr),
m_asserted_qhead(0),
m_assume_eq_head(0),
m_num_conflicts(0),
m_use_nra_model(false),
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
m_solver(nullptr),
m_resource_limit(*this),
m_switcher(*this),
m_farkas("farkas") {
}
~imp() {
del_bounds(0);
std::for_each(m_internalize_states.begin(), m_internalize_states.end(), delete_proc<internalize_state>());
}
void init(context* ctx) {
init_solver();
}
void internalize_is_int(app * n) {
SASSERT(a.is_is_int(n));
(void) mk_enode(n);
if (!ctx().relevancy())
mk_is_int_axiom(n);
}
bool internalize_atom(app * atom, bool gate_ctx) {
SASSERT(!ctx().b_internalized(atom));
bool_var bv = ctx().mk_bool_var(atom);
ctx().set_var_theory(bv, get_id());
expr* n1, *n2;
rational r;
lp_api::bound_kind k;
theory_var v = null_theory_var;
if (a.is_le(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
v = internalize_def(to_app(n1));
k = lp_api::upper_t;
}
else if (a.is_ge(atom, n1, n2) && is_numeral(n2, r) && is_app(n1)) {
v = internalize_def(to_app(n1));
k = lp_api::lower_t;
}
else if (a.is_is_int(atom)) {
internalize_is_int(atom);
return true;
}
else {
TRACE("arith", tout << "Could not internalize " << mk_pp(atom, m) << "\n";);
found_unsupported(atom);
return true;
}
if (is_int(v) && !r.is_int()) {
r = (k == lp_api::upper_t) ? floor(r) : ceil(r);
}
lp_api::bound* b = mk_var_bound(bv, v, k, r);
m_bounds[v].push_back(b);
updt_unassigned_bounds(v, +1);
m_bounds_trail.push_back(v);
m_bool_var2bound.insert(bv, b);
TRACE("arith_verbose", tout << "Internalized " << mk_pp(atom, m) << "\n";);
mk_bound_axioms(*b);
//add_use_lists(b);
return true;
}
bool internalize_term(app * term) {
if (ctx().e_internalized(term) && th.is_attached_to_var(ctx().get_enode(term))) {
// skip
}
else {
internalize_def(term);
}
return true;
}
bool is_arith(enode* n) {
return n && n->get_th_var(get_id()) != null_theory_var;
}
void internalize_eq_eh(app * atom, bool_var) {
TRACE("arith_verbose", tout << mk_pp(atom, m) << "\n";);
expr* lhs = nullptr, *rhs = nullptr;
VERIFY(m.is_eq(atom, lhs, rhs));
enode * n1 = get_enode(lhs);
enode * n2 = get_enode(rhs);
if (is_arith(n1) && is_arith(n2) && n1 != n2) {
m_arith_eq_adapter.mk_axioms(n1, n2);
}
// internalization of ite expressions produces equalities of the form
// (= x (ite c x y)) and (= y (ite c x y))
// this step ensures that a shared enode is attached
// with the ite expression.
else if (m.is_ite(lhs) || m.is_ite(rhs)) {
// std::cout << "eq\n";
m_arith_eq_adapter.mk_axioms(n1, n2);
}
}
void assign_eh(bool_var v, bool is_true) {
TRACE("arith", tout << mk_pp(ctx().bool_var2expr(v), m) << " " << (is_true?"true":"false") << "\n";);
m_asserted_atoms.push_back(delayed_atom(v, is_true));
}
lbool get_phase(bool_var v) {
lp_api::bound* b;
if (!m_bool_var2bound.find(v, b)) {
return l_undef;
}
lp::lconstraint_kind k = lp::EQ;
switch (b->get_bound_kind()) {
case lp_api::lower_t:
k = lp::GE;
break;
case lp_api::upper_t:
k = lp::LE;
break;
default:
break;
}
auto vi = register_theory_var_in_lar_solver(b->get_var());
if (vi == lp::null_lpvar) {
return l_undef;
}
return m_solver->compare_values(vi, k, b->get_value()) ? l_true : l_false;
}
void new_eq_eh(theory_var v1, theory_var v2) {
// or internalize_eq(v1, v2);
m_arith_eq_adapter.new_eq_eh(v1, v2);
}
bool use_diseqs() const {
return true;
}
void new_diseq_eh(theory_var v1, theory_var v2) {
TRACE("arith", tout << "v" << v1 << " != " << "v" << v2 << "\n";);
++m_stats.m_assert_diseq;
m_arith_eq_adapter.new_diseq_eh(v1, v2);
}
void apply_sort_cnstr(enode* n, sort*) {
TRACE("arith", tout << "sort constraint: " << mk_pp(n->get_owner(), m) << "\n";);
#if 0
if (!th.is_attached_to_var(n)) {
theory_var v = mk_var(n->get_owner(), false);
auto vi = register_theory_var_in_lar_solver(v);
expr* e = nullptr;
if (a.is_to_real(n->get_owner(), e)) {
// TBD: add a way to bind equality between vi and wi in m_solver
}
}
#endif
}
void push_scope_eh() {
TRACE("arith", tout << "push\n";);
m_scopes.push_back(scope());
scope& sc = m_scopes.back();
sc.m_bounds_lim = m_bounds_trail.size();
sc.m_asserted_qhead = m_asserted_qhead;
sc.m_idiv_lim = m_idiv_terms.size();
sc.m_asserted_atoms_lim = m_asserted_atoms.size();
sc.m_not_handled = m_not_handled;
sc.m_underspecified_lim = m_underspecified.size();
lp().push();
m_switcher.push();
}
void pop_scope_eh(unsigned num_scopes) {
TRACE("arith", tout << "pop " << num_scopes << "\n";);
if (num_scopes == 0) {
return;
}
unsigned old_size = m_scopes.size() - num_scopes;
del_bounds(m_scopes[old_size].m_bounds_lim);
m_idiv_terms.shrink(m_scopes[old_size].m_idiv_lim);
m_asserted_atoms.shrink(m_scopes[old_size].m_asserted_atoms_lim);
m_asserted_qhead = m_scopes[old_size].m_asserted_qhead;
m_underspecified.shrink(m_scopes[old_size].m_underspecified_lim);
m_not_handled = m_scopes[old_size].m_not_handled;
m_scopes.resize(old_size);
lp().pop(num_scopes);
// VERIFY(l_false != make_feasible());
m_new_bounds.reset();
m_to_check.reset();
m_switcher.pop(num_scopes);
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
}
void restart_eh() {
m_arith_eq_adapter.restart_eh();
}
void relevant_eh(app* n) {
TRACE("arith", tout << mk_pp(n, m) << "\n";);
expr* n1, *n2;
if (a.is_mod(n, n1, n2))
mk_idiv_mod_axioms(n1, n2);
else if (a.is_rem(n, n1, n2))
mk_rem_axiom(n1, n2);
else if (a.is_div(n, n1, n2))
mk_div_axiom(n1, n2);
else if (a.is_to_int(n))
mk_to_int_axiom(n);
else if (a.is_is_int(n))
mk_is_int_axiom(n);
}
// n < 0 || rem(a, n) = mod(a, n)
// !n < 0 || rem(a, n) = -mod(a, n)
void mk_rem_axiom(expr* dividend, expr* divisor) {
expr_ref zero(a.mk_int(0), m);
expr_ref rem(a.mk_rem(dividend, divisor), m);
expr_ref mod(a.mk_mod(dividend, divisor), m);
expr_ref mmod(a.mk_uminus(mod), m);
expr_ref degz_expr(a.mk_ge(divisor, zero), m);
literal dgez = mk_literal(degz_expr);
literal pos = th.mk_eq(rem, mod, false);
literal neg = th.mk_eq(rem, mmod, false);
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_ite(degz_expr, ctx().bool_var2expr(pos.var()), ctx().bool_var2expr(neg.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~dgez, pos);
mk_axiom( dgez, neg);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// q = 0 or q * (p div q) = p
void mk_div_axiom(expr* p, expr* q) {
if (a.is_zero(q)) return;
literal eqz = th.mk_eq(q, a.mk_real(0), false);
literal eq = th.mk_eq(a.mk_mul(q, a.mk_div(p, q)), p, false);
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(ctx().bool_var2expr(eqz.var())), ctx().bool_var2expr(eq.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(eqz, eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// to_int (to_real x) = x
// to_real(to_int(x)) <= x < to_real(to_int(x)) + 1
void mk_to_int_axiom(app* n) {
expr* x = nullptr, *y = nullptr;
VERIFY (a.is_to_int(n, x));
if (a.is_to_real(x, y)) {
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_eq(n, y);
th.log_axiom_instantiation(body);
}
mk_axiom(th.mk_eq(y, n, false));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
else {
expr_ref to_r(a.mk_to_real(n), m);
expr_ref lo(a.mk_le(a.mk_sub(to_r, x), a.mk_real(0)), m);
expr_ref hi(a.mk_ge(a.mk_sub(x, to_r), a.mk_real(1)), m);
if (m.has_trace_stream()) th.log_axiom_instantiation(lo);
mk_axiom(mk_literal(lo));
if (m.has_trace_stream()) {
m.trace_stream() << "[end-of-instance]\n";
expr_ref body(m);
body = m.mk_not(hi);
th.log_axiom_instantiation(body);
}
mk_axiom(~mk_literal(hi));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
// is_int(x) <=> to_real(to_int(x)) = x
void mk_is_int_axiom(app* n) {
expr* x = nullptr;
VERIFY(a.is_is_int(n, x));
literal eq = th.mk_eq(a.mk_to_real(a.mk_to_int(x)), x, false);
literal is_int = ctx().get_literal(n);
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_iff(n, ctx().bool_var2expr(eq.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~is_int, eq);
mk_axiom(is_int, ~eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// create axiom for
// u = v + r*w,
/// abs(r) > r >= 0
void assert_idiv_mod_axioms(theory_var u, theory_var v, theory_var w, rational const& r) {
app_ref term(m);
term = a.mk_sub(get_enode(u)->get_owner(),
a.mk_add(get_enode(v)->get_owner(),
a.mk_mul(a.mk_numeral(r, true),
get_enode(w)->get_owner())));
theory_var z = internalize_def(term);
lpvar vi = register_theory_var_in_lar_solver(z);
add_def_constraint(lp().add_var_bound(vi, lp::GE, rational::zero()));
add_def_constraint(lp().add_var_bound(vi, lp::LE, rational::zero()));
add_def_constraint(lp().add_var_bound(register_theory_var_in_lar_solver(v), lp::GE, rational::zero()));
add_def_constraint(lp().add_var_bound(register_theory_var_in_lar_solver(v), lp::LT, abs(r)));
SASSERT(!is_infeasible());
TRACE("arith", tout << term << "\n" << lp().constraints(););
}
void mk_idiv_mod_axioms(expr * p, expr * q) {
if (a.is_zero(q)) {
return;
}
TRACE("arith", tout << expr_ref(p, m) << " " << expr_ref(q, m) << "\n";);
// if q is zero, then idiv and mod are uninterpreted functions.
expr_ref div(a.mk_idiv(p, q), m);
expr_ref mod(a.mk_mod(p, q), m);
expr_ref zero(a.mk_int(0), m);
literal eq = th.mk_eq(a.mk_add(a.mk_mul(q, div), mod), p, false);
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
literal div_ge_0 = mk_literal(a.mk_ge(div, zero));
literal div_le_0 = mk_literal(a.mk_le(div, zero));
literal p_ge_0 = mk_literal(a.mk_ge(p, zero));
literal p_le_0 = mk_literal(a.mk_le(p, zero));
rational k(0);
expr_ref upper(m);
if (a.is_numeral(q, k)) {
if (k.is_pos()) {
upper = a.mk_numeral(k - 1, true);
}
else if (k.is_neg()) {
upper = a.mk_numeral(-k - 1, true);
}
}
else {
k = rational::zero();
}
context& c = ctx();
if (!k.is_zero()) {
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(mod_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(mod_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(m.mk_eq(q, zero)), a.mk_le(mod, upper));
th.log_axiom_instantiation(body);
}
mk_axiom(mk_literal(a.mk_le(mod, upper)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (k.is_pos()) {
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_ge_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_le_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_le_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
else {
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_le_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_ge_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_le_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
else {
// q >= 0 or p = (p mod q) + q * (p div q)
// q <= 0 or p = (p mod q) + q * (p div q)
// q >= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) >= 0
// q <= 0 or (p mod q) < q
// q >= 0 or (p mod q) < -q
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
literal q_le_0 = mk_literal(a.mk_le(q, zero));
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_ge_0, eq);
mk_axiom(q_le_0, eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(mod_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_ge_0, mod_ge_0);
mk_axiom(q_le_0, mod_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_sub(mod, q), zero));
th.log_axiom_instantiation(body);
}
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_add(mod, q), zero));
th.log_axiom_instantiation(body);
}
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_le_0, ~p_ge_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_le_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_le_0, ~p_le_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_le_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_ge_0, ~p_ge_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_ge_0.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(q_ge_0, ~p_le_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
if (m_arith_params.m_arith_enum_const_mod && k.is_pos() && k < rational(8)) {
unsigned _k = k.get_unsigned();
literal_buffer lits;
expr_ref_vector exprs(m);
for (unsigned j = 0; j < _k; ++j) {
literal mod_j = th.mk_eq(mod, a.mk_int(j), false);
lits.push_back(mod_j);
exprs.push_back(c.bool_var2expr(mod_j.var()));
ctx().mark_as_relevant(mod_j);
}
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_or(exprs.size(), exprs.c_ptr());
th.log_axiom_instantiation(body);
}
ctx().mk_th_axiom(get_id(), lits.size(), lits.begin());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
void mk_axiom(literal l) {
ctx().mk_th_axiom(get_id(), false_literal, l);
if (ctx().relevancy()) {
ctx().mark_as_relevant(l);
}
}
void mk_axiom(literal l1, literal l2) {
if (l1 == false_literal) {
mk_axiom(l2);
return;
}
ctx().mk_th_axiom(get_id(), l1, l2);
if (ctx().relevancy()) {
ctx().mark_as_relevant(l1);
ctx().add_rel_watch(~l1, ctx().bool_var2expr(l2.var()));
}
}
void mk_axiom(literal l1, literal l2, literal l3) {
ctx().mk_th_axiom(get_id(), l1, l2, l3);
if (ctx().relevancy()) {
ctx().mark_as_relevant(l1);
ctx().add_rel_watch(~l1, ctx().bool_var2expr(l2.var()));
ctx().add_rel_watch(~l2, ctx().bool_var2expr(l3.var()));
}
}
literal mk_literal(expr* e) {
expr_ref pinned(e, m);
TRACE("mk_bool_var", tout << pinned << " " << pinned->get_id() << "\n";);
if (!ctx().e_internalized(e)) {
ctx().internalize(e, false);
}
return ctx().get_literal(e);
}
void init_search_eh() {
m_arith_eq_adapter.init_search_eh();
m_num_conflicts = 0;
}
bool can_get_value(theory_var v) const {
return can_get_bound(v) && !m_variable_values.empty();
}
bool can_get_bound(theory_var v) const {
return v != null_theory_var && lp().external_is_used(v);
}
bool can_get_ivalue(theory_var v) const {
return can_get_bound(v);
}
mutable vector<std::pair<lpvar, rational>> m_todo_terms;
lp::impq get_ivalue(theory_var v) const {
SASSERT(can_get_ivalue(v));
lpvar vi = get_lpvar(v);
if (!lp().is_term(vi))
return lp().get_column_value(vi);
m_todo_terms.push_back(std::make_pair(vi, rational::one()));
lp::impq result(0);
while (!m_todo_terms.empty()) {
vi = m_todo_terms.back().first;
rational coeff = m_todo_terms.back().second;
m_todo_terms.pop_back();
if (lp().is_term(vi)) {
const lp::lar_term& term = lp().get_term(vi);
for (const auto & i: term) {
m_todo_terms.push_back(std::make_pair(i.var(), coeff * i.coeff()));
}
}
else {
result += lp().get_column_value(vi) * coeff;
}
}
return result;
}
rational get_value(theory_var v) const {
if (v == null_theory_var || !lp().external_is_used(v)) {
TRACE("arith", tout << "Variable v" << v << " not internalized\n";);
return rational::zero();
}
lpvar vi = get_lpvar(v);
if (m_variable_values.count(vi) > 0)
return m_variable_values[vi];
if (!lp().is_term(vi)) {
TRACE("arith", tout << "not a term v" << v << "\n";);
return rational::zero();
}
m_todo_terms.push_back(std::make_pair(vi, rational::one()));
rational result(0);
while (!m_todo_terms.empty()) {
lpvar wi = m_todo_terms.back().first;
rational coeff = m_todo_terms.back().second;
m_todo_terms.pop_back();
if (lp().is_term(wi)) {
const lp::lar_term& term = lp().get_term(wi);
for (const auto & i : term) {
if (m_variable_values.count(i.var()) > 0) {
result += m_variable_values[i.var()] * coeff * i.coeff();
}
else {
m_todo_terms.push_back(std::make_pair(i.var(), coeff * i.coeff()));
}
}
}
else {
result += m_variable_values[wi] * coeff;
}
}
m_variable_values[vi] = result;
return result;
}
void init_variable_values() {
reset_variable_values();
if (!m.canceled() && m_solver.get() && th.get_num_vars() > 0) {
TRACE("arith", tout << "update variable values\n";);
lp().get_model(m_variable_values);
}
}
void reset_variable_values() {
m_variable_values.clear();
}
bool influences_nl_var(theory_var v) const {
return m_nla && m_nla->influences_nl_var(get_lpvar(v));
}
bool can_be_used_in_random_update(theory_var v) const {
if (!th.is_relevant_and_shared(get_enode(v)))
return false;
if (is_int(v))
return false;
if (influences_nl_var(v))
return false;
return true;
}
bool assume_eqs() {
svector<lpvar> vars;
theory_var sz = static_cast<theory_var>(th.get_num_vars());
for (theory_var v = 0; v < sz; ++v) {
if (th.is_relevant_and_shared(get_enode(v)))
vars.push_back(get_lpvar(v));
}
if (vars.empty()) {
return false;
}
if (!m_use_nra_model) {
lp().random_update(vars.size(), vars.c_ptr());
}
init_variable_values();
TRACE("arith",
for (theory_var v = 0; v < sz; ++v) {
if (th.is_relevant_and_shared(get_enode(v))) {
tout << "v" << v << " ";
}
}
tout << "\n"; );
m_model_eqs.reset();
TRACE("arith", display(tout););
unsigned old_sz = m_assume_eq_candidates.size();
bool result = false;
int start = ctx().get_random_value();
for (theory_var i = 0; i < sz; ++i) {
theory_var v = (i + start) % sz;
enode* n1 = get_enode(v);
if (!th.is_relevant_and_shared(n1)) {
continue;
}
if (!can_get_value(v)) {
continue;
}
theory_var other = m_model_eqs.insert_if_not_there(v);
TRACE("arith", tout << "insert: v" << v << " := " << get_value(v) << " found: v" << other << "\n";);
if (other == v) {
continue;
}
enode* n2 = get_enode(other);
if (n1->get_root() != n2->get_root()) {
TRACE("arith", tout << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << "\n";
tout << mk_pp(n1->get_owner(), m) << " = " << mk_pp(n2->get_owner(), m) << "\n";
tout << "v" << v << " = " << "v" << other << "\n";);
m_assume_eq_candidates.push_back(std::make_pair(v, other));
result = true;
}
}
if (result) {
ctx().push_trail(restore_size_trail<context, std::pair<theory_var, theory_var>, false>(m_assume_eq_candidates, old_sz));
}
return delayed_assume_eqs();
}
bool delayed_assume_eqs() {
if (m_assume_eq_head == m_assume_eq_candidates.size())
return false;
ctx().push_trail(value_trail<context, unsigned>(m_assume_eq_head));
while (m_assume_eq_head < m_assume_eq_candidates.size()) {
std::pair<theory_var, theory_var> const & p = m_assume_eq_candidates[m_assume_eq_head];
theory_var v1 = p.first;
theory_var v2 = p.second;
enode* n1 = get_enode(v1);
enode* n2 = get_enode(v2);
m_assume_eq_head++;
CTRACE("arith",
is_eq(v1, v2) && n1->get_root() != n2->get_root(),
tout << "assuming eq: v" << v1 << " = v" << v2 << "\n";);
if (is_eq(v1, v2) && n1->get_root() != n2->get_root() && th.assume_eq(n1, n2)) {
return true;
}
}
return false;
}
bool is_eq(theory_var v1, theory_var v2) {
if (m_use_nra_model) {
SASSERT(!m_switcher.m_use_nla);
return m_nra->am().eq(nl_value(v1, *m_a1), nl_value(v2, *m_a2));
}
else {
return get_value(v1) == get_value(v2);
}
}
bool has_delayed_constraints() const {
return !m_asserted_atoms.empty();
}
final_check_status final_check_eh() {
IF_VERBOSE(12, verbose_stream() << "final-check " << m_solver->get_status() << "\n");
m_use_nra_model = false;
lbool is_sat = l_true;
SASSERT(lp().ax_is_correct());
if (lp().get_status() != lp::lp_status::OPTIMAL) {
is_sat = make_feasible();
}
final_check_status st = FC_DONE;
switch (is_sat) {
case l_true:
TRACE("arith", display(tout););
switch (check_lia()) {
case l_true:
break;
case l_false:
return FC_CONTINUE;
case l_undef:
TRACE("arith", tout << "check-lia giveup\n";);
st = FC_CONTINUE;
break;
}
switch (check_nra()) {
case l_true:
break;
case l_false:
return FC_CONTINUE;
case l_undef:
TRACE("arith", tout << "check-nra giveup\n";);
st = FC_GIVEUP;
break;
}
if (assume_eqs()) {
++m_stats.m_assume_eqs;
return FC_CONTINUE;
}
if (delayed_assume_eqs()) {
++m_stats.m_assume_eqs;
return FC_CONTINUE;
}
if (m_not_handled != nullptr) {
TRACE("arith", tout << "unhandled operator " << mk_pp(m_not_handled, m) << "\n";);
st = FC_GIVEUP;
}
return st;
case l_false:
get_infeasibility_explanation_and_set_conflict();
return FC_CONTINUE;
case l_undef:
TRACE("arith", tout << "check feasiable is undef\n";);
return m.canceled() ? FC_CONTINUE : FC_GIVEUP;
default:
UNREACHABLE();
break;
}
TRACE("arith", tout << "default giveup\n";);
return FC_GIVEUP;
}
// create an eq atom representing "term = offset"
app_ref mk_eq(lp::lar_term const& term, rational const& offset) {
u_map<rational> coeffs;
term2coeffs(term, coeffs);
bool isint = offset.is_int();
for (auto const& kv : coeffs) isint &= is_int(kv.m_key) && kv.m_value.is_int();
app_ref t = coeffs2app(coeffs, rational::zero(), isint);
app_ref s(a.mk_numeral(offset, isint), m);
if (s == t) {
return app_ref(m.mk_true(), m);
}
else {
app_ref atom(m.mk_eq(t, s), m);
ctx().internalize(atom, true);
ctx().mark_as_relevant(atom.get());
return atom;
}
}
// create a bound atom representing term >= k is lower_bound is true, and term <= k if it is false
app_ref mk_bound(lp::lar_term const& term, rational const& k, bool lower_bound) {
rational offset = k;
u_map<rational> coeffs;
term2coeffs(term, coeffs);
bool is_int = true;
rational lc = denominator(k);
for (auto const& kv : coeffs) {
theory_var w = kv.m_key;
expr* o = get_enode(w)->get_owner();
is_int = a.is_int(o);
if (!is_int) break;
lc = lcm(lc, denominator(kv.m_value));
}
// ensure that coefficients are integers when all variables are integers as well.
if (is_int && !lc.is_one()) {
SASSERT(lc.is_pos());
offset *= lc;
for (auto& kv : coeffs) kv.m_value *= lc;
}
if (is_int) {
// 3x + 6y >= 5 -> x + 3y >= 5/3, then x + 3y >= 2
// 3x + 6y <= 5 -> x + 3y <= 1
rational g = gcd_reduce(coeffs);
if (!g.is_one()) {
if (lower_bound) {
TRACE("arith", tout << "lower: " << offset << " / " << g << " = " << offset / g << " >= " << ceil(offset / g) << "\n";);
offset = ceil(offset / g);
}
else {
TRACE("arith", tout << "upper: " << offset << " / " << g << " = " << offset / g << " <= " << floor(offset / g) << "\n";);
offset = floor(offset / g);
}
}
}
if (!coeffs.empty() && coeffs.begin()->m_value.is_neg()) {
offset.neg();
lower_bound = !lower_bound;
for (auto& kv : coeffs) kv.m_value.neg();
}
// CTRACE("arith", is_int,
// lp().print_term(term, tout << "term: ") << "\n";
// tout << "offset: " << offset << " gcd: " << g << "\n";);
app_ref atom(m);
app_ref t = coeffs2app(coeffs, rational::zero(), is_int);
if (lower_bound) {
atom = a.mk_ge(t, a.mk_numeral(offset, is_int));
}
else {
atom = a.mk_le(t, a.mk_numeral(offset, is_int));
}
TRACE("arith", tout << t << ": " << atom << "\n";
lp().print_term(term, tout << "bound atom: ") << (lower_bound?" >= ":" <= ") << k << "\n";);
ctx().internalize(atom, true);
ctx().mark_as_relevant(atom.get());
return atom;
}
/**
* n = (div p q)
*
* (div p q) * q + (mod p q) = p, (mod p q) >= 0
*
* 0 < q => (p/q <= v(p)/v(q) => n <= floor(v(p)/v(q)))
* 0 < q => (v(p)/v(q) <= p/q => v(p)/v(q) - 1 < n)
*
*/
bool is_bounded(expr* n) {
expr* x = nullptr, *y = nullptr;
while (true) {
if (a.is_idiv(n, x, y) && a.is_numeral(y)) {
n = x;
}
else if (a.is_mod(n, x, y) && a.is_numeral(y)) {
return true;
}
else if (a.is_numeral(n)) {
return true;
}
else {
return false;
}
}
}
bool check_idiv_bounds() {
if (m_idiv_terms.empty()) {
return true;
}
bool all_divs_valid = true;
for (expr* n : m_idiv_terms) {
expr* p = nullptr, *q = nullptr;
VERIFY(a.is_idiv(n, p, q));
theory_var v = mk_var(n);
theory_var v1 = mk_var(p);
lp::impq r1 = get_ivalue(v1);
rational r2;
if (!r1.x.is_int() || r1.x.is_neg() || !r1.y.is_zero()) {
// TBD
// r1 = 223/4, r2 = 2, r = 219/8
// take ceil(r1), floor(r1), ceil(r2), floor(r2), for floor(r2) > 0
// then
// p/q <= ceil(r1)/floor(r2) => n <= div(ceil(r1), floor(r2))
// p/q >= floor(r1)/ceil(r2) => n >= div(floor(r1), ceil(r2))
continue;
}
if (a.is_numeral(q, r2) && r2.is_pos()) {
if (!is_bounded(n)) {
TRACE("arith", tout << "unbounded " << expr_ref(n, m) << "\n";);
continue;
}
lp::impq val_v = get_ivalue(v);
if (val_v.y.is_zero() && val_v.x == div(r1.x, r2)) continue;
TRACE("arith", tout << get_value(v) << " != " << r1 << " div " << r2 << "\n";);
rational div_r = div(r1.x, r2);
// p <= q * div(r1, q) + q - 1 => div(p, q) <= div(r1, r2)
// p >= q * div(r1, q) => div(r1, q) <= div(p, q)
rational mul(1);
rational hi = r2 * div_r + r2 - 1;
rational lo = r2 * div_r;
// used to normalize inequalities so they
// don't appear as 8*x >= 15, but x >= 2
expr *n1 = nullptr, *n2 = nullptr;
if (a.is_mul(p, n1, n2) && is_numeral(n1, mul) && mul.is_pos()) {
p = n2;
hi = floor(hi/mul);
lo = ceil(lo/mul);
}
literal p_le_r1 = mk_literal(a.mk_le(p, a.mk_numeral(hi, true)));
literal p_ge_r1 = mk_literal(a.mk_ge(p, a.mk_numeral(lo, true)));
literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div_r, true)));
literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div_r, true)));
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(ctx().bool_var2expr(p_le_r1.var()), ctx().bool_var2expr(n_le_div.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_le_r1, n_le_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_implies(ctx().bool_var2expr(p_ge_r1.var()), ctx().bool_var2expr(n_ge_div.var()));
th.log_axiom_instantiation(body);
}
mk_axiom(~p_ge_r1, n_ge_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
all_divs_valid = false;
TRACE("arith",
tout << r1 << " div " << r2 << "\n";
literal_vector lits;
lits.push_back(~p_le_r1);
lits.push_back(n_le_div);
ctx().display_literals_verbose(tout, lits) << "\n\n";
lits[0] = ~p_ge_r1;
lits[1] = n_ge_div;
ctx().display_literals_verbose(tout, lits) << "\n";);
continue;
}
}
return all_divs_valid;
}
expr_ref var2expr(lpvar v) {
std::ostringstream name;
name << "v" << lp().local_to_external(v);
return expr_ref(m.mk_const(symbol(name.str().c_str()), a.mk_int()), m);
}
expr_ref multerm(rational const& r, expr* e) {
if (r.is_one()) return expr_ref(e, m);
return expr_ref(a.mk_mul(a.mk_numeral(r, true), e), m);
}
expr_ref term2expr(lp::lar_term const& term) {
expr_ref t(m);
expr_ref_vector ts(m);
for (auto const& p : term) {
lpvar wi = p.var();
if (lp().is_term(wi)) {
ts.push_back(multerm(p.coeff(), term2expr(lp().get_term(wi))));
}
else {
ts.push_back(multerm(p.coeff(), var2expr(wi)));
}
}
if (ts.size() == 1) {
t = ts.back();
}
else {
t = a.mk_add(ts.size(), ts.c_ptr());
}
return t;
}
expr_ref constraint2fml(lp::constraint_index ci) {
lp::lar_base_constraint const& c = lp().constraints()[ci];
expr_ref fml(m);
expr_ref_vector ts(m);
rational rhs = c.rhs();
for (auto cv : c.coeffs()) {
ts.push_back(multerm(cv.first, var2expr(cv.second)));
}
switch (c.kind()) {
case lp::LE: fml = a.mk_le(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
case lp::LT: fml = a.mk_lt(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
case lp::GE: fml = a.mk_ge(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
case lp::GT: fml = a.mk_gt(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
case lp::EQ: fml = m.mk_eq(a.mk_add(ts.size(), ts.c_ptr()), a.mk_numeral(rhs, true)); break;
case lp::NE:
SASSERT(false); // unexpected
break;
}
return fml;
}
void dump_cut_lemma(std::ostream& out, lp::lar_term const& term, lp::mpq const& k, lp::explanation const& ex, bool upper) {
lp().print_term(term, out << "bound: ");
out << (upper?" <= ":" >= ") << k << "\n";
for (auto const& p : term) {
lpvar wi = p.var();
out << p.coeff() << " * ";
if (lp().is_term(wi)) {
lp().print_term(lp().get_term(wi), out) << "\n";
}
else {
out << "v" << lp().local_to_external(wi) << "\n";
}
}
for (auto const& ev : ex) {
lp().constraints().display(out << ev.first << ": ", ev.second);
}
expr_ref_vector fmls(m);
for (auto const& ev : ex) {
fmls.push_back(constraint2fml(ev.second));
}
expr_ref t(term2expr(term), m);
if (upper) {
fmls.push_back(m.mk_not(a.mk_ge(t, a.mk_numeral(k, true))));
}
else {
fmls.push_back(m.mk_not(a.mk_le(t, a.mk_numeral(k, true))));
}
ast_pp_util visitor(m);
visitor.collect(fmls);
visitor.display_decls(out);
visitor.display_asserts(out, fmls, true);
out << "(check-sat)\n";
}
lbool check_lia() {
TRACE("arith",);
if (m.canceled()) {
TRACE("arith", tout << "canceled\n";);
return l_undef;
}
lbool lia_check = l_undef;
if (!check_idiv_bounds()) {
return l_false;
}
switch (m_lia->check(&m_explanation)) {
case lp::lia_move::sat:
lia_check = l_true;
break;
case lp::lia_move::branch: {
TRACE("arith", tout << "branch\n";);
app_ref b(m);
bool u = m_lia->is_upper();
auto const & k = m_lia->get_offset();
if (0 == ctx().get_random_value() % 2) {
b = mk_bound(m_lia->get_term(), k, !u);
}
else {
b = mk_bound(m_lia->get_term(), u ? k - 1 : k + 1, u);
}
if (m.has_trace_stream()) {
app_ref body(m);
body = m.mk_or(b, m.mk_not(b));
th.log_axiom_instantiation(body);
m.trace_stream() << "[end-of-instance]\n";
}
IF_VERBOSE(2, verbose_stream() << "branch " << b << "\n";);
// branch on term >= k + 1
// branch on term <= k
// TBD: ctx().force_phase(ctx().get_literal(b));
// at this point we have a new unassigned atom that the
// SAT core assigns a value to
lia_check = l_false;
++m_stats.m_branch;
break;
}
case lp::lia_move::cut: {
TRACE("arith", tout << "cut\n";);
++m_stats.m_gomory_cuts;
// m_explanation implies term <= k
app_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
if (m.has_trace_stream()) {
th.log_axiom_instantiation(b);
m.trace_stream() << "[end-of-instance]\n";
}
IF_VERBOSE(2, verbose_stream() << "cut " << b << "\n");
TRACE("arith", dump_cut_lemma(tout, m_lia->get_term(), m_lia->get_offset(), m_explanation, m_lia->is_upper()););
m_eqs.reset();
m_core.reset();
m_params.reset();
for (auto const& ev : m_explanation) {
if (!ev.first.is_zero()) {
set_evidence(ev.second);
}
}
literal lit(ctx().get_bool_var(b), false);
TRACE("arith",
ctx().display_lemma_as_smt_problem(tout << "new cut:\n", m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
display(tout););
assign(lit);
lia_check = l_false;
break;
}
case lp::lia_move::conflict:
TRACE("arith", tout << "conflict\n";);
// ex contains unsat core
set_conflict();
return l_false;
case lp::lia_move::undef:
TRACE("arith", tout << "lia undef\n";);
lia_check = l_undef;
break;
case lp::lia_move::continue_with_check:
lia_check = l_undef;
break;
default:
UNREACHABLE();
}
return lia_check;
}
lbool check_aftermath_nra(lbool r) {
m_a1 = alloc(scoped_anum, m_nra->am());
m_a2 = alloc(scoped_anum, m_nra->am());
switch (r) {
case l_false:
set_conflict();
break;
case l_true:
m_use_nra_model = true;
if (assume_eqs()) {
return l_false;
}
break;
case l_undef:
TRACE("arith", tout << "nra-undef\n";);
default:
break;
}
return r;
}
nla::lemma m_lemma;
void false_case_of_check_nla() {
literal_vector core;
for (auto const& ineq : m_lemma.ineqs()) {
bool is_lower = true, pos = true, is_eq = false;
switch (ineq.m_cmp) {
case lp::LE: is_lower = false; pos = false; break;
case lp::LT: is_lower = true; pos = true; break;
case lp::GE: is_lower = true; pos = false; break;
case lp::GT: is_lower = false; pos = true; break;
case lp::EQ: is_eq = true; pos = false; break;
case lp::NE: is_eq = true; pos = true; break;
default: UNREACHABLE();
}
TRACE("arith", tout << "is_lower: " << is_lower << " pos " << pos << "\n";);
app_ref atom(m);
// TBD utility: lp::lar_term term = mk_term(ineq.m_poly);
// then term is used instead of ineq.m_term
if (is_eq) {
atom = mk_eq(ineq.m_term, ineq.m_rs);
}
else {
// create term >= 0 (or term <= 0)
atom = mk_bound(ineq.m_term, ineq.m_rs, is_lower);
}
literal lit(ctx().get_bool_var(atom), pos);
core.push_back(~lit);
}
set_conflict_or_lemma(core, false);
}
lbool check_aftermath_nla(lbool r, const vector<nla::lemma>& lv) {
switch (r) {
case l_false: {
m_stats.m_nla_lemmas += lv.size();
for(const nla::lemma & l : lv) {
m_lemma = l; //todo avoid the copy
m_explanation = l.expl();
m_stats.m_nla_explanations += static_cast<unsigned>(l.expl().size());
false_case_of_check_nla();
}
break;
}
case l_true:
if (assume_eqs()) {
return l_false;
}
break;
case l_undef:
break;
}
return r;
}
lbool check_nra() {
m_use_nra_model = false;
if (m.canceled()) {
TRACE("arith", tout << "canceled\n";);
return l_undef;
}
if (!m_nra && !m_nla) return l_true;
if (!m_switcher.need_check()) return l_true;
m_a1 = nullptr; m_a2 = nullptr;
if (m_nra) {
m_explanation.clear();
return check_aftermath_nra(m_nra->check(m_explanation));
}
vector<nla::lemma> lv;
return check_aftermath_nla(m_nla->check(lv), lv);
}
/**
\brief We must redefine this method, because theory of arithmetic contains
underspecified operators such as division by 0.
(/ a b) is essentially an uninterpreted function when b = 0.
Thus, 'a' must be considered a shared var if it is the child of an underspecified operator.
if merge(a / b, x + y) and a / b is root, then x + y become shared and all z + u in equivalence class of x + y.
TBD: when the set of underspecified subterms is small, compute the shared variables below it.
Recompute the set if there are merges that invalidate it.
Use the set to determine if a variable is shared.
*/
bool is_shared(theory_var v) const {
if (m_underspecified.empty()) {
return false;
}
enode * n = get_enode(v);
enode * r = n->get_root();
unsigned usz = m_underspecified.size();
TRACE("shared", tout << ctx().get_scope_level() << " " << v << " " << r->get_num_parents() << "\n";);
if (r->get_num_parents() > 2*usz) {
for (unsigned i = 0; i < usz; ++i) {
app* u = m_underspecified[i];
unsigned sz = u->get_num_args();
for (unsigned j = 0; j < sz; ++j) {
if (ctx().get_enode(u->get_arg(j))->get_root() == r) {
return true;
}
}
}
}
else {
for (enode * parent : r->get_const_parents()) {
if (is_underspecified(parent->get_owner())) {
return true;
}
}
}
return false;
}
bool can_propagate() {
return m_asserted_atoms.size() > m_asserted_qhead;
}
void propagate() {
flush_bound_axioms();
if (!can_propagate()) {
return;
}
while (m_asserted_qhead < m_asserted_atoms.size() && !ctx().inconsistent()) {
bool_var bv = m_asserted_atoms[m_asserted_qhead].m_bv;
bool is_true = m_asserted_atoms[m_asserted_qhead].m_is_true;
m_to_check.push_back(bv);
lp_api::bound& b = *m_bool_var2bound.find(bv);
assert_bound(bv, is_true, b);
++m_asserted_qhead;
}
if (ctx().inconsistent()) {
m_to_check.reset();
return;
}
lbool lbl = make_feasible();
if (m.canceled())
return;
switch(lbl) {
case l_false:
TRACE("arith", tout << "propagation conflict\n";);
get_infeasibility_explanation_and_set_conflict();
break;
case l_true:
propagate_basic_bounds();
propagate_bounds_with_lp_solver();
break;
case l_undef:
break;
}
}
bool should_propagate() {
return BP_NONE != propagation_mode();
}
// void update_propagation_threshold(bool made_progress) {
// if (made_progress) {
// m_propagation_delay = std::max(1u, m_propagation_delay-1u);
// }
// else {
// m_propagation_delay += 2;
// }
// }
void propagate_bounds_with_lp_solver() {
if (!should_propagate())
return;
local_bound_propagator bp(*this);
lp().propagate_bounds_for_touched_rows(bp);
if (m.canceled()) {
return;
}
if (is_infeasible()) {
get_infeasibility_explanation_and_set_conflict();
}
else {
for (unsigned i = 0; !m.canceled() && !ctx().inconsistent() && i < bp.m_ibounds.size(); ++i) {
propagate_lp_solver_bound(bp.m_ibounds[i]);
}
}
}
bool bound_is_interesting(unsigned vi, lp::lconstraint_kind kind, const rational & bval) const {
theory_var v = lp().local_to_external(vi);
if (v == null_theory_var) {
return false;
}
if (m_unassigned_bounds[v] == 0 || m_bounds.size() <= static_cast<unsigned>(v)) {
return false;
}
for (lp_api::bound* b : m_bounds[v]) {
if (ctx().get_assignment(b->get_bv()) == l_undef &&
null_literal != is_bound_implied(kind, bval, *b)) {
return true;
}
}
return false;
}
struct local_bound_propagator: public lp::lp_bound_propagator {
imp & m_imp;
local_bound_propagator(imp& i) : lp_bound_propagator(*i.m_solver), m_imp(i) {}
bool bound_is_interesting(unsigned j, lp::lconstraint_kind kind, const rational & v) override {
return m_imp.bound_is_interesting(j, kind, v);
}
void consume(rational const& v, lp::constraint_index j) override {
m_imp.set_evidence(j);
m_imp.m_explanation.push_justification(j, v);
}
};
void propagate_lp_solver_bound(lp::implied_bound& be) {
lpvar vi = be.m_j;
theory_var v = lp().local_to_external(vi);
if (v == null_theory_var) return;
TRACE("arith", tout << "v" << v << " " << be.kind() << " " << be.m_bound << "\n";
// if (m_unassigned_bounds[v] == 0) lp().print_bound_evidence(be, tout);
);
if (m_unassigned_bounds[v] == 0 || m_bounds.size() <= static_cast<unsigned>(v)) {
TRACE("arith", tout << "return\n";);
return;
}
lp_bounds const& bounds = m_bounds[v];
bool first = true;
for (unsigned i = 0; i < bounds.size(); ++i) {
lp_api::bound* b = bounds[i];
if (ctx().get_assignment(b->get_bv()) != l_undef) {
continue;
}
literal lit = is_bound_implied(be.kind(), be.m_bound, *b);
if (lit == null_literal) {
continue;
}
TRACE("arith", tout << lit << " bound: " << *b << " first: " << first << "\n";);
lp().settings().stats().m_num_of_implied_bounds ++;
if (first) {
first = false;
m_core.reset();
m_eqs.reset();
m_params.reset();
m_explanation.clear();
local_bound_propagator bp(*this);
lp().explain_implied_bound(be, bp);
}
CTRACE("arith", m_unassigned_bounds[v] == 0, tout << "missed bound\n";);
updt_unassigned_bounds(v, -1);
TRACE("arith",
ctx().display_literals_verbose(tout, m_core);
tout << "\n --> ";
ctx().display_literal_verbose(tout, lit);
tout << "\n";
display_evidence(tout, m_explanation);
lp().print_implied_bound(be, tout);
);
DEBUG_CODE(
for (auto& lit : m_core) {
VERIFY(ctx().get_assignment(lit) == l_true);
});
++m_stats.m_bound_propagations1;
assign(lit);
}
}
literal_vector m_core2;
void assign(literal lit) {
// SASSERT(validate_assign(lit));
dump_assign(lit);
if (m_core.size() < small_lemma_size() && m_eqs.empty()) {
m_core2.reset();
for (auto const& c : m_core) {
m_core2.push_back(~c);
}
m_core2.push_back(lit);
justification * js = nullptr;
if (proofs_enabled()) {
js = alloc(theory_lemma_justification, get_id(), ctx(), m_core2.size(), m_core2.c_ptr(),
m_params.size(), m_params.c_ptr());
}
ctx().mk_clause(m_core2.size(), m_core2.c_ptr(), js, CLS_TH_LEMMA, nullptr);
}
else {
ctx().assign(
lit, ctx().mk_justification(
ext_theory_propagation_justification(
get_id(), ctx().get_region(), m_core.size(), m_core.c_ptr(),
m_eqs.size(), m_eqs.c_ptr(), lit, m_params.size(), m_params.c_ptr())));
}
}
literal is_bound_implied(lp::lconstraint_kind k, rational const& value, lp_api::bound const& b) const {
if ((k == lp::LE || k == lp::LT) && b.get_bound_kind() == lp_api::upper_t && value <= b.get_value()) {
TRACE("arith", tout << "v <= value <= b.get_value() => v <= b.get_value() \n";);
return literal(b.get_bv(), false);
}
if ((k == lp::GE || k == lp::GT) && b.get_bound_kind() == lp_api::lower_t && b.get_value() <= value) {
TRACE("arith", tout << "b.get_value() <= value <= v => b.get_value() <= v \n";);
return literal(b.get_bv(), false);
}
if (k == lp::LE && b.get_bound_kind() == lp_api::lower_t && value < b.get_value()) {
TRACE("arith", tout << "v <= value < b.get_value() => v < b.get_value()\n";);
return literal(b.get_bv(), true);
}
if (k == lp::LT && b.get_bound_kind() == lp_api::lower_t && value <= b.get_value()) {
TRACE("arith", tout << "v < value <= b.get_value() => v < b.get_value()\n";);
return literal(b.get_bv(), true);
}
if (k == lp::GE && b.get_bound_kind() == lp_api::upper_t && b.get_value() < value) {
TRACE("arith", tout << "b.get_value() < value <= v => b.get_value() < v\n";);
return literal(b.get_bv(), true);
}
if (k == lp::GT && b.get_bound_kind() == lp_api::upper_t && b.get_value() <= value) {
TRACE("arith", tout << "b.get_value() <= value < v => b.get_value() < v\n";);
return literal(b.get_bv(), true);
}
return null_literal;
}
void mk_bound_axioms(lp_api::bound& b) {
if (!ctx().is_searching()) {
//
// NB. We make an assumption that user push calls propagation
// before internal scopes are pushed. This flushes all newly
// asserted atoms into the right context.
//
m_new_bounds.push_back(&b);
return;
}
theory_var v = b.get_var();
lp_api::bound_kind kind1 = b.get_bound_kind();
rational const& k1 = b.get_value();
lp_bounds & bounds = m_bounds[v];
lp_api::bound* end = nullptr;
lp_api::bound* lo_inf = end, *lo_sup = end;
lp_api::bound* hi_inf = end, *hi_sup = end;
for (lp_api::bound* other : bounds) {
if (other == &b) continue;
if (b.get_bv() == other->get_bv()) continue;
lp_api::bound_kind kind2 = other->get_bound_kind();
rational const& k2 = other->get_value();
if (k1 == k2 && kind1 == kind2) {
// the bounds are equivalent.
continue;
}
SASSERT(k1 != k2 || kind1 != kind2);
if (kind2 == lp_api::lower_t) {
if (k2 < k1) {
if (lo_inf == end || k2 > lo_inf->get_value()) {
lo_inf = other;
}
}
else if (lo_sup == end || k2 < lo_sup->get_value()) {
lo_sup = other;
}
}
else if (k2 < k1) {
if (hi_inf == end || k2 > hi_inf->get_value()) {
hi_inf = other;
}
}
else if (hi_sup == end || k2 < hi_sup->get_value()) {
hi_sup = other;
}
}
if (lo_inf != end) mk_bound_axiom(b, *lo_inf);
if (lo_sup != end) mk_bound_axiom(b, *lo_sup);
if (hi_inf != end) mk_bound_axiom(b, *hi_inf);
if (hi_sup != end) mk_bound_axiom(b, *hi_sup);
}
void mk_bound_axiom(lp_api::bound& b1, lp_api::bound& b2) {
theory_var v = b1.get_var();
literal l1(b1.get_bv());
literal l2(b2.get_bv());
rational const& k1 = b1.get_value();
rational const& k2 = b2.get_value();
lp_api::bound_kind kind1 = b1.get_bound_kind();
lp_api::bound_kind kind2 = b2.get_bound_kind();
bool v_is_int = b1.is_int();
SASSERT(v == b2.get_var());
if (k1 == k2 && kind1 == kind2) return;
SASSERT(k1 != k2 || kind1 != kind2);
parameter coeffs[3] = { parameter(symbol("farkas")),
parameter(rational(1)), parameter(rational(1)) };
if (kind1 == lp_api::lower_t) {
if (kind2 == lp_api::lower_t) {
if (k2 <= k1) {
mk_clause(~l1, l2, 3, coeffs);
}
else {
mk_clause(l1, ~l2, 3, coeffs);
}
}
else if (k1 <= k2) {
// k1 <= k2, k1 <= x or x <= k2
mk_clause(l1, l2, 3, coeffs);
}
else {
// k1 > hi_inf, k1 <= x => ~(x <= hi_inf)
mk_clause(~l1, ~l2, 3, coeffs);
if (v_is_int && k1 == k2 + rational(1)) {
// k1 <= x or x <= k1-1
mk_clause(l1, l2, 3, coeffs);
}
}
}
else if (kind2 == lp_api::lower_t) {
if (k1 >= k2) {
// k1 >= lo_inf, k1 >= x or lo_inf <= x
mk_clause(l1, l2, 3, coeffs);
}
else {
// k1 < k2, k2 <= x => ~(x <= k1)
mk_clause(~l1, ~l2, 3, coeffs);
if (v_is_int && k1 == k2 - rational(1)) {
// x <= k1 or k1+l <= x
mk_clause(l1, l2, 3, coeffs);
}
}
}
else {
// kind1 == A_UPPER, kind2 == A_UPPER
if (k1 >= k2) {
// k1 >= k2, x <= k2 => x <= k1
mk_clause(l1, ~l2, 3, coeffs);
}
else {
// k1 <= hi_sup , x <= k1 => x <= hi_sup
mk_clause(~l1, l2, 3, coeffs);
}
}
}
typedef lp_bounds::iterator iterator;
void flush_bound_axioms() {
CTRACE("arith", !m_new_bounds.empty(), tout << "flush bound axioms\n";);
while (!m_new_bounds.empty()) {
lp_bounds atoms;
atoms.push_back(m_new_bounds.back());
m_new_bounds.pop_back();
theory_var v = atoms.back()->get_var();
for (unsigned i = 0; i < m_new_bounds.size(); ++i) {
if (m_new_bounds[i]->get_var() == v) {
atoms.push_back(m_new_bounds[i]);
m_new_bounds[i] = m_new_bounds.back();
m_new_bounds.pop_back();
--i;
}
}
CTRACE("arith_verbose", !atoms.empty(),
for (unsigned i = 0; i < atoms.size(); ++i) {
atoms[i]->display(tout); tout << "\n";
});
lp_bounds occs(m_bounds[v]);
std::sort(atoms.begin(), atoms.end(), compare_bounds());
std::sort(occs.begin(), occs.end(), compare_bounds());
iterator begin1 = occs.begin();
iterator begin2 = occs.begin();
iterator end = occs.end();
begin1 = first(lp_api::lower_t, begin1, end);
begin2 = first(lp_api::upper_t, begin2, end);
iterator lo_inf = begin1, lo_sup = begin1;
iterator hi_inf = begin2, hi_sup = begin2;
bool flo_inf, fhi_inf, flo_sup, fhi_sup;
ptr_addr_hashtable<lp_api::bound> visited;
for (unsigned i = 0; i < atoms.size(); ++i) {
lp_api::bound* a1 = atoms[i];
iterator lo_inf1 = next_inf(a1, lp_api::lower_t, lo_inf, end, flo_inf);
iterator hi_inf1 = next_inf(a1, lp_api::upper_t, hi_inf, end, fhi_inf);
iterator lo_sup1 = next_sup(a1, lp_api::lower_t, lo_sup, end, flo_sup);
iterator hi_sup1 = next_sup(a1, lp_api::upper_t, hi_sup, end, fhi_sup);
if (lo_inf1 != end) lo_inf = lo_inf1;
if (lo_sup1 != end) lo_sup = lo_sup1;
if (hi_inf1 != end) hi_inf = hi_inf1;
if (hi_sup1 != end) hi_sup = hi_sup1;
if (!flo_inf) lo_inf = end;
if (!fhi_inf) hi_inf = end;
if (!flo_sup) lo_sup = end;
if (!fhi_sup) hi_sup = end;
visited.insert(a1);
if (lo_inf1 != end && lo_inf != end && !visited.contains(*lo_inf)) mk_bound_axiom(*a1, **lo_inf);
if (lo_sup1 != end && lo_sup != end && !visited.contains(*lo_sup)) mk_bound_axiom(*a1, **lo_sup);
if (hi_inf1 != end && hi_inf != end && !visited.contains(*hi_inf)) mk_bound_axiom(*a1, **hi_inf);
if (hi_sup1 != end && hi_sup != end && !visited.contains(*hi_sup)) mk_bound_axiom(*a1, **hi_sup);
}
}
}
struct compare_bounds {
bool operator()(lp_api::bound* a1, lp_api::bound* a2) const { return a1->get_value() < a2->get_value(); }
};
lp_bounds::iterator first(
lp_api::bound_kind kind,
iterator it,
iterator end) {
for (; it != end; ++it) {
lp_api::bound* a = *it;
if (a->get_bound_kind() == kind) return it;
}
return end;
}
lp_bounds::iterator next_inf(
lp_api::bound* a1,
lp_api::bound_kind kind,
iterator it,
iterator end,
bool& found_compatible) {
rational const & k1(a1->get_value());
iterator result = end;
found_compatible = false;
for (; it != end; ++it) {
lp_api::bound * a2 = *it;
if (a1 == a2) continue;
if (a2->get_bound_kind() != kind) continue;
rational const & k2(a2->get_value());
found_compatible = true;
if (k2 <= k1) {
result = it;
}
else {
break;
}
}
return result;
}
lp_bounds::iterator next_sup(
lp_api::bound* a1,
lp_api::bound_kind kind,
iterator it,
iterator end,
bool& found_compatible) {
rational const & k1(a1->get_value());
found_compatible = false;
for (; it != end; ++it) {
lp_api::bound * a2 = *it;
if (a1 == a2) continue;
if (a2->get_bound_kind() != kind) continue;
rational const & k2(a2->get_value());
found_compatible = true;
if (k1 < k2) {
return it;
}
}
return end;
}
void propagate_basic_bounds() {
for (auto const& bv : m_to_check) {
lp_api::bound& b = *m_bool_var2bound.find(bv);
propagate_bound(bv, ctx().get_assignment(bv) == l_true, b);
if (ctx().inconsistent()) break;
}
m_to_check.reset();
}
// for glb lo': lo' < lo:
// lo <= x -> lo' <= x
// lo <= x -> ~(x <= lo')
// for lub hi': hi' > hi
// x <= hi -> x <= hi'
// x <= hi -> ~(x >= hi')
void propagate_bound(bool_var bv, bool is_true, lp_api::bound& b) {
if (BP_NONE == propagation_mode()) {
return;
}
lp_api::bound_kind k = b.get_bound_kind();
theory_var v = b.get_var();
inf_rational val = b.get_value(is_true);
lp_bounds const& bounds = m_bounds[v];
SASSERT(!bounds.empty());
if (bounds.size() == 1) return;
if (m_unassigned_bounds[v] == 0) return;
bool v_is_int = b.is_int();
literal lit1(bv, !is_true);
literal lit2 = null_literal;
bool find_glb = (is_true == (k == lp_api::lower_t));
TRACE("arith", tout << "find_glb: " << find_glb << " is_true: " << is_true << " k: " << k << " is_lower: " << (k == lp_api::lower_t) << "\n";);
if (find_glb) {
rational glb;
lp_api::bound* lb = nullptr;
for (lp_api::bound* b2 : bounds) {
if (b2 == &b) continue;
rational const& val2 = b2->get_value();
if (((is_true || v_is_int) ? val2 < val : val2 <= val) && (!lb || glb < val2)) {
lb = b2;
glb = val2;
}
}
if (!lb) return;
bool sign = lb->get_bound_kind() != lp_api::lower_t;
lit2 = literal(lb->get_bv(), sign);
}
else {
rational lub;
lp_api::bound* ub = nullptr;
for (lp_api::bound* b2 : bounds) {
if (b2 == &b) continue;
rational const& val2 = b2->get_value();
if (((is_true || v_is_int) ? val < val2 : val <= val2) && (!ub || val2 < lub)) {
ub = b2;
lub = val2;
}
}
if (!ub) return;
bool sign = ub->get_bound_kind() != lp_api::upper_t;
lit2 = literal(ub->get_bv(), sign);
}
TRACE("arith",
ctx().display_literal_verbose(tout, lit1);
ctx().display_literal_verbose(tout << " => ", lit2);
tout << "\n";);
updt_unassigned_bounds(v, -1);
++m_stats.m_bound_propagations2;
m_params.reset();
m_core.reset();
m_eqs.reset();
m_core.push_back(lit1);
m_params.push_back(parameter(m_farkas));
m_params.push_back(parameter(rational(1)));
m_params.push_back(parameter(rational(1)));
assign(lit2);
++m_stats.m_bounds_propagations;
}
svector<lpvar> m_todo_vars;
void add_use_lists(lp_api::bound* b) {
theory_var v = b->get_var();
lpvar vi = register_theory_var_in_lar_solver(v);
if (!lp().is_term(vi)) {
return;
}
m_todo_vars.push_back(vi);
while (!m_todo_vars.empty()) {
vi = m_todo_vars.back();
m_todo_vars.pop_back();
lp::lar_term const& term = lp().get_term(vi);
for (auto const& p : term) {
lpvar wi = p.var();
if (lp().is_term(wi)) {
m_todo_vars.push_back(wi);
}
else {
unsigned w = lp().local_to_external(wi);
m_use_list.reserve(w + 1, ptr_vector<lp_api::bound>());
m_use_list[w].push_back(b);
}
}
}
}
void del_use_lists(lp_api::bound* b) {
theory_var v = b->get_var();
lpvar vi = get_lpvar(v);
if (!lp().is_term(vi)) {
return;
}
m_todo_vars.push_back(vi);
while (!m_todo_vars.empty()) {
vi = m_todo_vars.back();
m_todo_vars.pop_back();
lp::lar_term const& term = lp().get_term(vi);
for (auto const& coeff : term) {
lpvar wi = coeff.var();
if (lp().is_term(wi)) {
m_todo_vars.push_back(wi);
}
else {
unsigned w = lp().local_to_external(wi);
SASSERT(m_use_list[w].back() == b);
m_use_list[w].pop_back();
}
}
}
}
//
// propagate bounds to compound terms
// The idea is that if bounds on all variables in an inequality ax + by + cz >= k
// have been assigned we may know the truth value of the inequality by using simple
// bounds propagation.
//
void propagate_bound_compound(bool_var bv, bool is_true, lp_api::bound& b) {
theory_var v = b.get_var();
TRACE("arith", tout << mk_pp(get_owner(v), m) << "\n";);
if (static_cast<unsigned>(v) >= m_use_list.size()) {
return;
}
for (auto const& vb : m_use_list[v]) {
if (ctx().get_assignment(vb->get_bv()) != l_undef) {
TRACE("arith_verbose", display_bound(tout << "assigned ", *vb) << "\n";);
continue;
}
inf_rational r;
// x + y
// x >= 0, y >= 1 -> x + y >= 1
// x <= 0, y <= 2 -> x + y <= 2
literal lit = null_literal;
if (lp_api::lower_t == vb->get_bound_kind()) {
if (get_glb(*vb, r) && r >= vb->get_value()) { // vb is assigned true
lit = literal(vb->get_bv(), false);
}
else if (get_lub(*vb, r) && r < vb->get_value()) { // vb is assigned false
lit = literal(vb->get_bv(), true);
}
}
else {
if (get_glb(*vb, r) && r > vb->get_value()) { // VB <= value < val(VB)
lit = literal(vb->get_bv(), true);
}
else if (get_lub(*vb, r) && r <= vb->get_value()) { // val(VB) <= value
lit = literal(vb->get_bv(), false);
}
}
if (lit != null_literal) {
TRACE("arith",
ctx().display_literals_verbose(tout, m_core);
tout << "\n --> ";
ctx().display_literal_verbose(tout, lit);
tout << "\n";
);
assign(lit);
}
else {
TRACE("arith_verbose", display_bound(tout << "skip ", *vb) << "\n";);
}
}
}
bool get_lub(lp_api::bound const& b, inf_rational& lub) {
return get_bound(b, lub, true);
}
bool get_glb(lp_api::bound const& b, inf_rational& glb) {
return get_bound(b, glb, false);
}
std::ostream& display_bound(std::ostream& out, lp_api::bound const& b) {
return out << mk_pp(ctx().bool_var2expr(b.get_bv()), m);
}
bool get_bound(lp_api::bound const& b, inf_rational& r, bool is_lub) {
m_core.reset();
m_eqs.reset();
m_params.reset();
r.reset();
theory_var v = b.get_var();
lpvar vi = get_lpvar(v);
SASSERT(m_solver->is_term(vi));
lp::lar_term const& term = m_solver->get_term(vi);
for (auto const mono : term) {
lp::var_index wi = mono.var();
lp::constraint_index ci;
rational value;
bool is_strict;
if (lp().is_term(wi)) {
return false;
}
if (mono.coeff().is_neg() == is_lub) {
// -3*x ... <= lub based on lower bound for x.
if (!lp().has_lower_bound(wi, ci, value, is_strict)) {
return false;
}
if (is_strict) {
r += inf_rational(rational::zero(), mono.coeff().is_pos());
}
}
else {
if (!lp().has_upper_bound(wi, ci, value, is_strict)) {
return false;
}
if (is_strict) {
r += inf_rational(rational::zero(), mono.coeff().is_pos());
}
}
r += value * mono.coeff();
set_evidence(ci);
}
TRACE("arith_verbose", tout << (is_lub?"lub":"glb") << " is " << r << "\n";);
return true;
}
lp::lconstraint_kind bound2constraint_kind(bool is_int, lp_api::bound_kind bk, bool is_true) {
switch (bk) {
case lp_api::lower_t:
return is_true ? lp::GE : (is_int ? lp::LE : lp::LT);
case lp_api::upper_t:
return is_true ? lp::LE : (is_int ? lp::GE : lp::GT);
}
UNREACHABLE();
return lp::EQ;
}
void assert_bound(bool_var bv, bool is_true, lp_api::bound& b) {
lp::constraint_index ci = b.get_constraint(is_true);
m_solver->activate(ci);
if (is_infeasible()) {
return;
}
lp::lconstraint_kind k = bound2constraint_kind(b.is_int(), b.get_bound_kind(), is_true);
if (k == lp::LT || k == lp::LE) {
++m_stats.m_assert_lower;
}
else {
++m_stats.m_assert_upper;
}
propagate_eqs(b.lp_solver_var(), ci, k, b);
}
lp_api::bound* mk_var_bound(bool_var bv, theory_var v, lp_api::bound_kind bk, rational const& bound) {
scoped_internalize_state st(*this);
st.vars().push_back(v);
st.coeffs().push_back(rational::one());
init_left_side(st);
lp::constraint_index cT, cF;
bool v_is_int = is_int(v);
auto vi = register_theory_var_in_lar_solver(v);
lp::lconstraint_kind kT = bound2constraint_kind(v_is_int, bk, true);
lp::lconstraint_kind kF = bound2constraint_kind(v_is_int, bk, false);
cT = m_solver->mk_var_bound(vi, kT, bound);
if (v_is_int) {
rational boundF = (bk == lp_api::lower_t) ? bound - 1 : bound + 1;
cF = m_solver->mk_var_bound(vi, kF, boundF);
}
else {
cF = m_solver->mk_var_bound(vi, kF, bound);
}
add_ineq_constraint(cT, literal(bv, false));
add_ineq_constraint(cF, literal(bv, true));
return alloc(lp_api::bound, bv, v, vi, v_is_int, bound, bk, cT, cF);
}
//
// fixed equalities.
// A fixed equality is inferred if there are two variables v1, v2 whose
// upper and lower bounds coincide.
// Then the equality v1 == v2 is propagated to the core.
//
typedef std::pair<lp::constraint_index, rational> constraint_bound;
vector<constraint_bound> m_lower_terms;
vector<constraint_bound> m_upper_terms;
typedef std::pair<rational, bool> value_sort_pair;
typedef pair_hash<obj_hash<rational>, bool_hash> value_sort_pair_hash;
typedef map<value_sort_pair, theory_var, value_sort_pair_hash, default_eq<value_sort_pair> > value2var;
value2var m_fixed_var_table;
void propagate_eqs(lpvar vi, lp::constraint_index ci, lp::lconstraint_kind k, lp_api::bound& b) {
if (propagate_eqs()) {
rational const& value = b.get_value();
if (k == lp::GE) {
if (set_lower_bound(vi, ci, value) && has_upper_bound(vi, ci, value)) {
fixed_var_eh(b.get_var(), value);
}
}
else if (k == lp::LE) {
if (set_upper_bound(vi, ci, value) && has_lower_bound(vi, ci, value)) {
fixed_var_eh(b.get_var(), value);
}
}
}
}
bool dump_lemmas() const { return m_arith_params.m_arith_dump_lemmas; }
bool propagate_eqs() const { return m_arith_params.m_arith_propagate_eqs && m_num_conflicts < m_arith_params.m_arith_propagation_threshold; }
bound_prop_mode propagation_mode() const { return m_num_conflicts < m_arith_params.m_arith_propagation_threshold ? m_arith_params.m_arith_bound_prop : BP_NONE; }
unsigned small_lemma_size() const { return m_arith_params.m_arith_small_lemma_size; }
bool proofs_enabled() const { return m.proofs_enabled(); }
bool set_upper_bound(lpvar vi, lp::constraint_index ci, rational const& v) { return set_bound(vi, ci, v, false); }
bool set_lower_bound(lpvar vi, lp::constraint_index ci, rational const& v) { return set_bound(vi, ci, v, true); }
bool set_bound(lpvar vi, lp::constraint_index ci, rational const& v, bool is_lower) {
if (lp().is_term(vi)) {
lpvar ti = lp().adjust_term_index(vi);
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
if (vec.size() <= ti) {
vec.resize(ti + 1, constraint_bound(UINT_MAX, rational()));
}
constraint_bound& b = vec[ti];
if (b.first == UINT_MAX || (is_lower? b.second < v : b.second > v)) {
TRACE("arith", tout << "tighter bound " << vi << "\n";);
ctx().push_trail(vector_value_trail<context, constraint_bound>(vec, ti));
b.first = ci;
b.second = v;
}
return true;
}
else {
TRACE("arith", tout << "not a term " << vi << "\n";);
// m_solver already tracks bounds on proper variables, but not on terms.
bool is_strict = false;
rational b;
if (is_lower) {
return lp().has_lower_bound(vi, ci, b, is_strict) && !is_strict && b == v;
}
else {
return lp().has_upper_bound(vi, ci, b, is_strict) && !is_strict && b == v;
}
}
}
bool var_has_bound(lpvar vi, bool is_lower) {
bool is_strict = false;
rational b;
lp::constraint_index ci;
if (is_lower) {
return lp().has_lower_bound(vi, ci, b, is_strict);
}
else {
return lp().has_upper_bound(vi, ci, b, is_strict);
}
}
bool has_upper_bound(lpvar vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, false); }
bool has_lower_bound(lpvar vi, lp::constraint_index& ci, rational const& bound) { return has_bound(vi, ci, bound, true); }
bool has_bound(lpvar vi, lp::constraint_index& ci, rational const& bound, bool is_lower) {
if (lp().is_term(vi)) {
theory_var v = lp().local_to_external(vi);
rational val;
TRACE("arith", tout << vi << " " << v << "\n";);
if (v != null_theory_var && a.is_numeral(get_owner(v), val) && bound == val) {
ci = UINT_MAX;
return bound == val;
}
auto& vec = is_lower ? m_lower_terms : m_upper_terms;
lpvar ti = lp().adjust_term_index(vi);
if (vec.size() > ti) {
constraint_bound& b = vec[ti];
ci = b.first;
return ci != UINT_MAX && bound == b.second;
}
else {
return false;
}
}
else {
bool is_strict = false;
rational b;
if (is_lower) {
return lp().has_lower_bound(vi, ci, b, is_strict) && b == bound && !is_strict;
}
else {
return lp().has_upper_bound(vi, ci, b, is_strict) && b == bound && !is_strict;
}
}
}
bool is_equal(theory_var x, theory_var y) const { return get_enode(x)->get_root() == get_enode(y)->get_root(); }
void fixed_var_eh(theory_var v1, rational const& bound) {
theory_var v2;
value_sort_pair key(bound, is_int(v1));
if (m_fixed_var_table.find(key, v2)) {
if (static_cast<unsigned>(v2) < th.get_num_vars() && !is_equal(v1, v2)) {
auto vi1 = register_theory_var_in_lar_solver(v1);
auto vi2 = register_theory_var_in_lar_solver(v2);
lp::constraint_index ci1, ci2, ci3, ci4;
TRACE("arith",
bool hlb = has_lower_bound(vi2, ci3, bound); // has_lower_bound in turn trace "arith"
tout << "fixed: " << mk_pp(get_owner(v1), m) << " " << mk_pp(get_owner(v2), m) << " " << bound << " " << hlb << std::endl;);
if (has_lower_bound(vi2, ci3, bound) && has_upper_bound(vi2, ci4, bound)) {
VERIFY (has_lower_bound(vi1, ci1, bound));
VERIFY (has_upper_bound(vi1, ci2, bound));
++m_stats.m_fixed_eqs;
m_core.reset();
m_eqs.reset();
set_evidence(ci1);
set_evidence(ci2);
set_evidence(ci3);
set_evidence(ci4);
enode* x = get_enode(v1);
enode* y = get_enode(v2);
justification* js =
ctx().mk_justification(
ext_theory_eq_propagation_justification(
get_id(), ctx().get_region(), m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), x, y, 0, nullptr));
TRACE("arith",
for (unsigned i = 0; i < m_core.size(); ++i) {
ctx().display_detailed_literal(tout, m_core[i]);
tout << "\n";
}
for (unsigned i = 0; i < m_eqs.size(); ++i) {
tout << mk_pp(m_eqs[i].first->get_owner(), m) << " = " << mk_pp(m_eqs[i].second->get_owner(), m) << "\n";
}
tout << " ==> ";
tout << mk_pp(x->get_owner(), m) << " = " << mk_pp(y->get_owner(), m) << "\n";
);
// parameters are TBD.
// SASSERT(validate_eq(x, y));
ctx().assign_eq(x, y, eq_justification(js));
}
}
else {
// bounds on v2 were changed.
m_fixed_var_table.insert(key, v1);
}
}
else {
m_fixed_var_table.insert(key, v1);
}
}
lbool make_feasible() {
TRACE("pcs", tout << lp().constraints(););
auto status = lp().find_feasible_solution();
TRACE("arith_verbose", display(tout););
switch (status) {
case lp::lp_status::INFEASIBLE:
return l_false;
case lp::lp_status::FEASIBLE:
case lp::lp_status::OPTIMAL:
// SASSERT(lp().all_constraints_hold());
return l_true;
case lp::lp_status::TIME_EXHAUSTED:
default:
TRACE("arith", tout << "status treated as inconclusive: " << status << "\n";);
// TENTATIVE_UNBOUNDED, UNBOUNDED, TENTATIVE_DUAL_UNBOUNDED, DUAL_UNBOUNDED,
// FLOATING_POINT_ERROR, TIME_EXAUSTED, ITERATIONS_EXHAUSTED, EMPTY, UNSTABLE
return l_undef;
}
}
lp::explanation m_explanation;
literal_vector m_core;
svector<enode_pair> m_eqs;
vector<parameter> m_params;
// lp::constraint_index const null_constraint_index = UINT_MAX; // not sure what a correct fix is
void set_evidence(lp::constraint_index idx) {
if (idx == UINT_MAX) {
return;
}
switch (m_constraint_sources[idx]) {
case inequality_source: {
literal lit = m_inequalities[idx];
SASSERT(lit != null_literal);
m_core.push_back(lit);
break;
}
case equality_source: {
SASSERT(m_equalities[idx].first != nullptr);
SASSERT(m_equalities[idx].second != nullptr);
m_eqs.push_back(m_equalities[idx]);
break;
}
case definition_source: {
// skip definitions (these are treated as hard constraints)
break;
}
default:
UNREACHABLE();
break;
}
}
void get_infeasibility_explanation_and_set_conflict() {
m_explanation.clear();
lp().get_infeasibility_explanation(m_explanation);
set_conflict();
}
void set_conflict() {
literal_vector core;
set_conflict_or_lemma(core, true);
}
void set_conflict_or_lemma(literal_vector const& core, bool is_conflict) {
m_eqs.reset();
m_core.reset();
m_params.reset();
for (literal lit : core) {
m_core.push_back(lit);
}
// lp().shrink_explanation_to_minimum(m_explanation); // todo, enable when perf is fixed
/*
static unsigned cn = 0;
static unsigned num_l = 0;
num_l+=m_explanation.size();
std::cout << num_l / (++cn) << "\n";
*/
++m_num_conflicts;
++m_stats.m_conflicts;
TRACE("arith", tout << "scope: " << ctx().get_scope_level() << "\n"; display_evidence(tout, m_explanation); );
TRACE("arith", display(tout););
for (auto const& ev : m_explanation) {
if (!ev.first.is_zero()) {
set_evidence(ev.second);
}
}
// SASSERT(validate_conflict());
dump_conflict();
if (is_conflict) {
ctx().set_conflict(
ctx().mk_justification(
ext_theory_conflict_justification(
get_id(), ctx().get_region(),
m_core.size(), m_core.c_ptr(),
m_eqs.size(), m_eqs.c_ptr(), m_params.size(), m_params.c_ptr())));
}
else {
for (auto const& eq : m_eqs) {
m_core.push_back(th.mk_eq(eq.first->get_owner(), eq.second->get_owner(), false));
}
for (literal & c : m_core) {
c.neg();
ctx().mark_as_relevant(c);
}
TRACE("arith", ctx().display_literals_verbose(tout, m_core) << "\n";);
DEBUG_CODE(
for (literal const& c : m_core) {
if (ctx().get_assignment(c) == l_true) {
TRACE("arith", ctx().display_literal_verbose(tout, c) << " is true\n";);
SASSERT(false);
}
});
ctx().mk_th_axiom(get_id(), m_core.size(), m_core.c_ptr());
}
}
justification * why_is_diseq(theory_var v1, theory_var v2) {
return nullptr;
}
void reset_eh() {
m_use_nra_model = false;
m_arith_eq_adapter.reset_eh();
m_solver = nullptr;
m_internalize_head = 0;
m_not_handled = nullptr;
del_bounds(0);
m_unassigned_bounds.reset();
m_asserted_qhead = 0;
m_assume_eq_head = 0;
m_scopes.reset();
m_stats.reset();
m_to_check.reset();
reset_variable_values();
}
void init_model(model_generator & mg) {
init_variable_values();
m_factory = alloc(arith_factory, m);
mg.register_factory(m_factory);
TRACE("arith", display(tout););
}
nlsat::anum const& nl_value(theory_var v, scoped_anum& r) {
SASSERT(m_nra);
SASSERT(m_use_nra_model);
lpvar vi = get_lpvar(v);
if (lp().is_term(vi)) {
m_todo_terms.push_back(std::make_pair(vi, rational::one()));
TRACE("arith", tout << "v" << v << " := w" << vi << "\n";
lp().print_term(lp().get_term(vi), tout) << "\n";);
m_nra->am().set(r, 0);
while (!m_todo_terms.empty()) {
rational wcoeff = m_todo_terms.back().second;
vi = m_todo_terms.back().first;
m_todo_terms.pop_back();
lp::lar_term const& term = lp().get_term(vi);
TRACE("arith", lp().print_term(term, tout) << "\n";);
scoped_anum r1(m_nra->am());
rational c1(0);
m_nra->am().set(r1, c1.to_mpq());
m_nra->am().add(r, r1, r);
for (auto const & arg : term) {
lpvar wi = arg.var();
c1 = arg.coeff() * wcoeff;
if (lp().is_term(wi)) {
m_todo_terms.push_back(std::make_pair(wi, c1));
}
else {
m_nra->am().set(r1, c1.to_mpq());
m_nra->am().mul(m_nra->value(wi), r1, r1);
m_nra->am().add(r1, r, r);
}
}
}
return r;
}
else {
return m_nra->value(vi);
}
}
model_value_proc * mk_value(enode * n, model_generator & mg) {
theory_var v = n->get_th_var(get_id());
expr* o = n->get_owner();
if (m_use_nra_model) {
anum const& an = nl_value(v, *m_a1);
if (a.is_int(o) && !m_nra->am().is_int(an)) {
return alloc(expr_wrapper_proc, a.mk_numeral(rational::zero(), a.is_int(o)));
}
return alloc(expr_wrapper_proc, a.mk_numeral(nl_value(v, *m_a1), a.is_int(o)));
}
else {
rational r = get_value(v);
TRACE("arith", tout << "v" << v << " := " << r << "\n";);
SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.canceled()));
if (a.is_int(o) && !r.is_int()) r = floor(r);
return alloc(expr_wrapper_proc, m_factory->mk_value(r, m.get_sort(o)));
}
}
bool get_value(enode* n, rational& val) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v)) return false;
lpvar vi = get_lpvar(v);
if (lp().has_value(vi, val)) {
TRACE("arith", tout << expr_ref(n->get_owner(), m) << " := " << val << "\n";);
if (is_int(n) && !val.is_int()) return false;
return true;
}
else {
return false;
}
}
bool get_value(enode* n, expr_ref& r) {
rational val;
if (get_value(n, val)) {
r = a.mk_numeral(val, is_int(n));
return true;
}
else {
return false;
}
}
bool include_func_interp(func_decl* f) {
return
a.is_div0(f) ||
a.is_idiv0(f) ||
a.is_power0(f) ||
a.is_rem0(f) ||
a.is_mod0(f);
}
bool get_lower(enode* n, rational& val, bool& is_strict) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v)) {
TRACE("arith", tout << "cannot get lower for " << v << "\n";);
return false;
}
lpvar vi = get_lpvar(v);
lp::constraint_index ci;
return lp().has_lower_bound(vi, ci, val, is_strict);
}
bool get_lower(enode* n, expr_ref& r) {
bool is_strict;
rational val;
if (get_lower(n, val, is_strict) && !is_strict) {
r = a.mk_numeral(val, is_int(n));
return true;
}
return false;
}
bool get_upper(enode* n, rational& val, bool& is_strict) {
theory_var v = n->get_th_var(get_id());
if (!can_get_bound(v))
return false;
lpvar vi = get_lpvar(v);
lp::constraint_index ci;
return lp().has_upper_bound(vi, ci, val, is_strict);
}
bool get_upper(enode* n, expr_ref& r) {
bool is_strict;
rational val;
if (get_upper(n, val, is_strict) && !is_strict) {
r = a.mk_numeral(val, is_int(n));
return true;
}
return false;
}
// Auxiliary verification utilities.
struct scoped_arith_mode {
smt_params& p;
scoped_arith_mode(smt_params& p) : p(p) {
p.m_arith_mode = AS_OLD_ARITH;
}
~scoped_arith_mode() {
p.m_arith_mode = AS_NEW_ARITH;
}
};
void dump_conflict() {
if (dump_lemmas()) {
unsigned id = ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), false_literal);
(void)id;
}
}
bool validate_conflict() {
if (m_arith_params.m_arith_mode != AS_NEW_ARITH) return true;
scoped_arith_mode _sa(ctx().get_fparams());
context nctx(m, ctx().get_fparams(), ctx().get_params());
add_background(nctx);
cancel_eh<reslimit> eh(m.limit());
scoped_timer timer(1000, &eh);
bool result = l_true != nctx.check();
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), false_literal););
return result;
}
void dump_assign(literal lit) {
if (dump_lemmas()) {
unsigned id = ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
(void)id;
}
}
bool validate_assign(literal lit) {
if (m_arith_params.m_arith_mode != AS_NEW_ARITH) return true;
scoped_arith_mode _sa(ctx().get_fparams());
context nctx(m, ctx().get_fparams(), ctx().get_params());
m_core.push_back(~lit);
add_background(nctx);
m_core.pop_back();
cancel_eh<reslimit> eh(m.limit());
scoped_timer timer(1000, &eh);
bool result = l_true != nctx.check();
CTRACE("arith", !result, ctx().display_lemma_as_smt_problem(tout, m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
display(tout););
return result;
}
bool validate_eq(enode* x, enode* y) {
if (m_arith_params.m_arith_mode == AS_NEW_ARITH) return true;
context nctx(m, ctx().get_fparams(), ctx().get_params());
add_background(nctx);
nctx.assert_expr(m.mk_not(m.mk_eq(x->get_owner(), y->get_owner())));
cancel_eh<reslimit> eh(m.limit());
scoped_timer timer(1000, &eh);
return l_true != nctx.check();
}
void add_background(context& nctx) {
for (literal c : m_core) {
expr_ref tmp(m);
ctx().literal2expr(c, tmp);
nctx.assert_expr(tmp);
}
for (auto const& eq : m_eqs) {
nctx.assert_expr(m.mk_eq(eq.first->get_owner(), eq.second->get_owner()));
}
}
theory_lra::inf_eps value(theory_var v) {
lp::impq ival = get_ivalue(v);
return inf_eps(rational(0), inf_rational(ival.x, ival.y));
}
theory_lra::inf_eps maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
lp::impq term_max;
lp::lp_status st;
lpvar vi = 0;
if (!can_get_bound(v)) {
TRACE("arith", tout << "cannot get bound for v" << v << "\n";);
st = lp::lp_status::UNBOUNDED;
}
else {
vi = get_lpvar(v);
st = lp().maximize_term(vi, term_max);
}
switch (st) {
case lp::lp_status::OPTIMAL: {
init_variable_values();
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
inf_rational val = get_value(v);
// inf_rational val(term_max.x, term_max.y);
blocker = mk_gt(v);
return inf_eps(rational::zero(), val);
}
case lp::lp_status::FEASIBLE: {
inf_rational val = get_value(v);
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
blocker = mk_gt(v);
return inf_eps(rational::zero(), val);
}
default:
SASSERT(st == lp::lp_status::UNBOUNDED);
TRACE("arith", display(tout << st << " v" << v << " vi: " << vi << "\n"););
has_shared = false;
blocker = m.mk_false();
return inf_eps(rational::one(), inf_rational());
}
}
expr_ref mk_gt(theory_var v) {
lp::impq val = get_ivalue(v);
expr* obj = get_enode(v)->get_owner();
rational r = val.x;
expr_ref e(m);
if (a.is_int(m.get_sort(obj))) {
if (r.is_int()) {
r += rational::one();
}
else {
r = ceil(r);
}
e = a.mk_numeral(r, m.get_sort(obj));
e = a.mk_ge(obj, e);
}
else {
e = a.mk_numeral(r, m.get_sort(obj));
if (val.y.is_neg()) {
e = a.mk_ge(obj, e);
}
else {
e = a.mk_gt(obj, e);
}
}
TRACE("opt", tout << "v" << v << " " << val << " " << r << " " << e << "\n";);
return e;
}
theory_var add_objective(app* term) {
TRACE("opt", tout << expr_ref(term, m) << "\n";);
return internalize_def(term);
}
void term2coeffs(lp::lar_term const& term, u_map<rational>& coeffs) {
term2coeffs(term, coeffs, rational::one());
}
void term2coeffs(lp::lar_term const& term, u_map<rational>& coeffs, rational const& coeff) {
for (const auto & ti : term) {
theory_var w;
if (lp().is_term(ti.var())) {
//w = m_term_index2theory_var.get(lp().adjust_term_index(ti.m_key), null_theory_var);
//if (w == null_theory_var) // if extracting expressions directly from nested term
lp::lar_term const& term1 = lp().get_term(ti.var());
rational coeff2 = coeff * ti.coeff();
term2coeffs(term1, coeffs, coeff2);
continue;
}
else {
w = lp().local_to_external(ti.var());
}
rational c0(0);
coeffs.find(w, c0);
coeffs.insert(w, c0 + ti.coeff() * coeff);
}
}
app_ref coeffs2app(u_map<rational> const& coeffs, rational const& offset, bool is_int) {
expr_ref_vector args(m);
for (auto const& kv : coeffs) {
theory_var w = kv.m_key;
expr* o = get_enode(w)->get_owner();
if (kv.m_value.is_zero()) {
// continue
}
else if (kv.m_value.is_one()) {
args.push_back(o);
}
else {
args.push_back(a.mk_mul(a.mk_numeral(kv.m_value, is_int), o));
}
}
if (!offset.is_zero()) {
args.push_back(a.mk_numeral(offset, is_int));
}
switch (args.size()) {
case 0:
return app_ref(a.mk_numeral(rational::zero(), is_int), m);
case 1:
return app_ref(to_app(args[0].get()), m);
default:
return app_ref(a.mk_add(args.size(), args.c_ptr()), m);
}
}
app_ref mk_term(lp::lar_term const& term, bool is_int) {
u_map<rational> coeffs;
term2coeffs(term, coeffs);
return coeffs2app(coeffs, rational::zero(), is_int);
}
rational gcd_reduce(u_map<rational>& coeffs) {
rational g(0);
for (auto const& kv : coeffs) {
g = gcd(g, kv.m_value);
}
if (g.is_zero())
return rational::one();
if (!g.is_one()) {
for (auto& kv : coeffs) {
kv.m_value /= g;
}
}
return g;
}
app_ref mk_obj(theory_var v) {
lpvar vi = get_lpvar(v);
bool is_int = a.is_int(get_enode(v)->get_owner());
if (lp().is_term(vi)) {
return mk_term(lp().get_term(vi), is_int);
}
else {
theory_var w = lp().external_to_local(vi);
return app_ref(get_enode(w)->get_owner(), m);
}
}
expr_ref mk_ge(generic_model_converter& fm, theory_var v, inf_rational const& val) {
rational r = val.get_rational();
bool is_strict = val.get_infinitesimal().is_pos();
app_ref b(m);
bool is_int = a.is_int(get_enode(v)->get_owner());
if (is_strict) {
b = a.mk_le(mk_obj(v), a.mk_numeral(r, is_int));
}
else {
b = a.mk_ge(mk_obj(v), a.mk_numeral(r, is_int));
}
if (!ctx().b_internalized(b)) {
fm.hide(b->get_decl());
bool_var bv = ctx().mk_bool_var(b);
ctx().set_var_theory(bv, get_id());
// ctx().set_enode_flag(bv, true);
lp_api::bound_kind bkind = lp_api::bound_kind::lower_t;
if (is_strict) bkind = lp_api::bound_kind::upper_t;
lp_api::bound* a = mk_var_bound(bv, v, bkind, r);
mk_bound_axioms(*a);
updt_unassigned_bounds(v, +1);
m_bounds[v].push_back(a);
m_bounds_trail.push_back(v);
m_bool_var2bound.insert(bv, a);
TRACE("arith", tout << mk_pp(b, m) << "\n";);
}
if (is_strict) {
b = m.mk_not(b);
}
TRACE("arith", tout << b << "\n";);
return expr_ref(b, m);
}
void display(std::ostream & out) {
if (m_solver) {
out << lp().constraints();
lp().print_terms(out);
// the tableau
auto pp = lp ::core_solver_pretty_printer<lp::mpq, lp::impq>(
lp().m_mpq_lar_core_solver.m_r_solver, out);
pp.print();
for (unsigned j = 0; j < lp().number_of_vars(); j++) {
lp().m_mpq_lar_core_solver.m_r_solver.print_column_info(j, out);
}
}
unsigned nv = th.get_num_vars();
for (unsigned v = 0; v < nv; ++v) {
if (!ctx().is_relevant(get_enode(v))) out << "irr: ";
out << "v" << v;
if (can_get_value(v)) out << " = " << get_value(v);
if (is_int(v)) out << ", int";
if (ctx().is_shared(get_enode(v))) out << ", shared";
out << " := "; th.display_var_flat_def(out, v) << "\n";
}
}
void display_evidence(std::ostream& out, lp::explanation const& evidence) {
for (auto const& ev : evidence) {
expr_ref e(m);
SASSERT(!ev.first.is_zero());
if (ev.first.is_zero()) {
continue;
}
unsigned idx = ev.second;
switch (m_constraint_sources.get(idx, null_source)) {
case inequality_source: {
literal lit = m_inequalities[idx];
ctx().literal2expr(lit, e);
out << e << " " << ctx().get_assignment(lit) << "\n";
break;
}
case equality_source:
out << mk_pp(m_equalities[idx].first->get_owner(), m) << " = "
<< mk_pp(m_equalities[idx].second->get_owner(), m) << "\n";
break;
case definition_source: {
theory_var v = m_definitions[idx];
if (v != null_theory_var)
out << "def: v" << v << " := " << mk_pp(th.get_enode(v)->get_owner(), m) << "\n";
break;
}
case null_source:
out << idx << " null";
break;
default:
UNREACHABLE();
break;
}
}
for (auto const& ev : evidence) {
lp().constraints().display(out << ev.first << ": ", ev.second);
}
}
void collect_statistics(::statistics & st) const {
m_arith_eq_adapter.collect_statistics(st);
st.update("arith-lower", m_stats.m_assert_lower);
st.update("arith-upper", m_stats.m_assert_upper);
st.update("arith-rows", m_stats.m_add_rows);
st.update("arith-propagations", m_stats.m_bounds_propagations);
st.update("arith-iterations", m_stats.m_num_iterations);
st.update("arith-factorizations", lp().settings().stats().m_num_factorizations);
st.update("arith-pivots", m_stats.m_need_to_solve_inf);
st.update("arith-plateau-iterations", m_stats.m_num_iterations_with_no_progress);
st.update("arith-fixed-eqs", m_stats.m_fixed_eqs);
st.update("arith-conflicts", m_stats.m_conflicts);
st.update("arith-bound-propagations-lp", m_stats.m_bound_propagations1);
st.update("arith-bound-propagations-cheap", m_stats.m_bound_propagations2);
st.update("arith-diseq", m_stats.m_assert_diseq);
st.update("arith-make-feasible", lp().settings().stats().m_make_feasible);
st.update("arith-max-columns", lp().settings().stats().m_max_cols);
st.update("arith-max-rows", lp().settings().stats().m_max_rows);
st.update("arith-gcd-calls", lp().settings().stats().m_gcd_calls);
st.update("arith-gcd-conflict", lp().settings().stats().m_gcd_conflicts);
st.update("arith-cube-calls", lp().settings().stats().m_cube_calls);
st.update("arith-cube-success", lp().settings().stats().m_cube_success);
st.update("arith-patches", lp().settings().stats().m_patches);
st.update("arith-patches-success", lp().settings().stats().m_patches_success);
st.update("arith-hnf-calls", lp().settings().stats().m_hnf_cutter_calls);
st.update("arith-horner-calls", lp().settings().stats().m_horner_calls);
st.update("arith-horner-conflicts", lp().settings().stats().m_horner_conflicts);
st.update("arith-horner-cross-nested-forms", lp().settings().stats().m_cross_nested_forms);
st.update("arith-grobner-calls", lp().settings().stats().m_grobner_calls);
st.update("arith-grobner-conflicts", lp().settings().stats().m_grobner_conflicts);
st.update("arith-nla-explanations", m_stats.m_nla_explanations);
st.update("arith-nla-lemmas", m_stats.m_nla_lemmas);
st.update("arith-gomory-cuts", m_stats.m_gomory_cuts);
st.update("arith-assume-eqs", m_stats.m_assume_eqs);
st.update("arith-branch", m_stats.m_branch);
}
};
theory_lra::theory_lra(ast_manager& m, theory_arith_params& ap):
theory(m.get_family_id("arith")) {
m_imp = alloc(imp, *this, m, ap);
}
theory_lra::~theory_lra() {
dealloc(m_imp);
}
theory* theory_lra::mk_fresh(context* new_ctx) {
return alloc(theory_lra, new_ctx->get_manager(), new_ctx->get_fparams());
}
void theory_lra::init(context * ctx) {
theory::init(ctx);
m_imp->init(ctx);
}
bool theory_lra::internalize_atom(app * atom, bool gate_ctx) {
return m_imp->internalize_atom(atom, gate_ctx);
}
bool theory_lra::internalize_term(app * term) {
return m_imp->internalize_term(term);
}
void theory_lra::internalize_eq_eh(app * atom, bool_var v) {
m_imp->internalize_eq_eh(atom, v);
}
void theory_lra::assign_eh(bool_var v, bool is_true) {
m_imp->assign_eh(v, is_true);
}
lbool theory_lra::get_phase(bool_var v) {
return m_imp->get_phase(v);
}
void theory_lra::new_eq_eh(theory_var v1, theory_var v2) {
m_imp->new_eq_eh(v1, v2);
}
bool theory_lra::use_diseqs() const {
return m_imp->use_diseqs();
}
void theory_lra::new_diseq_eh(theory_var v1, theory_var v2) {
m_imp->new_diseq_eh(v1, v2);
}
void theory_lra::apply_sort_cnstr(enode* n, sort* s) {
m_imp->apply_sort_cnstr(n, s);
}
void theory_lra::push_scope_eh() {
theory::push_scope_eh();
m_imp->push_scope_eh();
}
void theory_lra::pop_scope_eh(unsigned num_scopes) {
m_imp->pop_scope_eh(num_scopes);
theory::pop_scope_eh(num_scopes);
}
void theory_lra::restart_eh() {
m_imp->restart_eh();
}
void theory_lra::relevant_eh(app* e) {
m_imp->relevant_eh(e);
}
void theory_lra::init_search_eh() {
m_imp->init_search_eh();
}
final_check_status theory_lra::final_check_eh() {
return m_imp->final_check_eh();
}
bool theory_lra::is_shared(theory_var v) const {
return m_imp->is_shared(v);
}
bool theory_lra::can_propagate() {
return m_imp->can_propagate();
}
void theory_lra::propagate() {
m_imp->propagate();
}
justification * theory_lra::why_is_diseq(theory_var v1, theory_var v2) {
return m_imp->why_is_diseq(v1, v2);
}
void theory_lra::reset_eh() {
m_imp->reset_eh();
}
void theory_lra::init_model(model_generator & m) {
m_imp->init_model(m);
}
model_value_proc * theory_lra::mk_value(enode * n, model_generator & mg) {
return m_imp->mk_value(n, mg);
}
bool theory_lra::get_value(enode* n, rational& r) {
return m_imp->get_value(n, r);
}
bool theory_lra::get_value(enode* n, expr_ref& r) {
return m_imp->get_value(n, r);
}
bool theory_lra::include_func_interp(func_decl* f) {
return m_imp->include_func_interp(f);
}
bool theory_lra::get_lower(enode* n, expr_ref& r) {
return m_imp->get_lower(n, r);
}
bool theory_lra::get_upper(enode* n, expr_ref& r) {
return m_imp->get_upper(n, r);
}
bool theory_lra::get_lower(enode* n, rational& r, bool& is_strict) {
return m_imp->get_lower(n, r, is_strict);
}
bool theory_lra::get_upper(enode* n, rational& r, bool& is_strict) {
return m_imp->get_upper(n, r, is_strict);
}
void theory_lra::display(std::ostream & out) const {
m_imp->display(out);
}
void theory_lra::collect_statistics(::statistics & st) const {
m_imp->collect_statistics(st);
}
theory_lra::inf_eps theory_lra::value(theory_var v) {
return m_imp->value(v);
}
theory_lra::inf_eps theory_lra::maximize(theory_var v, expr_ref& blocker, bool& has_shared) {
return m_imp->maximize(v, blocker, has_shared);
}
theory_var theory_lra::add_objective(app* term) {
return m_imp->add_objective(term);
}
expr_ref theory_lra::mk_ge(generic_model_converter& fm, theory_var v, inf_rational const& val) {
return m_imp->mk_ge(fm, v, val);
}
}