mirror of
https://github.com/Z3Prover/z3
synced 2025-04-14 04:48:45 +00:00
387 lines
14 KiB
C++
387 lines
14 KiB
C++
/*++
|
|
Copyright (c) 2016 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
bounded_int2bv_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
This solver identifies bounded integers and rewrites them to bit-vectors.
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2016-10-23
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include "tactic/fd_solver/bounded_int2bv_solver.h"
|
|
#include "solver/solver_na2as.h"
|
|
#include "tactic/tactic.h"
|
|
#include "ast/rewriter/pb2bv_rewriter.h"
|
|
#include "ast/converters/generic_model_converter.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "model/model_smt2_pp.h"
|
|
#include "ast/simplifiers/bound_manager.h"
|
|
#include "tactic/arith/bv2int_rewriter.h"
|
|
#include "ast/rewriter/expr_safe_replace.h"
|
|
#include "ast/bv_decl_plugin.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
|
|
class bounded_int2bv_solver : public solver_na2as {
|
|
ast_manager& m;
|
|
mutable bv_util m_bv;
|
|
mutable arith_util m_arith;
|
|
mutable expr_ref_vector m_assertions;
|
|
ref<solver> m_solver;
|
|
mutable ptr_vector<bound_manager> m_bounds;
|
|
mutable func_decl_ref_vector m_bv_fns;
|
|
mutable func_decl_ref_vector m_int_fns;
|
|
unsigned_vector m_bv_fns_lim;
|
|
mutable obj_map<func_decl, func_decl*> m_int2bv;
|
|
mutable obj_map<func_decl, func_decl*> m_bv2int;
|
|
mutable obj_map<func_decl, rational> m_bv2offset;
|
|
mutable bv2int_rewriter_ctx m_rewriter_ctx;
|
|
mutable bv2int_rewriter_star m_rewriter;
|
|
mutable bool m_flushed;
|
|
|
|
public:
|
|
|
|
bounded_int2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
|
solver_na2as(m),
|
|
m(m),
|
|
m_bv(m),
|
|
m_arith(m),
|
|
m_assertions(m),
|
|
m_solver(s),
|
|
m_bv_fns(m),
|
|
m_int_fns(m),
|
|
m_rewriter_ctx(m, p, p.get_uint("max_bv_size", UINT_MAX)),
|
|
m_rewriter(m, m_rewriter_ctx),
|
|
m_flushed(false)
|
|
{
|
|
solver::updt_params(p);
|
|
m_bounds.push_back(alloc(bound_manager, m));
|
|
}
|
|
|
|
~bounded_int2bv_solver() override {
|
|
while (!m_bounds.empty()) {
|
|
dealloc(m_bounds.back());
|
|
m_bounds.pop_back();
|
|
}
|
|
}
|
|
|
|
solver* translate(ast_manager& dst_m, params_ref const& p) override {
|
|
flush_assertions();
|
|
bounded_int2bv_solver* result = alloc(bounded_int2bv_solver, dst_m, p, m_solver->translate(dst_m, p));
|
|
ast_translation tr(m, dst_m);
|
|
for (auto& kv : m_int2bv) result->m_int2bv.insert(tr(kv.m_key), tr(kv.m_value));
|
|
for (auto& kv : m_bv2int) result->m_bv2int.insert(tr(kv.m_key), tr(kv.m_value));
|
|
for (auto& kv : m_bv2offset) result->m_bv2offset.insert(tr(kv.m_key), kv.m_value);
|
|
for (func_decl* f : m_bv_fns) result->m_bv_fns.push_back(tr(f));
|
|
for (func_decl* f : m_int_fns) result->m_int_fns.push_back(tr(f));
|
|
for (bound_manager* b : m_bounds) result->m_bounds.push_back(b->translate(dst_m));
|
|
result->m_flushed = true;
|
|
model_converter_ref mc = external_model_converter();
|
|
if (mc) {
|
|
ast_translation tr(m, dst_m);
|
|
result->set_model_converter(mc->translate(tr));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void assert_expr_core(expr * t) override {
|
|
unsigned i = m_assertions.size();
|
|
m_assertions.push_back(t);
|
|
while (i < m_assertions.size()) {
|
|
t = m_assertions[i].get();
|
|
if (m.is_and(t)) {
|
|
m_assertions.append(to_app(t)->get_num_args(), to_app(t)->get_args());
|
|
m_assertions[i] = m_assertions.back();
|
|
m_assertions.pop_back();
|
|
}
|
|
else {
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
void push_core() override {
|
|
flush_assertions();
|
|
m_solver->push();
|
|
m_bv_fns_lim.push_back(m_bv_fns.size());
|
|
m_bounds.push_back(alloc(bound_manager, m));
|
|
}
|
|
|
|
void pop_core(unsigned n) override {
|
|
m_assertions.reset();
|
|
m_solver->pop(n);
|
|
|
|
if (n > 0) {
|
|
SASSERT(n <= m_bv_fns_lim.size());
|
|
unsigned new_sz = m_bv_fns_lim.size() - n;
|
|
unsigned lim = m_bv_fns_lim[new_sz];
|
|
for (unsigned i = m_int_fns.size(); i > lim; ) {
|
|
--i;
|
|
m_int2bv.erase(m_int_fns[i].get());
|
|
m_bv2int.erase(m_bv_fns[i].get());
|
|
m_bv2offset.erase(m_bv_fns[i].get());
|
|
}
|
|
m_bv_fns_lim.resize(new_sz);
|
|
m_bv_fns.resize(lim);
|
|
m_int_fns.resize(lim);
|
|
}
|
|
|
|
while (n > 0) {
|
|
dealloc(m_bounds.back());
|
|
m_bounds.pop_back();
|
|
--n;
|
|
}
|
|
}
|
|
|
|
void check_assumptions(unsigned num_assumptions, expr * const * assumptions) {
|
|
for (unsigned i = 0; i < num_assumptions; ++i) {
|
|
expr* arg = assumptions[i];
|
|
m.is_not(arg, arg);
|
|
if (!is_uninterp_const(arg))
|
|
throw default_exception("only propositional assumptions are supported for finite domains " + mk_pp(arg, m));
|
|
}
|
|
}
|
|
|
|
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
|
|
flush_assertions();
|
|
check_assumptions(num_assumptions, assumptions);
|
|
return m_solver->check_sat_core(num_assumptions, assumptions);
|
|
}
|
|
|
|
void updt_params(params_ref const & p) override { solver::updt_params(p); m_solver->updt_params(p); }
|
|
void collect_param_descrs(param_descrs & r) override { m_solver->collect_param_descrs(r); }
|
|
void set_produce_models(bool f) override { m_solver->set_produce_models(f); }
|
|
void set_progress_callback(progress_callback * callback) override { m_solver->set_progress_callback(callback); }
|
|
void collect_statistics(statistics & st) const override { m_solver->collect_statistics(st); }
|
|
void get_unsat_core(expr_ref_vector & r) override { m_solver->get_unsat_core(r); }
|
|
void set_phase(expr* e) override { m_solver->set_phase(e); }
|
|
phase* get_phase() override { return m_solver->get_phase(); }
|
|
void set_phase(phase* p) override { m_solver->set_phase(p); }
|
|
void move_to_front(expr* e) override { m_solver->move_to_front(e); }
|
|
void get_model_core(model_ref & mdl) override {
|
|
m_solver->get_model(mdl);
|
|
if (mdl) {
|
|
model_converter_ref mc = local_model_converter();
|
|
if (mc) (*mc)(mdl);
|
|
}
|
|
}
|
|
void get_levels(ptr_vector<expr> const& vars, unsigned_vector& depth) override {
|
|
m_solver->get_levels(vars, depth);
|
|
}
|
|
expr_ref_vector get_trail(unsigned max_level) override {
|
|
return m_solver->get_trail(max_level);
|
|
}
|
|
|
|
model_converter* external_model_converter() const {
|
|
return concat(mc0(), local_model_converter());
|
|
}
|
|
model_converter* local_model_converter() const {
|
|
if (m_int2bv.empty() && m_bv_fns.empty()) return nullptr;
|
|
generic_model_converter* mc = alloc(generic_model_converter, m, "bounded_int2bv");
|
|
for (func_decl* f : m_bv_fns)
|
|
mc->hide(f);
|
|
for (auto const& kv : m_int2bv) {
|
|
rational offset;
|
|
VERIFY (m_bv2offset.find(kv.m_value, offset));
|
|
expr_ref value(m_bv.mk_ubv2int(m.mk_const(kv.m_value)), m);
|
|
if (!offset.is_zero()) {
|
|
value = m_arith.mk_add(value, m_arith.mk_numeral(offset, true));
|
|
}
|
|
TRACE("int2bv", tout << mk_pp(kv.m_key, m) << " " << value << "\n";);
|
|
mc->add(kv.m_key, value);
|
|
}
|
|
return mc;
|
|
}
|
|
|
|
model_converter_ref get_model_converter() const override {
|
|
model_converter_ref mc = external_model_converter();
|
|
mc = concat(mc.get(), m_solver->get_model_converter().get());
|
|
return mc;
|
|
}
|
|
proof * get_proof_core() override { return m_solver->get_proof_core(); }
|
|
std::string reason_unknown() const override { return m_solver->reason_unknown(); }
|
|
void set_reason_unknown(char const* msg) override { m_solver->set_reason_unknown(msg); }
|
|
void get_labels(svector<symbol> & r) override { m_solver->get_labels(r); }
|
|
ast_manager& get_manager() const override { return m; }
|
|
expr* congruence_next(expr* e) override { return m_solver->congruence_next(e); }
|
|
expr* congruence_root(expr* e) override { return m_solver->congruence_root(e); }
|
|
expr_ref congruence_explain(expr* a, expr* b) override { return m_solver->congruence_explain(a, b); }
|
|
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override { flush_assertions(); return m_solver->cube(vars, backtrack_level); }
|
|
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override { return m_solver->find_mutexes(vars, mutexes); }
|
|
lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
|
|
flush_assertions();
|
|
expr_ref_vector bvars(m);
|
|
for (unsigned i = 0; i < vars.size(); ++i) {
|
|
expr* v = vars[i];
|
|
func_decl* f;
|
|
rational offset;
|
|
if (is_app(v) && is_uninterp_const(v) && m_int2bv.find(to_app(v)->get_decl(), f)) {
|
|
bvars.push_back(m.mk_const(f));
|
|
}
|
|
else {
|
|
bvars.push_back(v);
|
|
}
|
|
}
|
|
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
|
|
|
// translate bit-vector consequences back to integer values
|
|
for (unsigned i = 0; i < consequences.size(); ++i) {
|
|
expr* a = nullptr, *b = nullptr, *u = nullptr, *v = nullptr;
|
|
func_decl* f;
|
|
rational num;
|
|
unsigned bvsize;
|
|
rational offset;
|
|
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
|
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_bv2int.find(to_app(u)->get_decl(), f) && m_bv.is_numeral(v, num, bvsize)) {
|
|
SASSERT(num.is_unsigned());
|
|
expr_ref head(m);
|
|
VERIFY (m_bv2offset.find(to_app(u)->get_decl(), offset));
|
|
// f + offset == num
|
|
// f == num - offset
|
|
head = m.mk_eq(m.mk_const(f), m_arith.mk_numeral(num + offset, true));
|
|
consequences[i] = m.mk_implies(a, head);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
private:
|
|
|
|
void accumulate_sub(expr_safe_replace& sub) const {
|
|
for (unsigned i = 0; i < m_bounds.size(); ++i) {
|
|
accumulate_sub(sub, *m_bounds[i]);
|
|
}
|
|
}
|
|
|
|
void accumulate_sub(expr_safe_replace& sub, bound_manager& bm) const {
|
|
bound_manager::iterator it = bm.begin(), end = bm.end();
|
|
for (; it != end; ++it) {
|
|
expr* e = *it;
|
|
rational lo, hi;
|
|
bool s1 = false, s2 = false;
|
|
SASSERT(is_uninterp_const(e));
|
|
func_decl* f = to_app(e)->get_decl();
|
|
|
|
if (bm.has_lower(e, lo, s1) && bm.has_upper(e, hi, s2) && lo <= hi && !s1 && !s2 && m_arith.is_int(e)) {
|
|
func_decl* fbv;
|
|
rational offset;
|
|
if (!m_int2bv.find(f, fbv)) {
|
|
rational n = hi - lo + rational::one();
|
|
unsigned num_bits = get_num_bits(n);
|
|
expr_ref b(m);
|
|
b = m.mk_fresh_const("b", m_bv.mk_sort(num_bits));
|
|
fbv = to_app(b)->get_decl();
|
|
offset = lo;
|
|
m_int2bv.insert(f, fbv);
|
|
m_bv2int.insert(fbv, f);
|
|
m_bv2offset.insert(fbv, offset);
|
|
m_bv_fns.push_back(fbv);
|
|
m_int_fns.push_back(f);
|
|
unsigned shift;
|
|
if (!offset.is_zero() && !n.is_power_of_two(shift)) {
|
|
m_assertions.push_back(m_bv.mk_ule(b, m_bv.mk_numeral(n-rational::one(), num_bits)));
|
|
}
|
|
}
|
|
else {
|
|
VERIFY(m_bv2offset.find(fbv, offset));
|
|
}
|
|
expr_ref t(m.mk_const(fbv), m);
|
|
t = m_bv.mk_ubv2int(t);
|
|
if (!offset.is_zero()) {
|
|
t = m_arith.mk_add(t, m_arith.mk_numeral(offset, true));
|
|
}
|
|
TRACE("pb", tout << lo << " <= " << hi << " offset: " << offset << "\n"; tout << mk_pp(e, m) << " |-> " << t << "\n";);
|
|
sub.insert(e, t);
|
|
}
|
|
else {
|
|
TRACE("pb",
|
|
tout << "unprocessed entry: " << mk_pp(e, m) << "\n";
|
|
if (bm.has_lower(e, lo, s1)) {
|
|
tout << "lower: " << lo << " " << s1 << "\n";
|
|
}
|
|
if (bm.has_upper(e, hi, s2)) {
|
|
tout << "upper: " << hi << " " << s2 << "\n";
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
unsigned get_num_bits(rational const& k) const {
|
|
SASSERT(!k.is_neg());
|
|
SASSERT(k.is_int());
|
|
rational two(2);
|
|
rational bound(1);
|
|
unsigned num_bits = 1;
|
|
while (bound <= k) {
|
|
++num_bits;
|
|
bound *= two;
|
|
}
|
|
return num_bits;
|
|
}
|
|
|
|
void flush_assertions() const {
|
|
if (m_assertions.empty()) return;
|
|
m_flushed = true;
|
|
bound_manager& bm = *m_bounds.back();
|
|
for (expr* a : m_assertions)
|
|
bm(a, nullptr, nullptr);
|
|
TRACE("int2bv", bm.display(tout););
|
|
expr_safe_replace sub(m);
|
|
accumulate_sub(sub);
|
|
proof_ref proof(m);
|
|
expr_ref fml1(m), fml2(m);
|
|
if (sub.empty()) {
|
|
m_solver->assert_expr(m_assertions);
|
|
}
|
|
else {
|
|
for (expr* a : m_assertions) {
|
|
sub(a, fml1);
|
|
m_rewriter(fml1, fml2, proof);
|
|
if (!m.inc()) {
|
|
m_rewriter.reset();
|
|
return;
|
|
}
|
|
m_solver->assert_expr(fml2);
|
|
TRACE("int2bv", tout << fml2 << "\n";);
|
|
}
|
|
}
|
|
m_assertions.reset();
|
|
m_rewriter.reset();
|
|
}
|
|
|
|
unsigned get_num_assertions() const override {
|
|
if (m_flushed) {
|
|
flush_assertions();
|
|
return m_solver->get_num_assertions();
|
|
}
|
|
else {
|
|
return m_assertions.size();
|
|
}
|
|
}
|
|
|
|
expr * get_assertion(unsigned idx) const override {
|
|
if (m_flushed) {
|
|
flush_assertions();
|
|
return m_solver->get_assertion(idx);
|
|
}
|
|
else {
|
|
return m_assertions.get(idx);
|
|
}
|
|
}
|
|
|
|
void user_propagate_initialize_value(expr* var, expr* value) override {
|
|
}
|
|
};
|
|
|
|
solver * mk_bounded_int2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
|
return alloc(bounded_int2bv_solver, m, p, s);
|
|
}
|