mirror of
https://github.com/Z3Prover/z3
synced 2025-04-14 12:58:44 +00:00
426 lines
16 KiB
C++
426 lines
16 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
reduce_args_simplifier.cpp
|
|
|
|
Abstract:
|
|
|
|
Reduce the number of arguments in function applications.
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2012-02-19
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
|
|
#include "util/map.h"
|
|
#include "ast/ast_smt2_pp.h"
|
|
#include "ast/ast_util.h"
|
|
#include "ast/has_free_vars.h"
|
|
#include "ast/rewriter/rewriter_def.h"
|
|
#include "ast/simplifiers/dependent_expr_state.h"
|
|
|
|
/**
|
|
\brief Reduce the number of arguments in function applications.
|
|
|
|
Example, suppose we have a function f with 2 arguments.
|
|
There are 1000 applications of this function, but the first argument is always "a", "b" or "c".
|
|
Thus, we replace the f(t1, t2)
|
|
with
|
|
f_a(t2) if t1 = a
|
|
f_b(t2) if t2 = b
|
|
f_c(t2) if t2 = c
|
|
|
|
Since f_a, f_b, f_c are new symbols, satisfiability is preserved.
|
|
|
|
This transformation is very similar in spirit to the Ackermman's reduction.
|
|
|
|
This transformation should work in the following way:
|
|
|
|
1- Create a mapping decl2arg_map from declarations to tuples of booleans, an entry [f -> (true, false, true)]
|
|
means that f is a declaration with 3 arguments where the first and third arguments are always values.
|
|
2- Traverse the formula and populate the mapping.
|
|
For each function application f(t1, ..., tn) do
|
|
a) Create a boolean tuple (is_value(t1), ..., is_value(tn)) and do
|
|
the logical-and with the tuple that is already in the mapping. If there is no such tuple
|
|
in the mapping, we just add a new entry.
|
|
|
|
If all entries are false-tuples, then there is nothing to be done. The transformation is not applicable.
|
|
|
|
Now, we create a mapping decl2new_decl from (decl, val_1, ..., val_n) to decls. Note that, n may be different for each entry,
|
|
but it is the same for the same declaration.
|
|
For example, suppose we have [f -> (true, false, true)] in decl2arg_map, and applications f(1, a, 2), f(1, b, 2), f(1, b, 3), f(2, b, 3), f(2, c, 3) in the formula.
|
|
Then, decl2arg_map would contain
|
|
(f, 1, 2) -> f_1_2
|
|
(f, 1, 3) -> f_1_3
|
|
(f, 2, 3) -> f_2_3
|
|
where f_1_2, f_1_3 and f_2_3 are new function symbols.
|
|
Using the new map, we can replace the occurrences of f.
|
|
*/
|
|
|
|
class reduce_args_simplifier : public dependent_expr_simplifier {
|
|
bv_util m_bv;
|
|
|
|
static bool is_var_plus_offset(ast_manager& m, bv_util& bv, expr* e, expr*& base) {
|
|
expr *lhs, *rhs;
|
|
if (bv.is_bv_add(e, lhs, rhs) && bv.is_numeral(lhs))
|
|
base = rhs;
|
|
else
|
|
base = e;
|
|
return !has_free_vars(base);
|
|
}
|
|
|
|
static bool may_be_unique(ast_manager& m, bv_util& bv, expr* e, expr*& base) {
|
|
base = nullptr;
|
|
return m.is_unique_value(e) || is_var_plus_offset(m, bv, e, base);
|
|
}
|
|
|
|
static bool may_be_unique(ast_manager& m, bv_util& bv, expr* e) {
|
|
expr* base;
|
|
return may_be_unique(m, bv, e, base);
|
|
}
|
|
|
|
struct find_non_candidates_proc {
|
|
ast_manager & m;
|
|
bv_util & m_bv;
|
|
obj_hashtable<func_decl> & m_non_candidates;
|
|
|
|
find_non_candidates_proc(ast_manager & m, bv_util & bv, obj_hashtable<func_decl> & non_candidates):
|
|
m(m),
|
|
m_bv(bv),
|
|
m_non_candidates(non_candidates) {
|
|
}
|
|
|
|
void operator()(var * n) {}
|
|
|
|
void operator()(quantifier *n) {}
|
|
|
|
void operator()(app * n) {
|
|
if (!is_uninterp(n))
|
|
return;
|
|
func_decl * d;
|
|
if (n->get_num_args() == 0)
|
|
return; // ignore constants
|
|
d = n->get_decl();
|
|
if (m_non_candidates.contains(d))
|
|
return; // it is already in the set.
|
|
for (expr* arg : *n)
|
|
if (may_be_unique(m, m_bv, arg))
|
|
return;
|
|
m_non_candidates.insert(d);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Populate the table non_candidates with function declarations \c f
|
|
such that there is a function application (f t1 ... tn) where t1 ... tn are not values.
|
|
*/
|
|
void find_non_candidates(obj_hashtable<func_decl> & non_candidates) {
|
|
non_candidates.reset();
|
|
find_non_candidates_proc proc(m, m_bv, non_candidates);
|
|
expr_fast_mark1 visited;
|
|
for (auto i : indices())
|
|
quick_for_each_expr(proc, visited, m_fmls[i].fml());
|
|
|
|
TRACE("reduce_args", tout << "non_candidates:\n"; for (func_decl* d : non_candidates) tout << d->get_name() << "\n";);
|
|
}
|
|
|
|
struct populate_decl2args_proc {
|
|
reduce_args_simplifier& m_owner;
|
|
ast_manager & m;
|
|
bv_util & m_bv;
|
|
obj_hashtable<func_decl> & m_non_candidates;
|
|
obj_map<func_decl, bit_vector> & m_decl2args;
|
|
obj_map<func_decl, svector<expr*> > m_decl2base; // for args = base + offset
|
|
|
|
populate_decl2args_proc(reduce_args_simplifier& o, ast_manager & m, bv_util & bv, obj_hashtable<func_decl> & nc, obj_map<func_decl, bit_vector> & d):
|
|
m_owner(o), m(m), m_bv(bv), m_non_candidates(nc), m_decl2args(d) {}
|
|
|
|
void operator()(var * n) {}
|
|
void operator()(quantifier * n) {}
|
|
void operator()(app * n) {
|
|
if (n->get_num_args() == 0)
|
|
return; // ignore constants
|
|
func_decl * d = n->get_decl();
|
|
if (d->get_family_id() != null_family_id)
|
|
return; // ignore interpreted symbols
|
|
if (m_non_candidates.contains(d))
|
|
return; // declaration is not a candidate
|
|
if (m_owner.m_fmls.frozen(d))
|
|
return;
|
|
|
|
unsigned j = n->get_num_args();
|
|
obj_map<func_decl, bit_vector>::iterator it = m_decl2args.find_iterator(d);
|
|
expr* base;
|
|
if (it == m_decl2args.end()) {
|
|
m_decl2args.insert(d, bit_vector());
|
|
svector<expr*>& bases = m_decl2base.insert_if_not_there(d, svector<expr*>());
|
|
bases.resize(j);
|
|
it = m_decl2args.find_iterator(d);
|
|
SASSERT(it != m_decl2args.end());
|
|
it->m_value.reserve(j);
|
|
while (j > 0) {
|
|
--j;
|
|
it->m_value.set(j, may_be_unique(m, m_bv, n->get_arg(j), base));
|
|
bases[j] = base;
|
|
}
|
|
} else {
|
|
svector<expr*>& bases = m_decl2base[d];
|
|
SASSERT(j == it->m_value.size());
|
|
while (j > 0) {
|
|
--j;
|
|
it->m_value.set(j, it->m_value.get(j) && may_be_unique(m, m_bv, n->get_arg(j), base) && bases[j] == base);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void populate_decl2args(obj_hashtable<func_decl> & non_candidates,
|
|
obj_map<func_decl, bit_vector> & decl2args) {
|
|
expr_fast_mark1 visited;
|
|
decl2args.reset();
|
|
populate_decl2args_proc proc(*this, m, m_bv, non_candidates, decl2args);
|
|
for (auto i : indices())
|
|
quick_for_each_expr(proc, visited, m_fmls[i].fml());
|
|
|
|
// Remove all cases where the simplification is not applicable.
|
|
ptr_buffer<func_decl> bad_decls;
|
|
for (auto const& [k, v] : decl2args)
|
|
if (all_of(v, [&](auto b) { return !b;}))
|
|
bad_decls.push_back(k);
|
|
|
|
for (func_decl* a : bad_decls)
|
|
decl2args.erase(a);
|
|
|
|
TRACE("reduce_args", tout << "decl2args:" << std::endl;
|
|
for (auto const& [k, v] : decl2args) {
|
|
tout << k->get_name() << ": ";
|
|
for (unsigned i = 0; i < v.size(); ++i)
|
|
tout << (v.get(i) ? "1" : "0");
|
|
tout << std::endl;
|
|
});
|
|
}
|
|
|
|
struct arg2func_hash_proc {
|
|
bit_vector const & m_bv;
|
|
|
|
arg2func_hash_proc(bit_vector const & bv):m_bv(bv) {}
|
|
unsigned operator()(app const * n) const {
|
|
// compute the hash-code using only the arguments where m_bv is true.
|
|
unsigned a = 0x9e3779b9;
|
|
unsigned num_args = n->get_num_args();
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
if (!m_bv.get(i))
|
|
continue; // ignore argument
|
|
a = hash_u_u(a, n->get_arg(i)->get_id());
|
|
}
|
|
return a;
|
|
}
|
|
};
|
|
|
|
struct arg2func_eq_proc {
|
|
bit_vector const & m_bv;
|
|
|
|
arg2func_eq_proc(bit_vector const & bv):m_bv(bv) {}
|
|
bool operator()(app const * n1, app const * n2) const {
|
|
// compare only the arguments where m_bv is true
|
|
SASSERT(n1->get_num_args() == n2->get_num_args());
|
|
unsigned num_args = n1->get_num_args();
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
if (!m_bv.get(i))
|
|
continue; // ignore argument
|
|
if (n1->get_arg(i) != n2->get_arg(i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
typedef map<app *, func_decl *, arg2func_hash_proc, arg2func_eq_proc> arg2func;
|
|
typedef obj_map<func_decl, arg2func *> decl2arg2func_map;
|
|
|
|
struct reduce_args_ctx {
|
|
ast_manager & m;
|
|
decl2arg2func_map m_decl2arg2funcs;
|
|
|
|
reduce_args_ctx(ast_manager & m): m(m) {
|
|
}
|
|
|
|
~reduce_args_ctx() {
|
|
for (auto const& [_, map] : m_decl2arg2funcs) {
|
|
for (auto const& [k, v] : *map) {
|
|
m.dec_ref(k);
|
|
m.dec_ref(v);
|
|
}
|
|
dealloc(map);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct reduce_args_rw_cfg : public default_rewriter_cfg {
|
|
ast_manager & m;
|
|
reduce_args_simplifier& m_owner;
|
|
obj_map<func_decl, bit_vector> & m_decl2args;
|
|
decl2arg2func_map & m_decl2arg2funcs;
|
|
|
|
reduce_args_rw_cfg(reduce_args_simplifier& owner, obj_map<func_decl, bit_vector> & decl2args, decl2arg2func_map & decl2arg2funcs):
|
|
m(owner.m),
|
|
m_owner(owner),
|
|
m_decl2args(decl2args),
|
|
m_decl2arg2funcs(decl2arg2funcs) {
|
|
}
|
|
|
|
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
|
|
result_pr = nullptr;
|
|
if (f->get_arity() == 0)
|
|
return BR_FAILED; // ignore constants
|
|
if (f->get_family_id() != null_family_id)
|
|
return BR_FAILED; // ignore interpreted symbols
|
|
obj_map<func_decl, bit_vector>::iterator it = m_decl2args.find_iterator(f);
|
|
if (it == m_decl2args.end())
|
|
return BR_FAILED;
|
|
|
|
bit_vector & bv = it->m_value;
|
|
arg2func *& map = m_decl2arg2funcs.insert_if_not_there(f, 0);
|
|
if (!map) {
|
|
map = alloc(arg2func, arg2func_hash_proc(bv), arg2func_eq_proc(bv));
|
|
}
|
|
|
|
app_ref tmp(m.mk_app(f, num, args), m);
|
|
func_decl *& new_f = map->insert_if_not_there(tmp, nullptr);
|
|
if (!new_f) {
|
|
// create fresh symbol
|
|
ptr_buffer<sort> domain;
|
|
unsigned arity = f->get_arity();
|
|
for (unsigned i = 0; i < arity; ++i) {
|
|
if (!bv.get(i))
|
|
domain.push_back(f->get_domain(i));
|
|
}
|
|
new_f = m.mk_fresh_func_decl(f->get_name(), symbol::null, domain.size(), domain.data(), f->get_range());
|
|
m.inc_ref(tmp);
|
|
m.inc_ref(new_f);
|
|
}
|
|
|
|
ptr_buffer<expr> new_args;
|
|
for (unsigned i = 0; i < num; i++) {
|
|
if (!bv.get(i))
|
|
new_args.push_back(args[i]);
|
|
}
|
|
result = m.mk_app(new_f, new_args.size(), new_args.data());
|
|
return BR_DONE;
|
|
}
|
|
};
|
|
|
|
struct reduce_args_rw : rewriter_tpl<reduce_args_rw_cfg> {
|
|
reduce_args_rw_cfg m_cfg;
|
|
public:
|
|
reduce_args_rw(reduce_args_simplifier & owner, obj_map<func_decl, bit_vector> & decl2args, decl2arg2func_map & decl2arg2funcs):
|
|
rewriter_tpl<reduce_args_rw_cfg>(owner.m, false, m_cfg),
|
|
m_cfg(owner, decl2args, decl2arg2funcs) {
|
|
}
|
|
};
|
|
|
|
void mk_mc(obj_map<func_decl, bit_vector> & decl2args, decl2arg2func_map & decl2arg2funcs, vector<dependent_expr> const& removed) {
|
|
ptr_buffer<expr> new_args;
|
|
var_ref_vector new_vars(m);
|
|
ptr_buffer<expr> new_eqs;
|
|
for (auto const& [f, map] : decl2arg2funcs)
|
|
for (auto const& [t, new_def] : *map)
|
|
m_fmls.model_trail().hide(new_def);
|
|
|
|
vector<std::tuple<func_decl_ref, expr_ref, expr_dependency_ref>> defs;
|
|
for (auto const& [f, map] : decl2arg2funcs) {
|
|
expr * def = nullptr;
|
|
SASSERT(decl2args.contains(f));
|
|
bit_vector & bv = decl2args.find(f);
|
|
new_vars.reset();
|
|
new_args.reset();
|
|
for (unsigned i = 0; i < f->get_arity(); i++) {
|
|
new_vars.push_back(m.mk_var(i, f->get_domain(i)));
|
|
if (!bv.get(i))
|
|
new_args.push_back(new_vars.back());
|
|
}
|
|
for (auto const& [t, new_def] : *map) {
|
|
SASSERT(new_def->get_arity() == new_args.size());
|
|
app * new_t = m.mk_app(new_def, new_args);
|
|
if (def == nullptr) {
|
|
def = new_t;
|
|
}
|
|
else {
|
|
new_eqs.reset();
|
|
for (unsigned i = 0; i < f->get_arity(); i++)
|
|
if (bv.get(i))
|
|
new_eqs.push_back(m.mk_eq(new_vars.get(i), t->get_arg(i)));
|
|
SASSERT(new_eqs.size() > 0);
|
|
expr * cond = mk_and(m, new_eqs);
|
|
def = m.mk_ite(cond, new_t, def);
|
|
}
|
|
}
|
|
SASSERT(def);
|
|
expr_dependency* dep = nullptr;
|
|
defs.push_back({ func_decl_ref(f,m), expr_ref(def, m), expr_dependency_ref(dep, m) });
|
|
}
|
|
m_fmls.model_trail().push(defs, removed);
|
|
}
|
|
|
|
unsigned m_num_decls = 0;
|
|
|
|
public:
|
|
reduce_args_simplifier(ast_manager& m, dependent_expr_state& st, params_ref const& p) :
|
|
dependent_expr_simplifier(m, st),
|
|
m_bv(m)
|
|
{}
|
|
|
|
char const* name() const override { return "reduce-args"; }
|
|
|
|
void collect_statistics(statistics& st) const override {
|
|
st.update("reduced-funcs", m_num_decls);
|
|
}
|
|
|
|
void reset_statistics() override {
|
|
m_num_decls = 0;
|
|
}
|
|
|
|
void reduce() override {
|
|
m_fmls.freeze_suffix();
|
|
|
|
obj_hashtable<func_decl> non_candidates;
|
|
obj_map<func_decl, bit_vector> decl2args;
|
|
find_non_candidates(non_candidates);
|
|
populate_decl2args(non_candidates, decl2args);
|
|
|
|
if (decl2args.empty())
|
|
return;
|
|
|
|
m_num_decls += decl2args.size();
|
|
|
|
reduce_args_ctx ctx(m);
|
|
reduce_args_rw rw(*this, decl2args, ctx.m_decl2arg2funcs);
|
|
vector<dependent_expr> removed;
|
|
// if not global scope then what?
|
|
// cannot just use in incremental mode.
|
|
for (auto i : indices()) {
|
|
auto [f, p, d] = m_fmls[i]();
|
|
if (p)
|
|
continue;
|
|
expr_ref new_f(m);
|
|
rw(f, new_f);
|
|
if (f != new_f) {
|
|
removed.push_back(m_fmls[i]);
|
|
m_fmls.update(i, dependent_expr(m, new_f, p, d));
|
|
}
|
|
}
|
|
mk_mc(decl2args, ctx.m_decl2arg2funcs, removed);
|
|
}
|
|
|
|
};
|
|
|
|
dependent_expr_simplifier* mk_reduce_args_simplifier(ast_manager & m, dependent_expr_state& st, params_ref const & p) {
|
|
return alloc(reduce_args_simplifier, m, st, p);
|
|
}
|
|
|