3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00
z3/src/sat/smt/q_eval.cpp
Nikolaj Bjorner 800fef6653 fix #5424
2021-07-22 18:31:37 -07:00

243 lines
8.1 KiB
C++

/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
q_eval.cpp
Abstract:
Evaluation of clauses
Author:
Nikolaj Bjorner (nbjorner) 2021-01-24
--*/
#include "ast/has_free_vars.h"
#include "sat/smt/q_eval.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/q_solver.h"
namespace q {
struct eval::scoped_mark_reset {
eval& e;
scoped_mark_reset(eval& e): e(e) {}
~scoped_mark_reset() { e.m_mark.reset(); }
};
eval::eval(euf::solver& ctx):
ctx(ctx),
m(ctx.get_manager())
{}
lbool eval::operator()(euf::enode* const* binding, clause& c, unsigned& idx, euf::enode_pair_vector& evidence) {
scoped_mark_reset _sr(*this);
idx = UINT_MAX;
unsigned sz = c.m_lits.size();
unsigned n = c.num_decls();
m_indirect_nodes.reset();
for (unsigned j = 0; j < sz; ++j) {
unsigned i = (j + c.m_watch) % sz;
unsigned lim = m_indirect_nodes.size();
lit l = c[i];
lbool cmp = compare(n, binding, l.lhs, l.rhs, evidence);
switch (cmp) {
case l_false:
m_indirect_nodes.shrink(lim);
if (!l.sign)
break;
c.m_watch = i;
return l_true;
case l_true:
m_indirect_nodes.shrink(lim);
if (l.sign)
break;
c.m_watch = i;
return l_true;
case l_undef:
TRACE("q", tout << l.lhs << " ~~ " << l.rhs << " is undef\n";);
if (idx != UINT_MAX) {
idx = UINT_MAX;
return l_undef;
}
idx = i;
break;
}
}
if (idx == UINT_MAX)
return l_false;
c.m_watch = idx;
return l_undef;
}
lbool eval::operator()(euf::enode* const* binding, clause& c, euf::enode_pair_vector& evidence) {
unsigned idx = 0;
return (*this)(binding, c, idx, evidence);
}
lbool eval::compare(unsigned n, euf::enode* const* binding, expr* s, expr* t, euf::enode_pair_vector& evidence) {
if (s == t)
return l_true;
if (m.are_distinct(s, t))
return l_false;
euf::enode* sn = (*this)(n, binding, s, evidence);
euf::enode* tn = (*this)(n, binding, t, evidence);
euf::enode* sr = sn ? sn->get_root() : sn;
euf::enode* tr = tn ? tn->get_root() : tn;
if (sn != sr) evidence.push_back(euf::enode_pair(sn, sr)), sn = sr;
if (tn != tr) evidence.push_back(euf::enode_pair(tn, tr)), tn = tr;
TRACE("q", tout << mk_pp(s, m) << " ~~ " << mk_pp(t, m) << "\n";
tout << ctx.bpp(sn) << " " << ctx.bpp(tn) << "\n";);
lbool c;
if (sn && sn == tn)
return l_true;
if (sn && tn && ctx.get_egraph().are_diseq(sn, tn)) {
evidence.push_back(euf::enode_pair(sn, tn));
return l_false;
}
if (sn && tn)
return l_undef;
if (!sn && !tn)
return compare_rec(n, binding, s, t, evidence);
if (!tn && sn) {
std::swap(tn, sn);
std::swap(t, s);
}
unsigned sz = evidence.size();
for (euf::enode* t1 : euf::enode_class(tn)) {
if (c = compare_rec(n, binding, s, t1->get_expr(), evidence), c != l_undef) {
evidence.push_back(euf::enode_pair(t1, tn));
return c;
}
evidence.shrink(sz);
}
return l_undef;
}
// f(p1) = f(p2) if p1 = p2
// f(p1) != f(p2) if p1 != p2 and f is injective
lbool eval::compare_rec(unsigned n, euf::enode* const* binding, expr* s, expr* t, euf::enode_pair_vector& evidence) {
if (m.are_equal(s, t))
return l_true;
if (m.are_distinct(s, t))
return l_false;
if (!is_app(s) || !is_app(t))
return l_undef;
if (to_app(s)->get_decl() != to_app(t)->get_decl())
return l_undef;
if (to_app(s)->get_num_args() != to_app(t)->get_num_args())
return l_undef;
bool is_injective = to_app(s)->get_decl()->is_injective();
bool has_undef = false;
unsigned sz = evidence.size();
for (unsigned i = to_app(s)->get_num_args(); i-- > 0; ) {
unsigned sz1 = evidence.size(), sz2;
switch (compare(n, binding, to_app(s)->get_arg(i), to_app(t)->get_arg(i), evidence)) {
case l_true:
break;
case l_false:
if (!is_injective)
return l_undef;
sz2 = evidence.size();
for (unsigned i = 0; i < sz2 - sz1; ++i)
evidence[sz + i] = evidence[sz1 + i];
evidence.shrink(sz + sz2 - sz1);
return l_false;
case l_undef:
if (!is_injective)
return l_undef;
has_undef = true;
break;
}
}
if (!has_undef)
return l_true;
evidence.shrink(sz);
return l_undef;
}
euf::enode* eval::operator()(unsigned n, euf::enode* const* binding, expr* e, euf::enode_pair_vector& evidence) {
if (is_ground(e))
return ctx.get_egraph().find(e);
if (m_mark.is_marked(e))
return m_eval[e->get_id()];
ptr_buffer<expr> todo;
ptr_buffer<euf::enode> args;
todo.push_back(e);
while (!todo.empty()) {
expr* t = todo.back();
SASSERT(!is_ground(t) || ctx.get_egraph().find(t));
if (is_ground(t) || (has_quantifiers(t) && !has_free_vars(t))) {
m_mark.mark(t);
m_eval.setx(t->get_id(), ctx.get_egraph().find(t), nullptr);
if (!m_eval[t->get_id()])
return nullptr;
todo.pop_back();
continue;
}
if (m_mark.is_marked(t)) {
todo.pop_back();
continue;
}
if (is_var(t)) {
m_mark.mark(t);
m_eval.setx(t->get_id(), binding[n - 1 - to_var(t)->get_idx()], nullptr);
todo.pop_back();
continue;
}
if (!is_app(t))
return nullptr;
args.reset();
for (expr* arg : *to_app(t)) {
if (m_mark.is_marked(arg))
args.push_back(m_eval[arg->get_id()]);
else
todo.push_back(arg);
}
if (args.size() == to_app(t)->get_num_args()) {
euf::enode* n = ctx.get_egraph().find(t, args.size(), args.data());
if (!n)
return nullptr;
for (unsigned i = args.size(); i-- > 0; ) {
if (args[i] != n->get_arg(i)) {
// roots could be different when using commutativity
// instead of compensating for this, we just bail out
if (args[i]->get_root() != n->get_arg(i)->get_root())
return nullptr;
evidence.push_back(euf::enode_pair(args[i], n->get_arg(i)));
}
}
m_indirect_nodes.push_back(n);
m_eval.setx(t->get_id(), n, nullptr);
m_mark.mark(t);
todo.pop_back();
}
}
return m_eval[e->get_id()];
}
void eval::explain(sat::literal l, justification& j, sat::literal_vector& r, bool probing) {
clause& c = j.m_clause;
for (unsigned i = 0; i < j.m_num_ev; ++i) {
auto [a, b] = j.m_evidence[i];
SASSERT(a->get_root() == b->get_root() || ctx.get_egraph().are_diseq(a, b));
if (a->get_root() == b->get_root())
ctx.add_antecedent(a, b);
else
ctx.add_diseq_antecedent(a, b);
}
r.push_back(c.m_literal);
(void)probing; // ignored
}
}