mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 09:55:19 +00:00
277 lines
9.6 KiB
C++
277 lines
9.6 KiB
C++
/*++
|
|
Copyright (c) 2022 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
extract_eqs.cpp
|
|
|
|
Abstract:
|
|
|
|
simplifier for solving equations
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2022-11-2.
|
|
|
|
--*/
|
|
|
|
|
|
#include "ast/ast_util.h"
|
|
#include "ast/for_each_expr.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "ast/simplifiers/extract_eqs.h"
|
|
#include "params/tactic_params.hpp"
|
|
|
|
|
|
namespace euf {
|
|
|
|
class basic_extract_eq : public extract_eq {
|
|
ast_manager& m;
|
|
bool m_ite_solver = true;
|
|
bool m_allow_bool = true;
|
|
|
|
public:
|
|
basic_extract_eq(ast_manager& m) : m(m) {}
|
|
|
|
virtual void set_allow_booleans(bool f) {
|
|
m_allow_bool = f;
|
|
}
|
|
|
|
void get_eqs(dependent_expr const& e, dep_eq_vector& eqs) override {
|
|
auto [f, p, d] = e();
|
|
expr* x, * y;
|
|
if (m.is_eq(f, x, y)) {
|
|
if (x == y)
|
|
return;
|
|
if (!m_allow_bool && m.is_bool(x))
|
|
return;
|
|
if (is_uninterp_const(x))
|
|
eqs.push_back(dependent_eq(e.fml(), to_app(x), expr_ref(y, m), d));
|
|
if (is_uninterp_const(y))
|
|
eqs.push_back(dependent_eq(e.fml(), to_app(y), expr_ref(x, m), d));
|
|
}
|
|
expr* c, * th, * el, * x1, * y1, * x2, * y2;
|
|
if (m_ite_solver && m.is_ite(f, c, th, el)) {
|
|
if (m.is_eq(th, x1, y1) && m.is_eq(el, x2, y2)) {
|
|
if (!m_allow_bool && m.is_bool(x1))
|
|
return;
|
|
if (x1 == y2 && is_uninterp_const(x1))
|
|
std::swap(x2, y2);
|
|
if (x2 == y2 && is_uninterp_const(x2))
|
|
std::swap(x2, y2), std::swap(x1, y1);
|
|
if (x2 == y1 && is_uninterp_const(x2))
|
|
std::swap(x1, y1);
|
|
if (x1 == x2 && is_uninterp_const(x1))
|
|
eqs.push_back(dependent_eq(e.fml(), to_app(x1), expr_ref(m.mk_ite(c, y1, y2), m), d));
|
|
}
|
|
}
|
|
if (!m_allow_bool)
|
|
return;
|
|
if (is_uninterp_const(f))
|
|
eqs.push_back(dependent_eq(e.fml(), to_app(f), expr_ref(m.mk_true(), m), d));
|
|
if (m.is_not(f, x) && is_uninterp_const(x))
|
|
eqs.push_back(dependent_eq(e.fml(), to_app(x), expr_ref(m.mk_false(), m), d));
|
|
}
|
|
|
|
void updt_params(params_ref const& p) {
|
|
tactic_params tp(p);
|
|
m_ite_solver = p.get_bool("ite_solver", tp.solve_eqs_ite_solver());
|
|
}
|
|
};
|
|
|
|
class arith_extract_eq : public extract_eq {
|
|
ast_manager& m;
|
|
arith_util a;
|
|
expr_ref_vector m_args;
|
|
expr_sparse_mark m_nonzero;
|
|
bool m_enabled = true;
|
|
|
|
|
|
// solve u mod r1 = y -> u = r1*mod!1 + y
|
|
void solve_mod(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
|
|
expr* u, * z;
|
|
rational r1, r2;
|
|
if (!a.is_mod(x, u, z))
|
|
return;
|
|
if (!a.is_numeral(z, r1))
|
|
return;
|
|
if (r1 <= 0)
|
|
return;
|
|
expr_ref term(m);
|
|
term = a.mk_add(a.mk_mul(z, m.mk_fresh_const("mod", a.mk_int())), y);
|
|
|
|
if (is_uninterp_const(u))
|
|
eqs.push_back(dependent_eq(orig, to_app(u), term, d));
|
|
else
|
|
solve_eq(orig, u, term, d, eqs);
|
|
}
|
|
|
|
/***
|
|
* Solve
|
|
* x + Y = Z -> x = Z - Y
|
|
* -1*x + Y = Z -> x = Y - Z
|
|
* a*x + Y = Z -> x = (Z - Y)/a for is-real(x)
|
|
*/
|
|
void solve_add(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
|
|
if (!a.is_add(x))
|
|
return;
|
|
expr* u, * z;
|
|
rational r;
|
|
expr_ref term(m);
|
|
unsigned i = 0;
|
|
auto mk_term = [&](unsigned i) {
|
|
term = y;
|
|
unsigned j = 0;
|
|
for (expr* arg2 : *to_app(x)) {
|
|
if (i != j)
|
|
term = a.mk_sub(term, arg2);
|
|
++j;
|
|
}
|
|
};
|
|
for (expr* arg : *to_app(x)) {
|
|
if (is_uninterp_const(arg)) {
|
|
mk_term(i);
|
|
eqs.push_back(dependent_eq(orig, to_app(arg), term, d));
|
|
}
|
|
else if (a.is_mul(arg, u, z) && a.is_numeral(u, r) && is_uninterp_const(z)) {
|
|
if (r == -1) {
|
|
mk_term(i);
|
|
term = a.mk_uminus(term);
|
|
eqs.push_back(dependent_eq(orig, to_app(z), term, d));
|
|
}
|
|
else if (a.is_real(arg) && r != 0) {
|
|
mk_term(i);
|
|
term = a.mk_div(term, u);
|
|
eqs.push_back(dependent_eq(orig, to_app(z), term, d));
|
|
}
|
|
}
|
|
else if (a.is_real(arg) && a.is_mul(arg)) {
|
|
unsigned j = 0;
|
|
for (expr* xarg : *to_app(arg)) {
|
|
++j;
|
|
if (!is_uninterp_const(xarg))
|
|
continue;
|
|
unsigned k = 0;
|
|
bool nonzero = true;
|
|
for (expr* yarg : *to_app(arg)) {
|
|
++k;
|
|
nonzero = k == j || m_nonzero.is_marked(yarg) || (a.is_numeral(yarg, r) && r != 0);
|
|
if (!nonzero)
|
|
break;
|
|
}
|
|
if (!nonzero)
|
|
continue;
|
|
|
|
k = 0;
|
|
ptr_buffer<expr> args;
|
|
for (expr* yarg : *to_app(arg)) {
|
|
++k;
|
|
if (k != j)
|
|
args.push_back(yarg);
|
|
}
|
|
mk_term(i);
|
|
term = a.mk_div(term, a.mk_mul(args.size(), args.data()));
|
|
eqs.push_back(dependent_eq(orig, to_app(xarg), term, d));
|
|
}
|
|
}
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/***
|
|
* Solve for x * Y = Z, where Y != 0 -> x = Z / Y
|
|
*/
|
|
void solve_mul(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
|
|
if (!a.is_mul(x))
|
|
return;
|
|
rational r;
|
|
expr_ref term(m);
|
|
unsigned i = 0;
|
|
for (expr* arg : *to_app(x)) {
|
|
++i;
|
|
if (!is_uninterp_const(arg))
|
|
continue;
|
|
if (!a.is_real(arg))
|
|
continue;
|
|
unsigned j = 0;
|
|
bool nonzero = true;
|
|
for (expr* arg2 : *to_app(x)) {
|
|
++j;
|
|
nonzero = j == i || m_nonzero.is_marked(arg2) || (a.is_numeral(arg2, r) && r != 0);
|
|
if (!nonzero)
|
|
break;
|
|
}
|
|
if (!nonzero)
|
|
continue;
|
|
ptr_buffer<expr> args;
|
|
j = 0;
|
|
for (expr* arg2 : *to_app(x)) {
|
|
++j;
|
|
if (j != i)
|
|
args.push_back(arg2);
|
|
}
|
|
term = a.mk_div(y, a.mk_mul(args));
|
|
eqs.push_back(dependent_eq(orig, to_app(arg), term, d));
|
|
}
|
|
}
|
|
|
|
void add_pos(expr* f) {
|
|
expr* lhs = nullptr, * rhs = nullptr;
|
|
rational val;
|
|
if (a.is_le(f, lhs, rhs) && a.is_numeral(rhs, val) && val.is_neg())
|
|
m_nonzero.mark(lhs);
|
|
else if (a.is_ge(f, lhs, rhs) && a.is_numeral(rhs, val) && val.is_pos())
|
|
m_nonzero.mark(lhs);
|
|
else if (m.is_not(f, f)) {
|
|
if (a.is_le(f, lhs, rhs) && a.is_numeral(rhs, val) && !val.is_neg())
|
|
m_nonzero.mark(lhs);
|
|
else if (a.is_ge(f, lhs, rhs) && a.is_numeral(rhs, val) && !val.is_pos())
|
|
m_nonzero.mark(lhs);
|
|
else if (m.is_eq(f, lhs, rhs) && a.is_numeral(rhs, val) && val.is_zero())
|
|
m_nonzero.mark(lhs);
|
|
}
|
|
}
|
|
|
|
void solve_eq(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
|
|
solve_add(orig, x, y, d, eqs);
|
|
solve_mod(orig, x, y, d, eqs);
|
|
solve_mul(orig, x, y, d, eqs);
|
|
}
|
|
|
|
public:
|
|
|
|
arith_extract_eq(ast_manager& m) : m(m), a(m), m_args(m) {}
|
|
|
|
void get_eqs(dependent_expr const& e, dep_eq_vector& eqs) override {
|
|
if (!m_enabled)
|
|
return;
|
|
auto [f, p, d] = e();
|
|
expr* x, * y;
|
|
if (m.is_eq(f, x, y) && a.is_int_real(x)) {
|
|
solve_eq(f, x, y, d, eqs);
|
|
solve_eq(f, y, x, d, eqs);
|
|
}
|
|
}
|
|
|
|
void pre_process(dependent_expr_state& fmls) override {
|
|
if (!m_enabled)
|
|
return;
|
|
m_nonzero.reset();
|
|
for (unsigned i = 0; i < fmls.qtail(); ++i)
|
|
add_pos(fmls[i].fml());
|
|
}
|
|
|
|
|
|
void updt_params(params_ref const& p) {
|
|
tactic_params tp(p);
|
|
m_enabled = p.get_bool("theory_solver", tp.solve_eqs_ite_solver());
|
|
}
|
|
};
|
|
|
|
void register_extract_eqs(ast_manager& m, scoped_ptr_vector<extract_eq>& ex) {
|
|
ex.push_back(alloc(arith_extract_eq, m));
|
|
ex.push_back(alloc(basic_extract_eq, m));
|
|
}
|
|
}
|