mirror of
https://github.com/Z3Prover/z3
synced 2025-04-07 09:55:19 +00:00
* arrays Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * arrays Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * arrays Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fill Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * update drat and fix euf bugs Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * const qualifiers Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * na Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * reorg ba Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * reorg Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * build warnings Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
514 lines
18 KiB
C++
514 lines
18 KiB
C++
/*++
|
|
Copyright (c) 2020 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
array_axioms.cpp
|
|
|
|
Abstract:
|
|
|
|
Routines for instantiating array axioms
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2020-09-08
|
|
|
|
--*/
|
|
|
|
#include "ast/ast_trail.h"
|
|
#include "ast/ast_ll_pp.h"
|
|
#include "sat/smt/array_solver.h"
|
|
#include "sat/smt/euf_solver.h"
|
|
|
|
namespace array {
|
|
|
|
void solver::push_axiom(axiom_record const& r) {
|
|
unsigned idx = m_axiom_trail.size();
|
|
m_axiom_trail.push_back(r);
|
|
if (m_axioms.contains(idx))
|
|
m_axiom_trail.pop_back();
|
|
else
|
|
ctx.push(push_back_vector<euf::solver, svector<axiom_record>>(m_axiom_trail));
|
|
}
|
|
|
|
bool solver::assert_axiom(unsigned idx) {
|
|
axiom_record const& r = m_axiom_trail[idx];
|
|
if (m_axioms.contains(idx))
|
|
return false;
|
|
m_axioms.insert(idx);
|
|
ctx.push(insert_map<euf::solver, axiom_table_t, unsigned>(m_axioms, idx));
|
|
expr* child = r.n->get_expr();
|
|
app* select;
|
|
switch (r.m_kind) {
|
|
case axiom_record::kind_t::is_store:
|
|
TRACE("array", tout << "store-axiom: " << mk_bounded_pp(child, m, 2) << "\n";);
|
|
return assert_store_axiom(to_app(child));
|
|
case axiom_record::kind_t::is_select:
|
|
select = r.select->get_app();
|
|
SASSERT(a.is_select(select));
|
|
SASSERT(can_beta_reduce(r.n));
|
|
TRACE("array", tout << "select-axiom: " << mk_bounded_pp(select, m, 2) << " " << mk_bounded_pp(child, m, 2) << "\n";);
|
|
if (r.select->get_arg(0)->get_root() != r.n->get_root()) {
|
|
IF_VERBOSE(0, verbose_stream() << "could delay " << mk_pp(select, m) << " " << mk_pp(child, m) << "\n");
|
|
}
|
|
if (a.is_const(child))
|
|
return assert_select_const_axiom(select, to_app(child));
|
|
else if (a.is_as_array(child))
|
|
return assert_select_as_array_axiom(select, to_app(child));
|
|
else if (a.is_store(child))
|
|
return assert_select_store_axiom(select, to_app(child));
|
|
else if (a.is_map(child))
|
|
return assert_select_map_axiom(select, to_app(child));
|
|
else if (is_lambda(child))
|
|
return assert_select_lambda_axiom(select, child);
|
|
else
|
|
UNREACHABLE();
|
|
break;
|
|
case axiom_record::kind_t::is_default:
|
|
SASSERT(can_beta_reduce(r.n));
|
|
TRACE("array", tout << "default-axiom: " << mk_bounded_pp(child, m, 2) << "\n";);
|
|
if (a.is_const(child))
|
|
return assert_default_const_axiom(to_app(child));
|
|
else if (a.is_store(child))
|
|
return assert_default_store_axiom(to_app(child));
|
|
else if (a.is_map(child))
|
|
return assert_default_map_axiom(to_app(child));
|
|
else
|
|
return true;
|
|
break;
|
|
case axiom_record::kind_t::is_extensionality:
|
|
TRACE("array", tout << "extensionality-axiom: " << mk_bounded_pp(child, m, 2) << "\n";);
|
|
return assert_extensionality(r.n->get_arg(0)->get_expr(), r.n->get_arg(1)->get_expr());
|
|
case axiom_record::kind_t::is_congruence:
|
|
TRACE("array", tout << "congruence-axiom: " << mk_bounded_pp(child, m, 2) << " " << mk_bounded_pp(r.select->get_expr(), m, 2) << "\n";);
|
|
return assert_congruent_axiom(child, r.select->get_expr());
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Assert
|
|
* select(n, i) = v
|
|
* Where
|
|
* n := store(a, i, v)
|
|
*/
|
|
bool solver::assert_store_axiom(app* e) {
|
|
++m_stats.m_num_store_axiom;
|
|
SASSERT(a.is_store(e));
|
|
unsigned num_args = e->get_num_args();
|
|
ptr_vector<expr> sel_args(num_args - 1, e->get_args());
|
|
sel_args[0] = e;
|
|
expr_ref sel(a.mk_select(sel_args), m);
|
|
euf::enode* n1 = e_internalize(sel);
|
|
euf::enode* n2 = expr2enode(e->get_arg(num_args - 1));
|
|
return ctx.propagate(n1, n2, array_axiom());
|
|
}
|
|
|
|
|
|
/**
|
|
* Assert
|
|
* i_k = j_k or select(store(a, i, v), j) = select(a, j)
|
|
* where i = (i_1, ..., i_n), j = (j_1, .., j_n), k in 1..n
|
|
*/
|
|
bool solver::assert_select_store_axiom(app* select, app* store) {
|
|
++m_stats.m_num_select_store_axiom;
|
|
SASSERT(a.is_store(store));
|
|
SASSERT(a.is_select(select));
|
|
SASSERT(store->get_num_args() == 1 + select->get_num_args());
|
|
ptr_buffer<expr> sel1_args, sel2_args;
|
|
unsigned num_args = select->get_num_args();
|
|
sel1_args.push_back(store);
|
|
sel2_args.push_back(store->get_arg(0));
|
|
|
|
for (unsigned i = 1; i < num_args; i++) {
|
|
sel1_args.push_back(select->get_arg(i));
|
|
sel2_args.push_back(select->get_arg(i));
|
|
}
|
|
|
|
expr_ref sel1(a.mk_select(sel1_args), m);
|
|
expr_ref sel2(a.mk_select(sel2_args), m);
|
|
expr_ref sel_eq_e(m.mk_eq(sel1, sel2), m);
|
|
euf::enode* s1 = e_internalize(sel1);
|
|
euf::enode* s2 = e_internalize(sel2);
|
|
if (s1->get_root() == s2->get_root())
|
|
return false;
|
|
sat::literal sel_eq = b_internalize(sel_eq_e);
|
|
if (s().value(sel_eq) == l_true)
|
|
return false;
|
|
|
|
bool new_prop = false;
|
|
for (unsigned i = 1; i < num_args; i++) {
|
|
expr* idx1 = store->get_arg(i);
|
|
expr* idx2 = select->get_arg(i);
|
|
euf::enode* r1 = expr2enode(idx1)->get_root();
|
|
euf::enode* r2 = expr2enode(idx2)->get_root();
|
|
if (r1 == r2)
|
|
continue;
|
|
if (m.are_distinct(r1->get_expr(), r2->get_expr())) {
|
|
new_prop = true;
|
|
add_clause(sel_eq);
|
|
break;
|
|
}
|
|
sat::literal idx_eq = b_internalize(m.mk_eq(idx1, idx2));
|
|
if (add_clause(idx_eq, sel_eq))
|
|
new_prop = true;
|
|
}
|
|
return new_prop;
|
|
}
|
|
|
|
/**
|
|
* Assert
|
|
* select(const(v), i) = v
|
|
*/
|
|
bool solver::assert_select_const_axiom(app* select, app* cnst) {
|
|
++m_stats.m_num_select_const_axiom;
|
|
expr* val = nullptr;
|
|
VERIFY(a.is_const(cnst, val));
|
|
SASSERT(a.is_select(select));
|
|
unsigned num_args = select->get_num_args();
|
|
ptr_vector<expr> sel_args(num_args, select->get_args());
|
|
sel_args[0] = cnst;
|
|
expr_ref sel(a.mk_select(sel_args), m);
|
|
euf::enode* n1 = e_internalize(sel);
|
|
euf::enode* n2 = expr2enode(val);
|
|
return ctx.propagate(n1, n2, array_axiom());
|
|
}
|
|
|
|
|
|
/**
|
|
* e1 = e2 or select(e1, diff(e1,e2)) != select(e2, diff(e1, e2))
|
|
*/
|
|
bool solver::assert_extensionality(expr* e1, expr* e2) {
|
|
++m_stats.m_num_extensionality_axiom;
|
|
func_decl_ref_vector* funcs = nullptr;
|
|
VERIFY(m_sort2diff.find(m.get_sort(e1), funcs));
|
|
expr_ref_vector args1(m), args2(m);
|
|
args1.push_back(e1);
|
|
args2.push_back(e2);
|
|
for (func_decl* f : *funcs) {
|
|
expr* k = m.mk_app(f, e1, e2);
|
|
args1.push_back(k);
|
|
args2.push_back(k);
|
|
}
|
|
expr_ref sel1(a.mk_select(args1), m);
|
|
expr_ref sel2(a.mk_select(args2), m);
|
|
expr_ref n1_eq_n2(m.mk_eq(e1, e2), m);
|
|
expr_ref sel1_eq_sel2(m.mk_eq(sel1, sel2), m);
|
|
literal lit1 = b_internalize(n1_eq_n2);
|
|
literal lit2 = b_internalize(sel1_eq_sel2);
|
|
return add_clause(lit1, ~lit2);
|
|
}
|
|
|
|
/**
|
|
* Assert axiom:
|
|
* select(map[f](a, ... d), i) = f(select(a,i),...,select(d,i))
|
|
*/
|
|
bool solver::assert_select_map_axiom(app* select, app* map) {
|
|
++m_stats.m_num_select_map_axiom;
|
|
SASSERT(a.is_map(map));
|
|
SASSERT(a.is_select(select));
|
|
SASSERT(map->get_num_args() > 0);
|
|
func_decl* f = a.get_map_func_decl(map);
|
|
unsigned num_args = select->get_num_args();
|
|
ptr_buffer<expr> args1, args2;
|
|
vector<ptr_vector<expr> > args2l;
|
|
args1.push_back(map);
|
|
for (expr* ar : *map) {
|
|
ptr_vector<expr> arg;
|
|
arg.push_back(ar);
|
|
args2l.push_back(arg);
|
|
}
|
|
for (unsigned i = 1; i < num_args; ++i) {
|
|
expr* arg = select->get_arg(i);
|
|
for (auto& args : args2l)
|
|
args.push_back(arg);
|
|
args1.push_back(arg);
|
|
}
|
|
for (auto const& args : args2l)
|
|
args2.push_back(a.mk_select(args));
|
|
|
|
expr_ref sel1(m), sel2(m);
|
|
sel1 = a.mk_select(args1);
|
|
sel2 = m.mk_app(f, args2);
|
|
rewrite(sel2);
|
|
euf::enode* n1 = e_internalize(sel1);
|
|
euf::enode* n2 = e_internalize(sel2);
|
|
return ctx.propagate(n1, n2, array_axiom());
|
|
}
|
|
|
|
|
|
/**
|
|
* Assert axiom:
|
|
* select(as-array f, i_1, ..., i_n) = (f i_1 ... i_n)
|
|
*/
|
|
bool solver::assert_select_as_array_axiom(app* select, app* arr) {
|
|
++m_stats.m_num_select_as_array_axiom;
|
|
SASSERT(a.is_as_array(arr));
|
|
SASSERT(a.is_select(select));
|
|
unsigned num_args = select->get_num_args();
|
|
func_decl* f = a.get_as_array_func_decl(arr);
|
|
ptr_vector<expr> sel_args(num_args, select->get_args());
|
|
sel_args[0] = arr;
|
|
expr_ref sel(a.mk_select(sel_args), m);
|
|
expr_ref val(m.mk_app(f, sel_args.size() - 1, sel_args.c_ptr() + 1), m);
|
|
euf::enode* n1 = e_internalize(sel);
|
|
euf::enode* n2 = e_internalize(val);
|
|
return ctx.propagate(n1, n2, array_axiom());
|
|
}
|
|
|
|
/**
|
|
* Assert:
|
|
* default(map[f](a,..,d)) = f(default(a),..,default(d))
|
|
*/
|
|
bool solver::assert_default_map_axiom(app* map) {
|
|
++m_stats.m_num_default_map_axiom;
|
|
SASSERT(a.is_map(map));
|
|
func_decl* f = a.get_map_func_decl(map);
|
|
SASSERT(map->get_num_args() == f->get_arity());
|
|
expr_ref_vector args2(m);
|
|
for (expr* arg : *map)
|
|
args2.push_back(a.mk_default(arg));
|
|
expr_ref def1(a.mk_default(map), m);
|
|
expr_ref def2(m.mk_app(f, args2), m);
|
|
rewrite(def2);
|
|
return ctx.propagate(e_internalize(def1), e_internalize(def2), array_axiom());
|
|
}
|
|
|
|
/**
|
|
* Assert:
|
|
* default(const(e)) = e
|
|
*/
|
|
bool solver::assert_default_const_axiom(app* cnst) {
|
|
++m_stats.m_num_default_const_axiom;
|
|
expr* val = nullptr;
|
|
VERIFY(a.is_const(cnst, val));
|
|
expr_ref def(a.mk_default(cnst), m);
|
|
return ctx.propagate(expr2enode(val), e_internalize(def), array_axiom());
|
|
}
|
|
|
|
|
|
/**
|
|
* let n := store(a, i, v)
|
|
* Assert:
|
|
* - when sort(n) has exactly one element:
|
|
* default(n) = v
|
|
* - for small domains:
|
|
* default(n) = ite(epsilon1 = i, v, default(a))
|
|
n[diag(i)] = a[diag(i)]
|
|
* - for large domains:
|
|
* default(n) = default(a)
|
|
*/
|
|
bool solver::assert_default_store_axiom(app* store) {
|
|
++m_stats.m_num_default_store_axiom;
|
|
SASSERT(a.is_store(store));
|
|
SASSERT(store->get_num_args() >= 3);
|
|
expr_ref def1(m), def2(m);
|
|
bool prop = false;
|
|
unsigned num_args = store->get_num_args();
|
|
def1 = a.mk_default(store);
|
|
def2 = a.mk_default(store->get_arg(0));
|
|
|
|
if (has_unitary_domain(store)) {
|
|
def2 = store->get_arg(num_args - 1);
|
|
}
|
|
else if (!has_large_domain(store)) {
|
|
//
|
|
// let A = store(B, i, v)
|
|
//
|
|
// Add:
|
|
// default(A) = ite(epsilon1 = i, v, default(B))
|
|
// A[diag(i)] = B[diag(i)]
|
|
//
|
|
expr_ref_vector eqs(m);
|
|
expr_ref_vector args1(m), args2(m);
|
|
args1.push_back(store->get_arg(0));
|
|
args2.push_back(store);
|
|
|
|
for (unsigned i = 1; i + 1 < num_args; ++i) {
|
|
expr* arg = store->get_arg(i);
|
|
sort* srt = m.get_sort(arg);
|
|
auto ep = mk_epsilon(srt);
|
|
eqs.push_back(m.mk_eq(ep.first, arg));
|
|
args1.push_back(m.mk_app(ep.second, arg));
|
|
args2.push_back(m.mk_app(ep.second, arg));
|
|
}
|
|
expr_ref eq(m.mk_and(eqs), m);
|
|
def2 = m.mk_ite(eq, store->get_arg(num_args - 1), def2);
|
|
app_ref sel1(m), sel2(m);
|
|
sel1 = a.mk_select(args1);
|
|
sel2 = a.mk_select(args2);
|
|
if (ctx.propagate(e_internalize(sel1), e_internalize(sel2), array_axiom()))
|
|
prop = true;
|
|
}
|
|
if (ctx.propagate(e_internalize(def1), e_internalize(def2), array_axiom()))
|
|
prop = true;
|
|
return prop;
|
|
}
|
|
|
|
/**
|
|
* Assert select(lambda xs . M, N1,.., Nk) -> M[N1/x1, ..., Nk/xk]
|
|
*/
|
|
bool solver::assert_select_lambda_axiom(app* select, expr* lambda) {
|
|
++m_stats.m_num_select_lambda_axiom;
|
|
SASSERT(is_lambda(lambda));
|
|
SASSERT(a.is_select(select));
|
|
SASSERT(m.get_sort(lambda) == m.get_sort(select->get_arg(0)));
|
|
ptr_vector<expr> args(select->get_num_args(), select->get_args());
|
|
args[0] = lambda;
|
|
expr_ref alpha(a.mk_select(args), m);
|
|
expr_ref beta(alpha);
|
|
rewrite(beta);
|
|
return ctx.propagate(e_internalize(alpha), e_internalize(beta), array_axiom());
|
|
}
|
|
|
|
/**
|
|
\brief assert n1 = n2 => forall vars . (n1 vars) = (n2 vars)
|
|
*/
|
|
bool solver::assert_congruent_axiom(expr* e1, expr* e2) {
|
|
++m_stats.m_num_congruence_axiom;
|
|
sort* srt = m.get_sort(e1);
|
|
unsigned dimension = get_array_arity(srt);
|
|
expr_ref n1_eq_n2(m.mk_eq(e1, e2), m);
|
|
expr_ref_vector args1(m), args2(m);
|
|
args1.push_back(e1);
|
|
args2.push_back(e2);
|
|
svector<symbol> names;
|
|
sort_ref_vector sorts(m);
|
|
for (unsigned i = 0; i < dimension; i++) {
|
|
sort * asrt = get_array_domain(srt, i);
|
|
sorts.push_back(asrt);
|
|
names.push_back(symbol(i));
|
|
expr * k = m.mk_var(dimension - i - 1, asrt);
|
|
args1.push_back(k);
|
|
args2.push_back(k);
|
|
}
|
|
expr * sel1 = a.mk_select(dimension+1, args1.c_ptr());
|
|
expr * sel2 = a.mk_select(dimension+1, args2.c_ptr());
|
|
expr * eq = m.mk_eq(sel1, sel2);
|
|
expr_ref q(m.mk_forall(dimension, sorts.c_ptr(), names.c_ptr(), eq), m);
|
|
rewrite(q);
|
|
sat::literal fa_eq = b_internalize(q);
|
|
sat::literal neq = b_internalize(n1_eq_n2);
|
|
return add_clause(~neq, fa_eq);
|
|
}
|
|
|
|
bool solver::has_unitary_domain(app* array_term) {
|
|
SASSERT(a.is_array(array_term));
|
|
sort* s = m.get_sort(array_term);
|
|
unsigned dim = get_array_arity(s);
|
|
for (unsigned i = 0; i < dim; ++i) {
|
|
sort* d = get_array_domain(s, i);
|
|
if (d->is_infinite() || d->is_very_big() || 1 != d->get_num_elements().size())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool solver::has_large_domain(expr* array_term) {
|
|
SASSERT(a.is_array(array_term));
|
|
sort* s = m.get_sort(array_term);
|
|
unsigned dim = get_array_arity(s);
|
|
rational sz(1);
|
|
for (unsigned i = 0; i < dim; ++i) {
|
|
sort* d = get_array_domain(s, i);
|
|
if (d->is_infinite() || d->is_very_big()) {
|
|
return true;
|
|
}
|
|
sz *= rational(d->get_num_elements().size(), rational::ui64());
|
|
if (sz >= rational(1 << 14)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::pair<app*, func_decl*> solver::mk_epsilon(sort* s) {
|
|
app* eps = nullptr;
|
|
func_decl* diag = nullptr;
|
|
if (!m_sort2epsilon.find(s, eps)) {
|
|
eps = m.mk_fresh_const("epsilon", s);
|
|
ctx.push(ast2ast_trail<euf::solver, sort, app>(m_sort2epsilon, s, eps));
|
|
}
|
|
if (!m_sort2diag.find(s, diag)) {
|
|
diag = m.mk_fresh_func_decl("diag", 1, &s, s);
|
|
ctx.push(ast2ast_trail<euf::solver, sort, func_decl>(m_sort2diag, s, diag));
|
|
}
|
|
return std::make_pair(eps, diag);
|
|
}
|
|
|
|
bool solver::add_delayed_axioms() {
|
|
if (!get_config().m_array_delay_exp_axiom)
|
|
return false;
|
|
unsigned num_vars = get_num_vars();
|
|
for (unsigned v = 0; v < num_vars; v++) {
|
|
propagate_parent_select_axioms(v);
|
|
auto& d = get_var_data(v);
|
|
if (d.m_prop_upward)
|
|
propagate_parent_default(v);
|
|
}
|
|
return unit_propagate();
|
|
}
|
|
|
|
bool solver::add_interface_equalities() {
|
|
sbuffer<theory_var> roots;
|
|
collect_shared_vars(roots);
|
|
bool prop = false;
|
|
for (unsigned i = roots.size(); i-- > 0; ) {
|
|
theory_var v1 = roots[i];
|
|
expr* e1 = var2expr(v1);
|
|
for (unsigned j = i; j-- > 0; ) {
|
|
theory_var v2 = roots[j];
|
|
expr* e2 = var2expr(v2);
|
|
if (m.get_sort(e1) != m.get_sort(e2))
|
|
continue;
|
|
if (have_different_model_values(v1, v2))
|
|
continue;
|
|
expr_ref eq(m.mk_eq(e1, e2), m);
|
|
sat::literal lit = b_internalize(eq);
|
|
if (s().value(lit) == l_undef)
|
|
prop = true;
|
|
}
|
|
}
|
|
return prop;
|
|
}
|
|
|
|
void solver::collect_shared_vars(sbuffer<theory_var>& roots) {
|
|
ptr_buffer<euf::enode> to_unmark;
|
|
unsigned num_vars = get_num_vars();
|
|
for (unsigned i = 0; i < num_vars; i++) {
|
|
euf::enode * n = var2enode(i);
|
|
if (!a.is_array(n->get_expr())) {
|
|
continue;
|
|
}
|
|
euf::enode * r = n->get_root();
|
|
if (r->is_marked1()) {
|
|
continue;
|
|
}
|
|
// arrays used as indices in other arrays have to be treated as shared issue #3532, #3529
|
|
if (ctx.is_shared(r) || is_select_arg(r))
|
|
roots.push_back(r->get_th_var(get_id()));
|
|
|
|
r->mark1();
|
|
to_unmark.push_back(r);
|
|
}
|
|
TRACE("array", tout << "collecting shared vars...\n" << unsigned_vector(roots.size(), (unsigned*)roots.c_ptr()) << "\n";);
|
|
for (auto* n : to_unmark)
|
|
n->unmark1();
|
|
}
|
|
|
|
bool solver::is_select_arg(euf::enode* r) {
|
|
SASSERT(r->is_root());
|
|
for (euf::enode* n : euf::enode_parents(r))
|
|
if (a.is_select(n->get_expr()))
|
|
for (unsigned i = 1; i < n->num_args(); ++i)
|
|
if (r == n->get_arg(i)->get_root())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|