3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00
z3/lib/sat_elim_eqs.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

221 lines
7.6 KiB
C++

/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
sat_elim_eqs.cpp
Abstract:
Helper class for eliminating eqs.
Author:
Leonardo de Moura (leonardo) 2011-05-27.
Revision History:
--*/
#include"sat_elim_eqs.h"
#include"sat_solver.h"
#include"trace.h"
namespace sat {
elim_eqs::elim_eqs(solver & s):
m_solver(s) {
}
inline literal norm(literal_vector const & roots, literal l) {
if (l.sign())
return ~roots[l.var()];
else
return roots[l.var()];
}
void elim_eqs::cleanup_bin_watches(literal_vector const & roots) {
vector<watch_list>::iterator it = m_solver.m_watches.begin();
vector<watch_list>::iterator end = m_solver.m_watches.end();
for (unsigned l_idx = 0; it != end; ++it, ++l_idx) {
watch_list & wlist = *it;
literal l1 = ~to_literal(l_idx);
literal r1 = norm(roots, l1);
watch_list::iterator it2 = wlist.begin();
watch_list::iterator itprev = it2;
watch_list::iterator end2 = wlist.end();
for (; it2 != end2; ++it2) {
if (it2->is_binary_clause()) {
literal l2 = it2->get_literal();
literal r2 = norm(roots, l2);
if (r1 == r2) {
m_solver.assign(r1, justification());
if (m_solver.inconsistent())
return;
// consume unit
continue;
}
if (r1 == ~r2) {
// consume tautology
continue;
}
if (l1 != r1) {
// add half r1 => r2, the other half ~r2 => ~r1 is added when traversing l2
m_solver.m_watches[(~r1).index()].push_back(watched(r2, it2->is_learned()));
continue;
}
it2->set_literal(r2); // keep it
}
*itprev = *it2;
itprev++;
}
wlist.set_end(itprev);
}
}
void elim_eqs::cleanup_clauses(literal_vector const & roots, clause_vector & cs) {
clause_vector::iterator it = cs.begin();
clause_vector::iterator it2 = it;
clause_vector::iterator end = cs.end();
for (; it != end; ++it) {
clause & c = *(*it);
TRACE("elim_eqs", tout << "processing: " << c << "\n";);
unsigned sz = c.size();
unsigned i;
for (i = 0; i < sz; i++) {
literal l = c[i];
literal r = norm(roots, l);
if (l != r)
break;
}
if (i == sz) {
// clause was not affected
*it2 = *it;
it2++;
continue;
}
if (!c.frozen())
m_solver.dettach_clause(c);
// apply substitution
for (i = 0; i < sz; i++) {
SASSERT(!m_solver.was_eliminated(c[i].var()));
c[i] = norm(roots, c[i]);
}
std::sort(c.begin(), c.end());
TRACE("elim_eqs", tout << "after normalization/sorting: " << c << "\n";);
// remove duplicates, and check if it is a tautology
literal l_prev = null_literal;
unsigned j = 0;
for (i = 0; i < sz; i++) {
literal l = c[i];
if (l == l_prev)
continue;
if (l == ~l_prev)
break;
l_prev = l;
lbool val = m_solver.value(l);
if (val == l_true)
break; // clause was satisfied
if (val == l_false)
continue; // skip
c[j] = l;
j++;
}
if (i < sz) {
// clause is a tautology or was simplified
m_solver.del_clause(c);
continue;
}
if (j == 0) {
// empty clause
m_solver.set_conflict(justification());
return;
}
TRACE("elim_eqs", tout << "after removing duplicates: " << c << " j: " << j << "\n";);
if (j < sz)
c.shrink(j);
else
c.update_approx();
SASSERT(c.size() == j);
DEBUG_CODE({
for (unsigned i = 0; i < c.size(); i++) {
SASSERT(c[i] == norm(roots, c[i]));
}
});
SASSERT(j >= 1);
switch (j) {
case 1:
m_solver.assign(c[0], justification());
m_solver.del_clause(c);
break;
case 2:
m_solver.mk_bin_clause(c[0], c[1], c.is_learned());
m_solver.del_clause(c);
break;
default:
SASSERT(*it == &c);
*it2 = *it;
it2++;
if (!c.frozen())
m_solver.attach_clause(c);
break;
}
}
cs.set_end(it2);
}
void elim_eqs::save_elim(literal_vector const & roots, bool_var_vector const & to_elim) {
model_converter & mc = m_solver.m_mc;
bool_var_vector::const_iterator it = to_elim.begin();
bool_var_vector::const_iterator end = to_elim.end();
for (; it != end; ++it) {
bool_var v = *it;
literal l(v, false);
literal r = roots[v];
SASSERT(v != r.var());
if (m_solver.is_external(v)) {
// cannot really eliminate v, since we have to notify extension of future assignments
m_solver.mk_bin_clause(~l, r, false);
m_solver.mk_bin_clause(l, ~r, false);
}
else {
model_converter::entry & e = mc.mk(model_converter::ELIM_VAR, v);
TRACE("save_elim", tout << "marking as deleted: " << v << " l: " << l << " r: " << r << "\n";);
m_solver.m_eliminated[v] = true;
mc.insert(e, ~l, r);
mc.insert(e, l, ~r);
}
}
}
bool elim_eqs::check_clauses(literal_vector const & roots) const {
clause_vector * vs[2] = { &m_solver.m_clauses, &m_solver.m_learned };
for (unsigned i = 0; i < 2; i++) {
clause_vector & cs = *(vs[i]);
clause_vector::iterator it = cs.begin();
clause_vector::iterator end = cs.end();
for (; it != end; ++it) {
clause & c = *(*it);
unsigned sz = c.size();
for (unsigned i = 0; i < sz; i++) {
CTRACE("elim_eqs_bug", m_solver.was_eliminated(c[i].var()), tout << "lit: " << c[i] << " " << norm(roots, c[i]) << "\n";
tout << c << "\n";);
SASSERT(!m_solver.was_eliminated(c[i].var()));
}
}
}
return true;
}
void elim_eqs::operator()(literal_vector const & roots, bool_var_vector const & to_elim) {
cleanup_bin_watches(roots);
TRACE("elim_eqs", tout << "after bin cleanup\n"; m_solver.display(tout););
cleanup_clauses(roots, m_solver.m_clauses);
if (m_solver.inconsistent()) return;
cleanup_clauses(roots, m_solver.m_learned);
if (m_solver.inconsistent()) return;
save_elim(roots, to_elim);
m_solver.propagate(false);
SASSERT(check_clauses(roots));
}
};