mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 03:07:07 +00:00
168 lines
5.8 KiB
C++
168 lines
5.8 KiB
C++
/*++
|
|
Copyright (c) 2011 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
poly_rewriter.h
|
|
|
|
Abstract:
|
|
|
|
Basic rewriting rules for Polynomials.
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2011-04-08
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#ifndef _POLY_REWRITER_H_
|
|
#define _POLY_REWRITER_H_
|
|
|
|
#include"ast.h"
|
|
#include"obj_hashtable.h"
|
|
#include"rewriter_types.h"
|
|
#include"params.h"
|
|
|
|
template<typename Config>
|
|
class poly_rewriter : public Config {
|
|
public:
|
|
static char const * g_ste_blowup_msg;
|
|
protected:
|
|
typedef typename Config::numeral numeral;
|
|
sort * m_curr_sort;
|
|
obj_map<expr, unsigned> m_expr2pos;
|
|
bool m_flat;
|
|
bool m_som;
|
|
unsigned m_som_blowup;
|
|
bool m_sort_sums;
|
|
bool m_hoist_mul;
|
|
bool m_hoist_cmul;
|
|
|
|
bool is_numeral(expr * n) const { return Config::is_numeral(n); }
|
|
bool is_numeral(expr * n, numeral & r) const { return Config::is_numeral(n, r); }
|
|
bool is_zero(expr * n) const { return Config::is_zero(n); }
|
|
bool is_minus_one(expr * n) const { return Config::is_minus_one(n); }
|
|
void normalize(numeral & c) { Config::normalize(c, m_curr_sort); }
|
|
app * mk_numeral(numeral const & r) { return Config::mk_numeral(r, m_curr_sort); }
|
|
decl_kind add_decl_kind() const { return Config::add_decl_kind(); }
|
|
decl_kind mul_decl_kind() const { return Config::mul_decl_kind(); }
|
|
bool use_power() const { return Config::use_power(); }
|
|
decl_kind power_decl_kind() const { return Config::power_decl_kind(); }
|
|
bool is_power(expr * t) const { return is_app_of(t, get_fid(), power_decl_kind()); }
|
|
expr * get_power_body(expr * t, rational & k);
|
|
struct mon_pw_lt; // functor used to sort monomial elements when use_power() == true
|
|
|
|
expr * mk_mul_app(unsigned num_args, expr * const * args);
|
|
expr * mk_mul_app(numeral const & c, expr * arg);
|
|
expr * mk_add_app(unsigned num_args, expr * const * args);
|
|
|
|
br_status mk_flat_mul_core(unsigned num_args, expr * const * args, expr_ref & result);
|
|
br_status mk_nflat_mul_core(unsigned num_args, expr * const * args, expr_ref & result);
|
|
|
|
expr * get_power_product(expr * t);
|
|
expr * get_power_product(expr * t, numeral & a);
|
|
|
|
br_status mk_flat_add_core(unsigned num_args, expr * const * args, expr_ref & result);
|
|
br_status mk_nflat_add_core(unsigned num_args, expr * const * args, expr_ref & result);
|
|
|
|
void set_curr_sort(sort * s) { m_curr_sort = s; }
|
|
|
|
expr * const * get_monomials(expr * & t, unsigned & sz) {
|
|
if (is_add(t)) {
|
|
sz = to_app(t)->get_num_args();
|
|
return to_app(t)->get_args();
|
|
}
|
|
else {
|
|
sz = 1;
|
|
return &t;
|
|
}
|
|
}
|
|
|
|
br_status cancel_monomials(expr * lhs, expr * rhs, bool move, expr_ref & lhs_result, expr_ref & rhs_result);
|
|
|
|
bool hoist_multiplication(expr_ref& som);
|
|
expr* merge_muls(expr* x, expr* y);
|
|
|
|
struct hoist_cmul_lt;
|
|
bool is_mul(expr * t, numeral & c, expr * & pp);
|
|
void hoist_cmul(expr_ref_buffer & args);
|
|
|
|
public:
|
|
poly_rewriter(ast_manager & m, params_ref const & p = params_ref()):
|
|
Config(m),
|
|
m_curr_sort(0),
|
|
m_sort_sums(false) {
|
|
updt_params(p);
|
|
SASSERT(!m_som || m_flat); // som of monomials form requires flattening to be enabled.
|
|
SASSERT(!m_som || !m_hoist_mul); // som is mutually exclusive with hoisting multiplication.
|
|
updt_params(p);
|
|
}
|
|
|
|
ast_manager & m() const { return Config::m(); }
|
|
family_id get_fid() const { return Config::get_fid(); }
|
|
|
|
void updt_params(params_ref const & p);
|
|
static void get_param_descrs(param_descrs & r);
|
|
|
|
void set_flat(bool f) { m_flat = f; }
|
|
|
|
void set_sort_sums(bool f) { m_sort_sums = f; }
|
|
|
|
bool is_add(expr * n) const { return is_app_of(n, get_fid(), add_decl_kind()); }
|
|
bool is_mul(expr * n) const { return is_app_of(n, get_fid(), mul_decl_kind()); }
|
|
bool is_add(func_decl * f) const { return is_decl_of(f, get_fid(), add_decl_kind()); }
|
|
bool is_mul(func_decl * f) const { return is_decl_of(f, get_fid(), mul_decl_kind()); }
|
|
|
|
br_status mk_mul_core(unsigned num_args, expr * const * args, expr_ref & result) {
|
|
SASSERT(num_args > 0);
|
|
if (num_args == 1) {
|
|
result = args[0];
|
|
return BR_DONE;
|
|
}
|
|
set_curr_sort(m().get_sort(args[0]));
|
|
return m_flat ?
|
|
mk_flat_mul_core(num_args, args, result) :
|
|
mk_nflat_mul_core(num_args, args, result);
|
|
}
|
|
br_status mk_add_core(unsigned num_args, expr * const * args, expr_ref & result) {
|
|
SASSERT(num_args > 0);
|
|
if (num_args == 1) {
|
|
result = args[0];
|
|
return BR_DONE;
|
|
}
|
|
set_curr_sort(m().get_sort(args[0]));
|
|
return m_flat ?
|
|
mk_flat_add_core(num_args, args, result) :
|
|
mk_nflat_add_core(num_args, args, result);
|
|
}
|
|
void mk_add(unsigned num_args, expr * const * args, expr_ref & result) {
|
|
if (mk_add_core(num_args, args, result) == BR_FAILED)
|
|
result = mk_add_app(num_args, args);
|
|
}
|
|
void mk_add(expr* a1, expr* a2, expr_ref& result) {
|
|
expr* args[2] = { a1, a2 };
|
|
mk_add(2, args, result);
|
|
}
|
|
|
|
void mk_mul(unsigned num_args, expr * const * args, expr_ref & result) {
|
|
if (mk_mul_core(num_args, args, result) == BR_FAILED)
|
|
result = mk_mul_app(num_args, args);
|
|
}
|
|
void mk_mul(expr* a1, expr* a2, expr_ref& result) {
|
|
expr* args[2] = { a1, a2 };
|
|
mk_mul(2, args, result);
|
|
}
|
|
// The result of the following functions is never BR_FAILED
|
|
br_status mk_uminus(expr * arg, expr_ref & result);
|
|
br_status mk_sub(unsigned num_args, expr * const * args, expr_ref & result);
|
|
|
|
void mk_sub(expr* a1, expr* a2, expr_ref& result) {
|
|
expr* args[2] = { a1, a2 };
|
|
mk_sub(2, args, result);
|
|
}
|
|
};
|
|
|
|
|
|
#endif
|