mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
396 lines
11 KiB
C++
396 lines
11 KiB
C++
/*++
|
|
Copyright (c) 2012 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
expr2subpaving.cpp
|
|
|
|
Abstract:
|
|
|
|
Translator from Z3 expressions into generic subpaving data-structure.
|
|
|
|
|
|
Author:
|
|
|
|
Leonardo (leonardo) 2012-08-08
|
|
|
|
Notes:
|
|
|
|
--*/
|
|
#include"expr2subpaving.h"
|
|
#include"expr2var.h"
|
|
#include"ref_util.h"
|
|
#include"z3_exception.h"
|
|
#include"cooperate.h"
|
|
#include"arith_decl_plugin.h"
|
|
#include"scoped_numeral_buffer.h"
|
|
|
|
struct expr2subpaving::imp {
|
|
struct frame {
|
|
app * m_curr;
|
|
unsigned m_idx;
|
|
frame():m_curr(0), m_idx(0) {}
|
|
frame(app * t):m_curr(t), m_idx(0) {}
|
|
};
|
|
|
|
ast_manager & m_manager;
|
|
subpaving::context & m_subpaving;
|
|
unsynch_mpq_manager & m_qm;
|
|
arith_util m_autil;
|
|
expr2var * m_expr2var;
|
|
bool m_expr2var_owner;
|
|
|
|
expr_ref_vector m_var2expr;
|
|
|
|
typedef svector<subpaving::var> var_vector;
|
|
|
|
obj_map<expr, unsigned> m_cache;
|
|
var_vector m_cached_vars;
|
|
scoped_mpz_vector m_cached_numerators;
|
|
scoped_mpz_vector m_cached_denominators;
|
|
|
|
obj_map<expr, subpaving::ineq*> m_lit_cache;
|
|
|
|
volatile bool m_cancel;
|
|
|
|
imp(ast_manager & m, subpaving::context & s, expr2var * e2v):
|
|
m_manager(m),
|
|
m_subpaving(s),
|
|
m_qm(s.qm()),
|
|
m_autil(m),
|
|
m_var2expr(m),
|
|
m_cached_numerators(m_qm),
|
|
m_cached_denominators(m_qm) {
|
|
|
|
if (e2v == 0) {
|
|
m_expr2var = alloc(expr2var, m);
|
|
m_expr2var_owner = true;
|
|
}
|
|
else {
|
|
m_expr2var = e2v;
|
|
m_expr2var_owner = false;
|
|
}
|
|
|
|
m_cancel = false;
|
|
}
|
|
|
|
~imp() {
|
|
reset_cache();
|
|
if (m_expr2var_owner)
|
|
dealloc(m_expr2var);
|
|
}
|
|
|
|
ast_manager & m() { return m_manager; }
|
|
|
|
subpaving::context & s() { return m_subpaving; }
|
|
|
|
unsynch_mpq_manager & qm() const { return m_qm; }
|
|
|
|
void reset_cache() {
|
|
dec_ref_map_keys(m(), m_cache);
|
|
m_cached_vars.reset();
|
|
m_cached_numerators.reset();
|
|
m_cached_denominators.reset();
|
|
dec_ref_map_key_values(m(), s(), m_lit_cache);
|
|
}
|
|
|
|
void checkpoint() {
|
|
if (m_cancel)
|
|
throw default_exception("canceled");
|
|
cooperate("expr2subpaving");
|
|
}
|
|
|
|
subpaving::var mk_var_for(expr * t) {
|
|
SASSERT(!m_autil.is_numeral(t));
|
|
subpaving::var x = m_expr2var->to_var(t);
|
|
if (x == subpaving::null_var) {
|
|
bool is_int = m_autil.is_int(t);
|
|
x = s().mk_var(is_int);
|
|
m_expr2var->insert(t, x);
|
|
if (x >= m_var2expr.size())
|
|
m_var2expr.resize(x+1, 0);
|
|
m_var2expr.set(x, t);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
void found_non_simplified() {
|
|
throw default_exception("you must apply simplifier before internalizing expressions into the subpaving module.");
|
|
}
|
|
|
|
bool is_cached(expr * t) {
|
|
return t->get_ref_count() > 1 && m_cache.contains(t);
|
|
}
|
|
|
|
bool is_int_real(expr * t) {
|
|
return m_autil.is_int_real(t);
|
|
}
|
|
|
|
void cache_result(expr * t, subpaving::var x, mpz const & n, mpz const & d) {
|
|
SASSERT(!m_cache.contains(t));
|
|
SASSERT(m_cached_numerators.size() == m_cached_vars.size());
|
|
SASSERT(m_cached_denominators.size() == m_cached_vars.size());
|
|
if (t->get_ref_count() <= 1)
|
|
return;
|
|
unsigned idx = m_cached_vars.size();
|
|
m_cache.insert(t, idx);
|
|
m().inc_ref(t);
|
|
m_cached_vars.push_back(x);
|
|
m_cached_numerators.push_back(n);
|
|
m_cached_denominators.push_back(d);
|
|
}
|
|
|
|
subpaving::var process_num(app * t, unsigned depth, mpz & n, mpz & d) {
|
|
rational k;
|
|
VERIFY(m_autil.is_numeral(t, k));
|
|
qm().set(n, k.to_mpq().numerator());
|
|
qm().set(d, k.to_mpq().denominator());
|
|
return subpaving::null_var;
|
|
}
|
|
|
|
// Put t as a^k.
|
|
void as_power(expr * t, expr * & a, unsigned & k) {
|
|
if (!m_autil.is_power(t)) {
|
|
a = t;
|
|
k = 1;
|
|
return;
|
|
}
|
|
rational _k;
|
|
if (!m_autil.is_numeral(to_app(t)->get_arg(1), _k) || !_k.is_int() || !_k.is_unsigned()) {
|
|
a = t;
|
|
k = 1;
|
|
return;
|
|
}
|
|
a = to_app(t)->get_arg(0);
|
|
k = _k.get_unsigned();
|
|
}
|
|
|
|
subpaving::var process_mul(app * t, unsigned depth, mpz & n, mpz & d) {
|
|
unsigned num_args = t->get_num_args();
|
|
if (num_args <= 1)
|
|
found_non_simplified();
|
|
rational k;
|
|
expr * m;
|
|
if (m_autil.is_numeral(t->get_arg(0), k)) {
|
|
if (num_args != 2)
|
|
found_non_simplified();
|
|
qm().set(n, k.to_mpq().numerator());
|
|
qm().set(d, k.to_mpq().denominator());
|
|
m = t->get_arg(1);
|
|
}
|
|
else {
|
|
qm().set(n, 1);
|
|
qm().set(d, 1);
|
|
m = t;
|
|
}
|
|
expr * const * margs;
|
|
unsigned sz;
|
|
if (m_autil.is_mul(m)) {
|
|
margs = to_app(m)->get_args();
|
|
sz = to_app(m)->get_num_args();
|
|
}
|
|
else {
|
|
margs = &m;
|
|
sz = 1;
|
|
}
|
|
scoped_mpz n_arg(qm());
|
|
scoped_mpz d_arg(qm());
|
|
sbuffer<subpaving::power> pws;
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
expr * arg = margs[i];
|
|
unsigned k;
|
|
as_power(arg, arg, k);
|
|
subpaving::var x_arg = process(arg, depth+1, n_arg, d_arg);
|
|
qm().power(n_arg, k, n_arg);
|
|
qm().power(d_arg, k, d_arg);
|
|
qm().mul(n, n_arg, n);
|
|
qm().mul(d, d_arg, d);
|
|
if (x_arg != subpaving::null_var)
|
|
pws.push_back(subpaving::power(x_arg, k));
|
|
}
|
|
subpaving::var x;
|
|
if (pws.empty())
|
|
x = subpaving::null_var;
|
|
else if (pws.size() == 1 && pws[0].degree() == 1)
|
|
x = pws[0].get_var();
|
|
else
|
|
x = s().mk_monomial(pws.size(), pws.c_ptr());
|
|
cache_result(t, x, n, d);
|
|
return x;
|
|
}
|
|
|
|
typedef _scoped_numeral_buffer<unsynch_mpz_manager> mpz_buffer;
|
|
typedef sbuffer<subpaving::var> var_buffer;
|
|
|
|
subpaving::var process_add(app * t, unsigned depth, mpz & n, mpz & d) {
|
|
unsigned num_args = t->get_num_args();
|
|
mpz_buffer ns(qm()), ds(qm());
|
|
var_buffer xs;
|
|
scoped_mpq c(qm()), c_arg(qm());
|
|
scoped_mpz n_arg(qm()), d_arg(qm());
|
|
for (unsigned i = 0; i < num_args; i++) {
|
|
expr * arg = t->get_arg(i);
|
|
subpaving::var x_arg = process(arg, depth+1, n_arg, d_arg);
|
|
if (x_arg == subpaving::null_var) {
|
|
qm().set(c_arg, n_arg, d_arg);
|
|
qm().add(c, c_arg, c);
|
|
}
|
|
else {
|
|
xs.push_back(x_arg);
|
|
ns.push_back(n_arg);
|
|
ds.push_back(d_arg);
|
|
}
|
|
}
|
|
qm().set(d, c.get().denominator());
|
|
unsigned sz = xs.size();
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
qm().lcm(d, ds[i], d);
|
|
}
|
|
scoped_mpz & k = d_arg;
|
|
qm().div(d, c.get().denominator(), k);
|
|
scoped_mpz sum_c(qm());
|
|
qm().mul(c.get().numerator(), k, sum_c);
|
|
for (unsigned i = 0; i < sz; i++) {
|
|
qm().div(d, ds[i], k);
|
|
qm().mul(ns[i], k, ns[i]);
|
|
}
|
|
subpaving::var x;
|
|
if (sz == 0) {
|
|
qm().set(n, sum_c);
|
|
x = subpaving::null_var;
|
|
}
|
|
else {
|
|
x = s().mk_sum(sum_c, sz, ns.c_ptr(), xs.c_ptr());
|
|
qm().set(n, 1);
|
|
}
|
|
cache_result(t, x, n, d);
|
|
return x;
|
|
}
|
|
|
|
subpaving::var process_power(app * t, unsigned depth, mpz & n, mpz & d) {
|
|
rational k;
|
|
SASSERT(t->get_num_args() == 2);
|
|
if (!m_autil.is_numeral(t->get_arg(1), k) || !k.is_int() || !k.is_unsigned()) {
|
|
qm().set(n, 1);
|
|
qm().set(d, 1);
|
|
return mk_var_for(t);
|
|
}
|
|
unsigned _k = k.get_unsigned();
|
|
subpaving::var x = process(t->get_arg(0), depth+1, n, d);
|
|
if (x != subpaving::null_var) {
|
|
subpaving::power p(x, _k);
|
|
x = s().mk_monomial(1, &p);
|
|
}
|
|
qm().power(n, _k, n);
|
|
qm().power(d, _k, d);
|
|
cache_result(t, x, n, d);
|
|
return x;
|
|
}
|
|
|
|
subpaving::var process_arith_app(app * t, unsigned depth, mpz & n, mpz & d) {
|
|
SASSERT(m_autil.is_arith_expr(t));
|
|
|
|
switch (t->get_decl_kind()) {
|
|
case OP_NUM:
|
|
return process_num(t, depth, n, d);
|
|
case OP_ADD:
|
|
return process_add(t, depth, n, d);
|
|
case OP_MUL:
|
|
return process_mul(t, depth, n, d);
|
|
case OP_POWER:
|
|
return process_power(t, depth, n, d);
|
|
case OP_TO_REAL:
|
|
return process(t->get_arg(0), depth+1, n, d);
|
|
case OP_SUB:
|
|
case OP_UMINUS:
|
|
found_non_simplified();
|
|
break;
|
|
case OP_TO_INT:
|
|
case OP_DIV:
|
|
case OP_IDIV:
|
|
case OP_MOD:
|
|
case OP_REM:
|
|
case OP_IRRATIONAL_ALGEBRAIC_NUM:
|
|
throw default_exception("you must apply arithmetic purifier before internalizing expressions into the subpaving module.");
|
|
case OP_SIN:
|
|
case OP_COS:
|
|
case OP_TAN:
|
|
case OP_ASIN:
|
|
case OP_ACOS:
|
|
case OP_ATAN:
|
|
case OP_SINH:
|
|
case OP_COSH:
|
|
case OP_TANH:
|
|
case OP_ASINH:
|
|
case OP_ACOSH:
|
|
case OP_ATANH:
|
|
// TODO
|
|
throw default_exception("transcendental and hyperbolic functions are not supported yet.");
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return subpaving::null_var;
|
|
}
|
|
|
|
subpaving::var process(expr * t, unsigned depth, mpz & n, mpz & d) {
|
|
SASSERT(is_int_real(t));
|
|
checkpoint();
|
|
|
|
if (is_cached(t)) {
|
|
unsigned idx = m_cache.find(t);
|
|
qm().set(n, m_cached_numerators[idx]);
|
|
qm().set(d, m_cached_denominators[idx]);
|
|
return m_cached_vars[idx];
|
|
}
|
|
|
|
SASSERT(!is_quantifier(t));
|
|
if (::is_var(t) || !m_autil.is_arith_expr(t)) {
|
|
qm().set(n, 1);
|
|
qm().set(d, 1);
|
|
return mk_var_for(t);
|
|
}
|
|
|
|
return process_arith_app(to_app(t), depth, n, d);
|
|
}
|
|
|
|
bool is_var(expr * t) const {
|
|
return m_expr2var->is_var(t);
|
|
}
|
|
|
|
void set_cancel(bool f) {
|
|
m_cancel = f;
|
|
}
|
|
|
|
subpaving::var internalize_term(expr * t, mpz & n, mpz & d) {
|
|
return process(t, 0, n, d);
|
|
}
|
|
};
|
|
|
|
expr2subpaving::expr2subpaving(ast_manager & m, subpaving::context & s, expr2var * e2v) {
|
|
m_imp = alloc(imp, m, s, e2v);
|
|
}
|
|
|
|
expr2subpaving::~expr2subpaving() {
|
|
dealloc(m_imp);
|
|
}
|
|
|
|
ast_manager & expr2subpaving::m() const {
|
|
return m_imp->m();
|
|
}
|
|
|
|
subpaving::context & expr2subpaving::s() const {
|
|
return m_imp->s();
|
|
}
|
|
|
|
bool expr2subpaving::is_var(expr * t) const {
|
|
return m_imp->is_var(t);
|
|
}
|
|
|
|
void expr2subpaving::set_cancel(bool f) {
|
|
m_imp->set_cancel(f);
|
|
}
|
|
|
|
subpaving::var expr2subpaving::internalize_term(expr * t, mpz & n, mpz & d) {
|
|
return m_imp->internalize_term(t, n, d);
|
|
}
|