3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-11 03:33:35 +00:00
z3/lib/asserted_formulas.cpp
Leonardo de Moura e9eab22e5c Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2012-10-02 11:35:25 -07:00

1495 lines
62 KiB
C++

/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
asserted_formulas.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2008-06-11.
Revision History:
--*/
#include"asserted_formulas.h"
#include"ast_ll_pp.h"
#include"ast_pp.h"
#include"ast_smt2_pp.h"
#include"arith_simplifier_plugin.h"
#include"array_simplifier_plugin.h"
#include"datatype_simplifier_plugin.h"
#include"bv_simplifier_plugin.h"
#include"arith_solver_plugin.h"
#include"occurs.h"
#include"for_each_expr.h"
#include"well_sorted.h"
#include"pull_ite_tree.h"
#include"push_app_ite.h"
#include"elim_term_ite.h"
#include"pattern_inference.h"
#include"nnf.h"
#include"cnf.h"
#include"expr_context_simplifier.h"
#include"bv_elim.h"
#include"inj_axiom.h"
#include"der.h"
#include"elim_bounds.h"
#include"warning.h"
#include"eager_bit_blaster.h"
#include"bit2int.h"
#include"qe.h"
#include"distribute_forall.h"
#include"demodulator.h"
#include"quasi_macros.h"
asserted_formulas::asserted_formulas(ast_manager & m, front_end_params & p):
m_manager(m),
m_params(p),
m_pre_simplifier(m),
m_simplifier(m),
m_defined_names(m),
m_static_features(m),
m_asserted_formulas(m),
m_asserted_formula_prs(m),
m_asserted_qhead(0),
m_subst(m),
m_vars_qhead(0),
m_macro_manager(m, m_simplifier),
m_bit2int(m),
m_bv_sharing(m),
m_user_rewriter(m),
m_inconsistent(false),
m_quant_elim(m, p),
m_cancel_flag(false) {
m_bsimp = 0;
m_bvsimp = 0;
arith_simplifier_plugin * arith_simp = 0;
setup_simplifier_plugins(m_simplifier, m_bsimp, arith_simp, m_bvsimp);
SASSERT(m_bsimp != 0);
SASSERT(arith_simp != 0);
m_simplifier.set_subst_map(&m_subst);
m_macro_finder = alloc(macro_finder, m_manager, m_macro_manager);
basic_simplifier_plugin * basic_simp = 0;
bv_simplifier_plugin * bv_simp = 0;
setup_simplifier_plugins(m_pre_simplifier, basic_simp, arith_simp, bv_simp);
m_bit2int.set_bv_simplifier(bv_simp);
m_pre_simplifier.enable_presimp();
}
void asserted_formulas::setup() {
switch (m_params.m_lift_ite) {
case LI_FULL:
m_params.m_ng_lift_ite = LI_NONE;
break;
case LI_CONSERVATIVE:
if (m_params.m_ng_lift_ite == LI_CONSERVATIVE)
m_params.m_ng_lift_ite = LI_NONE;
break;
default:
break;
}
if (m_params.m_relevancy_lvl == 0)
m_params.m_relevancy_lemma = false;
switch (m_params.m_cnf_mode) {
case CNF_QUANT:
if (m_params.m_nnf_mode == NNF_SKOLEM)
m_params.m_nnf_mode = NNF_QUANT;
break;
case CNF_OPPORTUNISTIC:
if (m_params.m_nnf_mode == NNF_SKOLEM)
m_params.m_nnf_mode = NNF_QUANT;
break;
case CNF_FULL:
m_params.m_nnf_mode = NNF_FULL;
break;
default:
break;
}
}
void asserted_formulas::setup_simplifier_plugins(simplifier & s, basic_simplifier_plugin * & bsimp, arith_simplifier_plugin * & asimp, bv_simplifier_plugin * & bvsimp) {
bsimp = alloc(basic_simplifier_plugin, m_manager);
s.register_plugin(bsimp);
asimp = alloc(arith_simplifier_plugin, m_manager, *bsimp, m_params);
s.register_plugin(asimp);
s.register_plugin(alloc(array_simplifier_plugin, m_manager, *bsimp, s, m_params));
bvsimp = alloc(bv_simplifier_plugin, m_manager, *bsimp, m_params);
s.register_plugin(bvsimp);
s.register_plugin(alloc(datatype_simplifier_plugin, m_manager, *bsimp));
}
void asserted_formulas::init(unsigned num_formulas, expr * const * formulas, proof * const * prs) {
SASSERT(m_asserted_formulas.empty());
SASSERT(m_asserted_formula_prs.empty());
SASSERT(!m_inconsistent);
SASSERT(m_scopes.empty());
m_asserted_formulas.append(num_formulas, formulas);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.append(num_formulas, prs);
}
bool asserted_formulas::has_bv() const {
// approaximated answer... assume the formula has bit-vectors if the bv_simplifier_plugin was invoked at least once.
return m_bvsimp->reduce_invoked();
}
asserted_formulas::~asserted_formulas() {
}
void asserted_formulas::push_assertion(expr * e, proof * pr, expr_ref_vector & result, proof_ref_vector & result_prs) {
if (inconsistent()) {
SASSERT(!result.empty());
return;
}
if (m_manager.is_false(e))
m_inconsistent = true;
::push_assertion(m_manager, e, pr, result, result_prs);
}
void asserted_formulas::set_eliminate_and(bool flag) {
if (m_bsimp->eliminate_and() == flag)
return;
TRACE("eliminate_and", tout << "flushing cache...\n";);
flush_cache();
m_bsimp->set_eliminate_and(flag);
}
void asserted_formulas::assert_expr(expr * e, proof * _in_pr) {
if (inconsistent())
return;
if (!m_params.m_preprocess) {
push_assertion(e, _in_pr, m_asserted_formulas, m_asserted_formula_prs);
return;
}
proof_ref in_pr(_in_pr, m_manager);
expr_ref r1(m_manager);
proof_ref pr1(m_manager);
expr_ref r2(m_manager);
proof_ref pr2(m_manager);
TRACE("assert_expr_before_simp", tout << mk_ll_pp(e, m_manager) << "\n";);
TRACE("assert_expr_bug", tout << mk_ismt2_pp(e, m_manager) << "\n";);
if (m_params.m_pre_simplifier) {
m_pre_simplifier(e, r1, pr1);
}
else {
r1 = e;
pr1 = 0;
}
set_eliminate_and(false); // do not eliminate and before nnf.
m_simplifier(r1, r2, pr2);
TRACE("assert_expr_bug", tout << "after...\n" << mk_ismt2_pp(r1, m_manager) << "\n";);
if (m_manager.proofs_enabled()) {
if (e == r2)
pr2 = in_pr;
else
pr2 = m_manager.mk_modus_ponens(in_pr, m_manager.mk_transitivity(pr1, pr2));
}
TRACE("assert_expr_after_simp", tout << mk_ll_pp(r1, m_manager) << "\n";);
push_assertion(r2, pr2, m_asserted_formulas, m_asserted_formula_prs);
TRACE("asserted_formulas_bug", tout << "after assert_expr\n"; display(tout););
}
void asserted_formulas::assert_expr(expr * e) {
if (inconsistent())
return;
assert_expr(e, m_manager.mk_asserted(e));
}
void asserted_formulas::get_assertions(ptr_vector<expr> & result) {
result.append(m_asserted_formulas.size(), m_asserted_formulas.c_ptr());
}
void asserted_formulas::push_scope() {
SASSERT(inconsistent() || m_asserted_qhead == m_asserted_formulas.size());
TRACE("asserted_formulas_scopes", tout << "push:\n"; display(tout););
m_scopes.push_back(scope());
m_macro_manager.push_scope();
scope & s = m_scopes.back();
s.m_asserted_formulas_lim = m_asserted_formulas.size();
SASSERT(inconsistent() || s.m_asserted_formulas_lim == m_asserted_qhead);
s.m_vars_lim = m_vars.size();
s.m_forbidden_vars_lim = m_forbidden_vars.size();
s.m_inconsistent_old = m_inconsistent;
m_defined_names.push_scope();
m_bv_sharing.push_scope();
commit();
}
void asserted_formulas::pop_scope(unsigned num_scopes) {
TRACE("asserted_formulas_scopes", tout << "before pop " << num_scopes << "\n"; display(tout););
m_bv_sharing.pop_scope(num_scopes);
m_macro_manager.pop_scope(num_scopes);
unsigned new_lvl = m_scopes.size() - num_scopes;
scope & s = m_scopes[new_lvl];
m_inconsistent = s.m_inconsistent_old;
restore_subst(s.m_vars_lim);
restore_forbidden_vars(s.m_forbidden_vars_lim);
m_defined_names.pop_scope(num_scopes);
m_asserted_formulas.shrink(s.m_asserted_formulas_lim);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.shrink(s.m_asserted_formulas_lim);
m_asserted_qhead = s.m_asserted_formulas_lim;
m_vars_qhead = m_vars.size();
m_scopes.shrink(new_lvl);
flush_cache();
TRACE("asserted_formulas_scopes", tout << "after pop " << num_scopes << "\n"; display(tout););
}
void asserted_formulas::restore_subst(unsigned old_size) {
unsigned sz = m_vars.size();
SASSERT(sz >= old_size);
TRACE("asserted_formulas_bug", tout << "restore_subst, old_size: " << old_size << ", curr_size: " << sz << "\n";);
for (unsigned i = old_size; i < sz; i++) {
SASSERT(is_app(m_vars[i]));
TRACE("asserted_formulas_bug", tout << "removing subst: " << mk_pp(m_vars[i], m_manager) << "\n";);
m_subst.erase(m_vars[i]);
SASSERT(!m_subst.contains(m_vars[i]));
}
if (old_size != sz)
flush_cache();
m_vars.shrink(old_size);
}
void asserted_formulas::restore_forbidden_vars(unsigned old_size) {
unsigned sz = m_forbidden_vars.size();
SASSERT(sz >= old_size);
for (unsigned i = old_size; i < sz; i++) {
TRACE("solver_bug", tout << "unmarking: " << m_forbidden_vars[i]->get_decl()->get_name() << "\n";);
m_forbidden.mark(m_forbidden_vars[i], false);
}
m_forbidden_vars.shrink(old_size);
}
void asserted_formulas::reset() {
m_defined_names.reset();
m_asserted_qhead = 0;
m_asserted_formulas.reset();
m_asserted_formula_prs.reset();
m_subst.reset();
m_vars.reset();
m_vars_qhead = 0;
m_forbidden.reset();
m_forbidden_vars.reset();
m_macro_manager.reset();
m_bv_sharing.reset();
m_inconsistent = false;
}
void asserted_formulas::set_cancel_flag(bool f) {
m_user_rewriter.set_cancel(f);
m_cancel_flag = f;
}
#ifdef Z3DEBUG
bool asserted_formulas::check_well_sorted() const {
for (unsigned i = 0; i < m_asserted_formulas.size(); i++) {
if (!is_well_sorted(m_manager, m_asserted_formulas.get(i))) return false;
}
return true;
}
#endif
void asserted_formulas::reduce() {
if (inconsistent())
return;
if (canceled()) {
return;
}
if (m_asserted_qhead == m_asserted_formulas.size())
return;
if (!m_params.m_preprocess)
return;
if (m_macro_manager.has_macros())
expand_macros();
TRACE("before_reduce", display(tout););
IF_VERBOSE(10000, verbose_stream() << "total size: " << get_total_size() << "\n";);
CASSERT("well_sorted", check_well_sorted());
#define INVOKE(COND, FUNC) if (COND) { FUNC; IF_VERBOSE(10000, verbose_stream() << "total size: " << get_total_size() << "\n";); } TRACE("reduce_step_ll", ast_mark visited; display_ll(tout, visited);); TRACE("reduce_step", display(tout << #FUNC << " ");); CASSERT("well_sorted",check_well_sorted()); if (inconsistent() || canceled()) { TRACE("after_reduce", display(tout);); TRACE("after_reduce_ll", ast_mark visited; display_ll(tout, visited);); return; }
set_eliminate_and(false); // do not eliminate and before nnf.
INVOKE(m_params.m_propagate_booleans, propagate_booleans());
INVOKE(m_params.m_propagate_values, propagate_values());
INVOKE(m_params.m_macro_finder && has_quantifiers(), find_macros());
INVOKE((m_params.m_quant_elim && has_quantifiers()), quant_elim());
INVOKE(m_params.m_nnf_cnf, nnf_cnf());
INVOKE(m_params.m_context_simplifier, context_simplifier());
INVOKE(m_params.m_strong_context_simplifier, strong_context_simplifier());
INVOKE(m_params.m_eliminate_and, eliminate_and());
INVOKE(m_params.m_pull_cheap_ite_trees, pull_cheap_ite_trees());
INVOKE(m_params.m_pull_nested_quantifiers && has_quantifiers(), pull_nested_quantifiers());
INVOKE(m_params.m_ng_lift_ite != LI_NONE, ng_lift_ite());
INVOKE(m_params.m_lift_ite != LI_NONE, lift_ite());
INVOKE(m_params.m_solver, solve());
INVOKE(m_params.m_eliminate_term_ite && m_params.m_lift_ite != LI_FULL, eliminate_term_ite());
INVOKE(m_params.m_refine_inj_axiom && has_quantifiers(), refine_inj_axiom());
TRACE("der_bug", tout << "before DER:\n"; display(tout););
INVOKE(m_params.m_der && has_quantifiers(), apply_der());
TRACE("der_bug", tout << "after DER:\n"; display(tout););
INVOKE(m_params.m_distribute_forall && has_quantifiers(), apply_distribute_forall());
TRACE("qbv_bug", tout << "after distribute_forall:\n"; display(tout););
INVOKE(m_params.m_macro_finder && has_quantifiers(), find_macros());
TRACE("qbv_bug", tout << "before demod:\n"; display(tout););
INVOKE(m_params.m_pre_demod && has_quantifiers(), apply_demodulators());
TRACE("qbv_bug", tout << "after demod:\n"; display(tout););
INVOKE(m_params.m_quasi_macros && has_quantifiers(), apply_quasi_macros());
INVOKE(m_params.m_simplify_bit2int, apply_bit2int());
INVOKE(m_user_rewriter.enabled(), apply_user_rewriter());
INVOKE(m_params.m_eliminate_bounds && has_quantifiers(), cheap_quant_fourier_motzkin());
INVOKE(!m_params.m_bb_eager && has_quantifiers() && m_params.m_ematching, infer_patterns());
INVOKE(m_params.m_max_bv_sharing && has_bv(), max_bv_sharing());
INVOKE(m_params.m_bb_quantifiers, elim_bvs_from_quantifiers());
INVOKE(m_params.m_bb_eager, apply_eager_bit_blaster());
INVOKE(m_params.m_bb_eager && m_params.m_nnf_cnf, nnf_cnf()); // bit-blaster destroys CNF
INVOKE(m_params.m_bb_quantifiers && m_params.m_der && has_quantifiers(), apply_der()); // bit-vector elimination + bit-blasting creates new opportunities for der.
INVOKE(m_params.m_bb_eager && has_quantifiers() && m_params.m_ematching, infer_patterns());
// temporary HACK: make sure that arith & bv are list-assoc
// this may destroy some simplification steps such as max_bv_sharing
reduce_asserted_formulas();
CASSERT("well_sorted",check_well_sorted());
IF_VERBOSE(10, verbose_stream() << "simplifier done.\n";);
TRACE("after_reduce", display(tout););
TRACE("after_reduce_ll", ast_mark visited; display_ll(tout, visited););
TRACE("macros", m_macro_manager.display(tout););
flush_cache();
}
void asserted_formulas::eliminate_and() {
IF_IVERBOSE(10, verbose_stream() << "eliminating and...\n";);
set_eliminate_and(true);
reduce_asserted_formulas();
TRACE("after_elim_and", display(tout););
}
bool asserted_formulas::trivial_solve(expr * lhs, expr * rhs, app_ref & var, expr_ref & subst, proof_ref& pr) {
if (is_uninterp_const(lhs) && !m_forbidden.is_marked(lhs)) {
var = to_app(lhs);
subst = rhs;
if (m_manager.proofs_enabled()) {
app* n = m_manager.mk_eq(lhs,rhs);
pr = m_manager.mk_reflexivity(m_manager.mk_iff(n,n));
}
TRACE("solve_bug",
tout << "trivial solve " <<
mk_pp(var, m_manager) << " |-> " <<
mk_pp(subst, m_manager) << "\n";);
return true;
}
else if (is_uninterp_const(rhs) && !m_forbidden.is_marked(rhs)) {
var = to_app(rhs);
subst = lhs;
if (m_manager.proofs_enabled()) {
app* m = m_manager.mk_eq(lhs,rhs);
pr = m_manager.mk_commutativity(m);
}
TRACE("solve_bug",
tout << "trivial solve " <<
mk_pp(var, m_manager) << " |-> " <<
mk_pp(subst, m_manager) << "\n";);
return true;
}
return false;
}
bool asserted_formulas::is_pos_literal(expr * n) {
return is_app(n) && to_app(n)->get_num_args() == 0 && to_app(n)->get_family_id() == null_family_id;
}
bool asserted_formulas::is_neg_literal(expr * n) {
if (m_manager.is_not(n))
return is_pos_literal(to_app(n)->get_arg(0));
return false;
}
unsigned asserted_formulas::get_formulas_last_level() const {
if (m_scopes.empty()) {
return 0;
}
else {
return m_scopes.back().m_asserted_formulas_lim;
}
}
/**
\brief (ite x (= c1 y) (= c2 y)) where y is a constant. -> (= y (ite x c1 c2))
*/
bool asserted_formulas::solve_ite_definition_core(expr * lhs1, expr * rhs1, expr * lhs2, expr * rhs2, expr * cond, app_ref & var, expr_ref & subst) {
if (rhs1 == rhs2 && is_uninterp_const(rhs1) && !occurs(rhs1, cond) && !occurs(rhs1, lhs1) && !occurs(rhs1, lhs2)) {
var = to_app(rhs1);
m_bsimp->mk_ite(cond, lhs1, lhs2, subst);
return true;
}
return false;
}
bool asserted_formulas::solve_ite_definition(expr * arg1, expr * arg2, expr * arg3, app_ref & var, expr_ref & subst) {
if (!m_manager.is_eq(arg2) || !m_manager.is_eq(arg3))
return false;
app * app2 = to_app(arg2);
app * app3 = to_app(arg3);
expr * lhs1 = app2->get_arg(0);
expr * rhs1 = app2->get_arg(1);
expr * lhs2 = app3->get_arg(0);
expr * rhs2 = app3->get_arg(1);
if (solve_ite_definition_core(lhs1, rhs1, lhs2, rhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(rhs1, lhs1, lhs2, rhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(lhs1, rhs1, rhs2, lhs2, arg1, var, subst))
return true;
if (solve_ite_definition_core(rhs1, lhs1, rhs2, lhs2, arg1, var, subst))
return true;
return false;
}
bool asserted_formulas::solve_core(expr * n, app_ref & var, expr_ref & subst, proof_ref& pr) {
if (m_manager.is_eq(n)) {
// equality case
app * eq = to_app(n);
expr * lhs = eq->get_arg(0);
expr * rhs = eq->get_arg(1);
TRACE("solve_bug", tout << mk_bounded_pp(n, m_manager) << "\n" << mk_bounded_pp(lhs, m_manager) << "\n" << mk_bounded_pp(rhs, m_manager) << "\n";);
if (trivial_solve(lhs, rhs, var, subst, pr)) {
return true;
}
else {
sort * s = m_manager.get_sort(lhs);
family_id fid = s->get_family_id();
solver_plugin * p = m_solver_plugins.get_plugin(fid);
if (p != 0 && p->solve(lhs, rhs, m_forbidden, var, subst)) {
if (m_manager.proofs_enabled()) {
app* new_eq = m_manager.mk_eq(var,subst);
pr = m_manager.mk_th_lemma(p->get_family_id(), m_manager.mk_iff(n,new_eq),0,0);
}
TRACE("solve_bug", tout << "theory solve\n";);
return true;
}
}
return false;
}
else if (m_manager.is_iff(n)) {
// <=> case
app * iff = to_app(n);
expr * lhs = iff->get_arg(0);
expr * rhs = iff->get_arg(1);
if (trivial_solve(lhs, rhs, var, subst, pr)) {
return true;
}
return false;
}
else {
if (m_manager.is_ite(n)) {
//
// (ite x (= c1 y) (= c2 y)) where y is a constant. -> (= y (ite x c1 c2))
//
app * ite = to_app(n);
if (solve_ite_definition(ite->get_arg(0), ite->get_arg(1), ite->get_arg(2), var, subst)) {
if (m_manager.proofs_enabled()) {
pr = m_manager.mk_rewrite(n, m_manager.mk_eq(var, subst));
}
return true;
}
}
// check if literal
expr * lit = n;
if (is_pos_literal(lit)) {
var = to_app(lit);
subst = m_manager.mk_true();
if (m_manager.proofs_enabled()) {
// [rewrite]: (iff (iff l true) l)
// [symmetry T1]: (iff l (iff l true))
pr = m_manager.mk_rewrite(m_manager.mk_eq(var, subst), n);
pr = m_manager.mk_symmetry(pr);
}
return true;
}
else if (is_neg_literal(lit)) {
var = to_app(to_app(lit)->get_arg(0));
subst = m_manager.mk_false();
if (m_manager.proofs_enabled()) {
// [rewrite]: (iff (iff l false) ~l)
// [symmetry T1]: (iff ~l (iff l false))
pr = m_manager.mk_rewrite(m_manager.mk_eq(var, subst), n);
pr = m_manager.mk_symmetry(pr);
}
return true;
}
}
return false;
}
void asserted_formulas::collect_static_features() {
if (m_params.m_display_features) {
unsigned sz = m_asserted_formulas.size();
unsigned head = m_asserted_qhead;
while (head < sz) {
expr * f = m_asserted_formulas.get(head);
head++;
m_static_features.collect(f);
}
m_static_features.display_primitive(std::cout);
m_static_features.display(std::cout);
}
}
void asserted_formulas::display(std::ostream & out) const {
out << "asserted formulas:\n";
for (unsigned i = 0; i < m_asserted_formulas.size(); i++) {
if (i == m_asserted_qhead)
out << "[HEAD] ==>\n";
out << mk_ismt2_pp(m_asserted_formulas.get(i), m_manager) << "\n";
}
out << "inconsistent: " << inconsistent() << "\n";
}
void asserted_formulas::display_ll(std::ostream & out, ast_mark & pp_visited) const {
if (!m_asserted_formulas.empty()) {
unsigned sz = m_asserted_formulas.size();
for (unsigned i = 0; i < sz; i++)
ast_def_ll_pp(out, m_manager, m_asserted_formulas.get(i), pp_visited, true, false);
out << "asserted formulas:\n";
for (unsigned i = 0; i < sz; i++)
out << "#" << m_asserted_formulas[i]->get_id() << " ";
out << "\n";
}
}
void asserted_formulas::collect_statistics(statistics & st) const {
m_quant_elim.collect_statistics(st);
}
/**
\brief Functor used to order solved equations x = t, in a way they can be solved
efficiently.
*/
class top_sort {
enum color { White, Grey, Black };
ast_manager & m_manager;
family_id m_bfid;
expr_map * m_candidate_map; // Set of candidate substitutions var -> ast
obj_map<app, unsigned> m_var2idx; // var -> index in vars;
ptr_vector<app> * m_ordered_vars; // Result1: set of variables ordered for applying substitution efficiently.
unsigned_vector * m_failed_idxs; // Result2: indices of substitutions that cannot be applied.
svector<color> m_colors;
ptr_vector<expr> m_todo;
expr * get_candidate_def(expr * n) const {
if (is_app(n) && to_app(n)->get_num_args() == 0 && m_candidate_map->contains(n)) {
expr * d = 0;
proof * p = 0;
m_candidate_map->get(n, d, p);
SASSERT(d);
return d;
}
return 0;
}
bool is_candidate(expr * n) const {
return get_candidate_def(n) != 0;
}
void remove_candidate(app * n) {
TRACE("solve", tout << "removing candidate #" << n->get_id() << " " << mk_bounded_pp(n, m_manager) << "\n";);
unsigned idx = UINT_MAX;
m_var2idx.find(n, idx);
SASSERT(idx != UINT_MAX);
m_candidate_map->erase(n);
m_failed_idxs->push_back(idx);
}
color get_color(expr * n) const {
return m_colors.get(n->get_id(), White);
}
void set_color(expr * n, color c) {
unsigned id = n->get_id();
m_colors.reserve(id+1, White);
m_colors[id] = c;
if (c == Black && is_candidate(n))
m_ordered_vars->push_back(to_app(n));
}
void main_loop(app * n) {
m_todo.push_back(n);
expr * def;
while (!m_todo.empty()) {
expr * n = m_todo.back();
switch (get_color(n)) {
case Black:
m_todo.pop_back();
break;
case White:
set_color(n, Grey);
if (visit_children(n)) {
set_color(n, Black);
}
break;
case Grey:
if (all_black_children(n)) {
set_color(n, Black);
}
else {
def = get_candidate_def(n);
if (def) {
// Break loop
remove_candidate(to_app(n));
set_color(n, Black);
}
// there is another occurrence of n on the stack
SASSERT(std::find(m_todo.begin(), m_todo.end() - 1, n) != m_todo.end());
}
m_todo.pop_back();
}
}
}
void visit(expr * n, bool & visited) {
if (get_color(n) != Black) {
m_todo.push_back(n);
visited = false;
}
}
bool visit_children(expr * n) {
bool visited = true;
unsigned j;
expr * def;
switch (n->get_kind()) {
case AST_VAR:
break;
case AST_APP:
j = to_app(n)->get_num_args();
if (j == 0) {
def = get_candidate_def(n);
if (def)
visit(def, visited);
}
else {
while (j > 0) {
--j;
visit(to_app(n)->get_arg(j), visited);
}
}
break;
case AST_QUANTIFIER:
visit(to_quantifier(n)->get_expr(), visited);
break;
default:
UNREACHABLE();
}
return visited;
}
bool is_black(expr * n) const {
return get_color(n) == Black;
}
bool all_black_children(expr * n) const {
expr * def;
unsigned j;
switch (n->get_kind()) {
case AST_VAR:
return true;
case AST_APP:
j = to_app(n)->get_num_args();
if (j == 0) {
def = get_candidate_def(n);
if (def)
return is_black(def);
return true;
}
else {
while (j > 0) {
--j;
if (!is_black(to_app(n)->get_arg(j))) {
return false;
}
}
}
return true;
case AST_QUANTIFIER:
return is_black(to_quantifier(n)->get_expr());
default:
UNREACHABLE();
return true;
}
}
public:
top_sort(ast_manager & m):m_manager(m), m_bfid(m.get_basic_family_id()) {}
void operator()(ptr_vector<app> const & vars,
expr_map & candidates,
ptr_vector<app> & ordered_vars,
unsigned_vector & failed_idxs) {
m_var2idx.reset();
ptr_vector<app>::const_iterator it = vars.begin();
ptr_vector<app>::const_iterator end = vars.end();
for (unsigned idx = 0; it != end; ++it, ++idx)
m_var2idx.insert(*it, idx);
m_candidate_map = &candidates;
m_ordered_vars = &ordered_vars;
m_failed_idxs = &failed_idxs;
m_colors.reset();
it = vars.begin();
end = vars.end();
for (; it != end; ++it) {
TRACE("top_sort", tout << "processing: " << (*it)->get_decl()->get_name() << "\n";);
main_loop(*it);
}
}
};
void asserted_formulas::get_ordered_subst_vars(ptr_vector<app> & ordered_vars) {
top_sort sort(m_manager);
unsigned_vector failed_idxs;
sort(m_vars, m_subst, ordered_vars, failed_idxs);
SASSERT(failed_idxs.empty());
}
bool asserted_formulas::solve_core() {
flush_cache();
expr_map tmp_subst(m_manager);
ptr_vector<app> tmp_vars; // domain of m_tmp_subst
expr_ref_vector candidates(m_manager);
proof_ref_vector candidate_prs(m_manager);
IF_IVERBOSE(10, verbose_stream() << "solving...\n";);
bool has_subst = false;
app_ref var(m_manager);
expr_ref subst(m_manager);
proof_ref pr1(m_manager);
unsigned i = m_asserted_qhead;
unsigned j = i;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
TRACE("solve", tout << "processing... #" << n->get_id() << "\n";);
TRACE("solve", tout << mk_bounded_pp(n, m_manager, 3) << "\n";
if (pr) tout << mk_bounded_pp(pr, m_manager, 3) << "\n";);
if (solve_core(n, var, subst, pr1) && !m_forbidden.is_marked(var)) {
if (m_manager.proofs_enabled()) {
// TODO: refine potentially useless rewrite step
if (m_manager.is_eq(n) && to_app(n)->get_arg(0) == var &&
to_app(n)->get_arg(1) == subst) {
// skip useless rewrite step.
}
else {
TRACE("solve", tout << mk_bounded_pp(n, m_manager, 3) << "\n";
tout << mk_bounded_pp(pr1.get(), m_manager, 5) << "\n";);
pr = m_manager.mk_modus_ponens(pr, pr1.get());
}
candidate_prs.push_back(pr);
}
tmp_subst.insert(var, subst, pr);
SASSERT(!m_forbidden.is_marked(var));
TRACE("solve_subst", tout << mk_pp(var, m_manager) << "\n" << mk_pp(subst, m_manager) << "\n";);
TRACE("solver_bug", tout << mk_pp(var, m_manager) << "\n" << mk_pp(subst, m_manager) << "\n";);
tmp_vars.push_back(var);
m_forbidden.mark(var, true);
candidates.push_back(n);
has_subst = true;
continue;
}
if (j < i) {
m_asserted_formulas.set(j, n);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.set(j, pr);
}
j++;
}
m_asserted_formulas.shrink(j);
if (m_manager.proofs_enabled())
m_asserted_formula_prs.shrink(j);
if (!has_subst)
return false;
ptr_vector<app> ordered_vars;
unsigned_vector failed_idxs;
top_sort sort(m_manager);
sort(tmp_vars, tmp_subst, ordered_vars, failed_idxs);
// restore substitutions that cannot be applied due to loops.
unsigned_vector::iterator it = failed_idxs.begin();
unsigned_vector::iterator end = failed_idxs.end();
for (; it != end; ++it) {
unsigned idx = *it;
m_asserted_formulas.push_back(candidates.get(idx));
if (m_manager.proofs_enabled())
m_asserted_formula_prs.push_back(candidate_prs.get(idx));
app * var = tmp_vars[idx];
m_forbidden.mark(var, false);
}
IF_IVERBOSE(10, verbose_stream() << "num. eliminated vars: " << ordered_vars.size() << "\n";);
ptr_vector<app>::iterator it2 = ordered_vars.begin();
ptr_vector<app>::iterator end2 = ordered_vars.end();
for (; it2 != end2; ++it2) {
app * var = *it2;
TRACE("solve_res", tout << "var: " << mk_pp(var, m_manager) << "\n";);
expr * def = 0;
proof * pr = 0;
tmp_subst.get(var, def, pr);
SASSERT(def != 0);
SASSERT(m_forbidden.is_marked(var));
m_forbidden.mark(var, false);
expr_ref new_def(m_manager);
proof_ref def_eq_new_def_pr(m_manager);
proof_ref new_pr(m_manager);
TRACE("solve_res", tout << "reducing:\n" << mk_ll_pp(def, m_manager););
m_simplifier(def, new_def, def_eq_new_def_pr);
TRACE("solve_res", tout << "reducing:\n" << mk_ll_pp(new_def, m_manager););
new_pr = m_manager.mk_transitivity(pr, def_eq_new_def_pr);
m_subst.insert(var, new_def, new_pr);
m_vars.push_back(var);
TRACE("solve_res", tout << "new substitution:\n" << mk_ll_pp(var, m_manager) << "======>\n" << mk_ll_pp(new_def, m_manager););
}
return !ordered_vars.empty();
}
void asserted_formulas::solve() {
while (solve_core()) {
IF_IVERBOSE(10, verbose_stream() << "reducing...\n";);
flush_cache(); // collect garbage
reduce_asserted_formulas();
}
}
void asserted_formulas::reduce_asserted_formulas() {
if (inconsistent()) {
return;
}
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz && !inconsistent(); i++) {
expr * n = m_asserted_formulas.get(i);
SASSERT(n != 0);
proof * pr = m_asserted_formula_prs.get(i, 0);
expr_ref new_n(m_manager);
proof_ref new_pr(m_manager);
m_simplifier(n, new_n, new_pr);
TRACE("reduce_asserted_formulas", tout << mk_pp(n, m_manager) << " -> " << mk_pp(new_n, m_manager) << "\n";);
if (n == new_n.get()) {
push_assertion(n, pr, new_exprs, new_prs);
}
else {
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
push_assertion(new_n, new_pr, new_exprs, new_prs);
}
if (canceled()) {
return;
}
}
swap_asserted_formulas(new_exprs, new_prs);
}
void asserted_formulas::swap_asserted_formulas(expr_ref_vector & new_exprs, proof_ref_vector & new_prs) {
SASSERT(!inconsistent() || !new_exprs.empty());
m_asserted_formulas.shrink(m_asserted_qhead);
m_asserted_formulas.append(new_exprs);
if (m_manager.proofs_enabled()) {
m_asserted_formula_prs.shrink(m_asserted_qhead);
m_asserted_formula_prs.append(new_prs);
}
}
void asserted_formulas::find_macros_core() {
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned sz = m_asserted_formulas.size();
m_macro_finder->operator()(sz - m_asserted_qhead, m_asserted_formulas.c_ptr() + m_asserted_qhead,
m_asserted_formula_prs.c_ptr() + m_asserted_qhead, new_exprs, new_prs);
swap_asserted_formulas(new_exprs, new_prs);
reduce_and_solve();
}
void asserted_formulas::find_macros() {
IF_IVERBOSE(10, verbose_stream() << "trying to find macros...\n";);
TRACE("before_find_macros", display(tout););
find_macros_core();
TRACE("after_find_macros", display(tout););
}
void asserted_formulas::expand_macros() {
IF_IVERBOSE(10, verbose_stream() << "expanding macros...\n";);
find_macros_core();
}
void asserted_formulas::apply_demodulators() {
IF_IVERBOSE(10, verbose_stream() << "applying demodulators...\n";);
TRACE("before_apply_demodulators", display(tout););
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned sz = m_asserted_formulas.size();
demodulator proc(m_manager, *m_bsimp);
proc(sz - m_asserted_qhead,
m_asserted_formulas.c_ptr() + m_asserted_qhead,
m_asserted_formula_prs.c_ptr() + m_asserted_qhead,
new_exprs, new_prs);
swap_asserted_formulas(new_exprs, new_prs);
TRACE("after_apply_demodulators", display(tout););
reduce_and_solve();
}
void asserted_formulas::apply_quasi_macros() {
IF_IVERBOSE(10, verbose_stream() << "finding quasi macros...\n";);
TRACE("before_quasi_macros", display(tout););
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
quasi_macros proc(m_manager, m_macro_manager, *m_bsimp, m_simplifier);
while (proc(m_asserted_formulas.size() - m_asserted_qhead,
m_asserted_formulas.c_ptr() + m_asserted_qhead,
m_asserted_formula_prs.c_ptr() + m_asserted_qhead,
new_exprs, new_prs)) {
swap_asserted_formulas(new_exprs, new_prs);
new_exprs.reset();
new_prs.reset();
}
TRACE("after_quasi_macros", display(tout););
reduce_and_solve();
}
void asserted_formulas::nnf_cnf() {
IF_IVERBOSE(10, verbose_stream() << "applying nnf&cnf...\n";);
nnf apply_nnf(m_manager, m_defined_names, m_params);
cnf apply_cnf(m_manager, m_defined_names, m_params);
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
expr_ref_vector cnf_todo(m_manager);
proof_ref_vector cnf_todo_prs(m_manager);
expr_ref_vector push_todo(m_manager);
proof_ref_vector push_todo_prs(m_manager);
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
TRACE("nnf_bug", tout << "i: " << i << " sz: " << sz << "\n";);
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
TRACE("nnf_bug", tout << "processing:\n" << mk_pp(n, m_manager) << "\n";);
proof * pr = m_asserted_formula_prs.get(i, 0);
cnf_todo.reset();
cnf_todo_prs.reset();
expr_ref r1(m_manager);
proof_ref pr1(m_manager);
CASSERT("well_sorted",is_well_sorted(m_manager, n));
apply_nnf(n, cnf_todo, cnf_todo_prs, r1, pr1);
CASSERT("well_sorted",is_well_sorted(m_manager, r1));
pr = m_manager.mk_modus_ponens(pr, pr1);
cnf_todo.push_back(r1);
cnf_todo_prs.push_back(pr);
if (canceled()) {
return;
}
unsigned sz1 = cnf_todo.size();
for (unsigned j = 0; j < sz1; j++) {
push_todo.reset();
push_todo_prs.reset();
if (canceled()) {
return;
}
expr * n = cnf_todo.get(j);
proof * pr = m_manager.proofs_enabled() ? cnf_todo_prs.get(j) : 0;
CASSERT("well_sorted",is_well_sorted(m_manager, n));
apply_cnf(n, push_todo, push_todo_prs, r1, pr1);
CASSERT("well_sorted",is_well_sorted(m_manager, r1));
push_todo.push_back(r1);
if (m_manager.proofs_enabled()) {
pr = m_manager.mk_modus_ponens(pr, pr1);
push_todo_prs.push_back(pr);
}
unsigned sz2 = push_todo.size();
for (unsigned k = 0; k < sz2; k++) {
expr * n = push_todo.get(k);
proof * pr = 0;
m_simplifier(n, r1, pr1);
CASSERT("well_sorted",is_well_sorted(m_manager, r1));
if (canceled()) {
return;
}
if (m_manager.proofs_enabled())
pr = m_manager.mk_modus_ponens(push_todo_prs.get(k), pr1);
else
pr = 0;
push_assertion(r1, pr, new_exprs, new_prs);
}
}
}
swap_asserted_formulas(new_exprs, new_prs);
}
#define MK_SIMPLE_SIMPLIFIER(NAME, FUNCTOR_DEF, LABEL, MSG) \
void asserted_formulas::NAME() { \
IF_IVERBOSE(10, verbose_stream() << MSG << "...\n";); \
TRACE(LABEL, tout << "before:\n"; display(tout);); \
FUNCTOR_DEF; \
expr_ref_vector new_exprs(m_manager); \
proof_ref_vector new_prs(m_manager); \
unsigned i = m_asserted_qhead; \
unsigned sz = m_asserted_formulas.size(); \
for (; i < sz; i++) { \
expr * n = m_asserted_formulas.get(i); \
proof * pr = m_asserted_formula_prs.get(i, 0); \
expr_ref new_n(m_manager); \
functor(n, new_n); \
TRACE("simplifier_simple_step", tout << mk_pp(n, m_manager) << "\n" << mk_pp(new_n, m_manager) << "\n";); \
if (n == new_n.get()) { \
push_assertion(n, pr, new_exprs, new_prs); \
} \
else if (m_manager.proofs_enabled()) { \
proof_ref new_pr(m_manager); \
new_pr = m_manager.mk_rewrite_star(n, new_n, 0, 0); \
new_pr = m_manager.mk_modus_ponens(pr, new_pr); \
push_assertion(new_n, new_pr, new_exprs, new_prs); \
} \
else { \
push_assertion(new_n, 0, new_exprs, new_prs); \
} \
} \
swap_asserted_formulas(new_exprs, new_prs); \
TRACE(LABEL, display(tout);); \
reduce_and_solve(); \
TRACE(LABEL, display(tout);); \
}
MK_SIMPLE_SIMPLIFIER(apply_distribute_forall, distribute_forall functor(m_manager, *m_bsimp), "distribute_forall", "distribute forall");
void asserted_formulas::reduce_and_solve() {
IF_IVERBOSE(10, verbose_stream() << "reducing...\n";);
flush_cache(); // collect garbage
reduce_asserted_formulas();
if (m_params.m_solver)
solve();
}
void asserted_formulas::infer_patterns() {
IF_IVERBOSE(10, verbose_stream() << "pattern inference...\n";);
TRACE("before_pattern_inference", display(tout););
pattern_inference infer(m_manager, m_params);
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
expr_ref new_n(m_manager);
proof_ref new_pr(m_manager);
infer(n, new_n, new_pr);
if (n == new_n.get()) {
push_assertion(n, pr, new_exprs, new_prs);
}
else if (m_manager.proofs_enabled()) {
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
push_assertion(new_n, new_pr, new_exprs, new_prs);
}
else {
push_assertion(new_n, 0, new_exprs, new_prs);
}
}
swap_asserted_formulas(new_exprs, new_prs);
TRACE("after_pattern_inference", display(tout););
}
struct mark_forbidden_proc {
expr_mark & m_forbidden;
ptr_vector<app> & m_forbidden_vars;
mark_forbidden_proc(expr_mark & f, ptr_vector<app> & v):m_forbidden(f), m_forbidden_vars(v) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app * n) {
if (is_uninterp(n) && !m_forbidden.is_marked(n)) {
TRACE("solver_bug", tout << "marking: " << n->get_decl()->get_name() << "\n";);
m_forbidden.mark(n, true);
m_forbidden_vars.push_back(n);
SASSERT(m_forbidden.is_marked(n));
}
}
};
void asserted_formulas::commit() {
expr_fast_mark1 uf_visited; // marks used for update_forbidden
mark_forbidden_proc p(m_forbidden, m_forbidden_vars);
unsigned sz = m_asserted_formulas.size();
for (unsigned i = m_asserted_qhead; i < sz; i++)
quick_for_each_expr(p, uf_visited, m_asserted_formulas.get(i));
m_macro_manager.mark_forbidden(sz - m_asserted_qhead, m_asserted_formulas.c_ptr() + m_asserted_qhead);
ptr_vector<app>::const_iterator it2 = m_vars.begin() + m_vars_qhead;
ptr_vector<app>::const_iterator end2 = m_vars.end();
for (; it2 != end2; ++it2) {
app * var = *it2;
expr * def = get_subst(var);
m_forbidden.mark(var, true);
m_forbidden_vars.push_back(var);
quick_for_each_expr(p, uf_visited, def);
}
m_vars_qhead = m_vars.size();
m_asserted_qhead = m_asserted_formulas.size();
}
void asserted_formulas::eliminate_term_ite() {
IF_IVERBOSE(10, verbose_stream() << "eliminating ite term...\n";);
TRACE("before_elim_term_ite", display(tout););
elim_term_ite elim(m_manager, m_defined_names);
expr_ref_vector new_exprs(m_manager);
proof_ref_vector new_prs(m_manager);
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
expr_ref new_n(m_manager);
proof_ref new_pr(m_manager);
elim(n, new_exprs, new_prs, new_n, new_pr);
SASSERT(new_n.get() != 0);
DEBUG_CODE({
for (unsigned i = 0; i < new_exprs.size(); i++) {
SASSERT(new_exprs.get(i) != 0);
}
});
if (n == new_n.get()) {
push_assertion(n, pr, new_exprs, new_prs);
}
else if (m_manager.proofs_enabled()) {
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
push_assertion(new_n, new_pr, new_exprs, new_prs);
}
else {
push_assertion(new_n, 0, new_exprs, new_prs);
}
}
swap_asserted_formulas(new_exprs, new_prs);
TRACE("after_elim_term_ite", display(tout););
reduce_and_solve();
TRACE("after_elim_term_ite", display(tout););
}
void asserted_formulas::propagate_values() {
IF_IVERBOSE(10, verbose_stream() << "constant propagation...\n";);
TRACE("propagate_values", tout << "before:\n"; display(tout););
flush_cache();
bool found = false;
// Separate the formulas in two sets: C and R
// C is a set which contains formulas of the form
// { x = n }, where x is a variable and n a numberal.
// R contains the rest.
//
// - new_exprs1 is the set C
// - new_exprs2 is the set R
//
// The loop also updates the m_cache. It adds the entries x -> n to it.
expr_ref_vector new_exprs1(m_manager);
proof_ref_vector new_prs1(m_manager);
expr_ref_vector new_exprs2(m_manager);
proof_ref_vector new_prs2(m_manager);
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
if (m_manager.is_eq(n)) {
expr * lhs = to_app(n)->get_arg(0);
expr * rhs = to_app(n)->get_arg(1);
if (m_manager.is_value(lhs) || m_manager.is_value(rhs)) {
if (m_manager.is_value(lhs))
std::swap(lhs, rhs);
if (!m_manager.is_value(lhs) && !m_simplifier.is_cached(lhs)) {
new_exprs1.push_back(n);
if (m_manager.proofs_enabled())
new_prs1.push_back(pr);
TRACE("propagate_values", tout << "found:\n" << mk_pp(lhs, m_manager) << "\n->\n" << mk_pp(rhs, m_manager) << "\n";);
m_simplifier.cache_result(lhs, rhs, pr);
found = true;
continue;
}
}
}
new_exprs2.push_back(n);
if (m_manager.proofs_enabled())
new_prs2.push_back(pr);
}
TRACE("propagate_values", tout << "found: " << found << "\n";);
// If C is not empty, then reduce R using the updated simplifier cache with entries
// x -> n for each constraint 'x = n' in C.
if (found) {
unsigned sz = new_exprs2.size();
for (unsigned i = 0; i < sz; i++) {
expr * n = new_exprs2.get(i);
proof * pr = new_prs2.get(i, 0);
expr_ref new_n(m_manager);
proof_ref new_pr(m_manager);
m_simplifier(n, new_n, new_pr);
if (n == new_n.get()) {
push_assertion(n, pr, new_exprs1, new_prs1);
}
else {
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
push_assertion(new_n, new_pr, new_exprs1, new_prs1);
}
}
swap_asserted_formulas(new_exprs1, new_prs1);
// IMPORTANT: the cache MUST be flushed. This guarantees that all entries
// x->n will be removed from m_cache. If we don't do that, the next transformation
// may simplify constraints in C using these entries, and the variables x in C
// will be (silently) eliminated, and models produced by Z3 will not contain them.
flush_cache();
}
TRACE("propagate_values", tout << "afer:\n"; display(tout););
}
void asserted_formulas::propagate_booleans() {
bool cont = true;
bool modified = false;
flush_cache();
while (cont) {
TRACE("propagate_booleans", tout << "before:\n"; display(tout););
IF_IVERBOSE(10, verbose_stream() << "boolean propagation...\n";);
cont = false;
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
#define PROCESS() { \
expr * n = m_asserted_formulas.get(i); \
proof * pr = m_asserted_formula_prs.get(i, 0); \
expr_ref new_n(m_manager); \
proof_ref new_pr(m_manager); \
m_simplifier(n, new_n, new_pr); \
m_asserted_formulas.set(i, new_n); \
if (m_manager.proofs_enabled()) { \
new_pr = m_manager.mk_modus_ponens(pr, new_pr); \
m_asserted_formula_prs.set(i, new_pr); \
} \
if (n != new_n) { \
cont = true; \
modified = true; \
} \
if (m_manager.is_not(new_n)) \
m_simplifier.cache_result(to_app(new_n)->get_arg(0), m_manager.mk_false(), m_manager.mk_iff_false(new_pr)); \
else \
m_simplifier.cache_result(new_n, m_manager.mk_true(), m_manager.mk_iff_true(new_pr)); \
}
for (; i < sz; i++) {
PROCESS();
}
flush_cache();
TRACE("propagate_booleans", tout << "middle:\n"; display(tout););
i = sz;
while (i > m_asserted_qhead) {
--i;
PROCESS();
}
flush_cache();
TRACE("propagate_booleans", tout << "after:\n"; display(tout););
}
if (modified)
reduce_asserted_formulas();
}
#define MK_SIMPLIFIER(NAME, FUNCTOR, TAG, MSG, REDUCE) \
bool asserted_formulas::NAME() { \
IF_IVERBOSE(10, verbose_stream() << MSG << "...\n";); \
TRACE(TAG, ast_mark visited; display_ll(tout, visited);); \
FUNCTOR; \
bool changed = false; \
expr_ref_vector new_exprs(m_manager); \
proof_ref_vector new_prs(m_manager); \
unsigned i = m_asserted_qhead; \
unsigned sz = m_asserted_formulas.size(); \
for (; i < sz; i++) { \
expr * n = m_asserted_formulas.get(i); \
proof * pr = m_asserted_formula_prs.get(i, 0); \
expr_ref new_n(m_manager); \
proof_ref new_pr(m_manager); \
functor(n, new_n, new_pr); \
if (n == new_n.get()) { \
push_assertion(n, pr, new_exprs, new_prs); \
} \
else if (m_manager.proofs_enabled()) { \
changed = true; \
if (!new_pr) new_pr = m_manager.mk_rewrite(n, new_n); \
new_pr = m_manager.mk_modus_ponens(pr, new_pr); \
push_assertion(new_n, new_pr, new_exprs, new_prs); \
} \
else { \
changed = true; \
push_assertion(new_n, 0, new_exprs, new_prs); \
} \
} \
swap_asserted_formulas(new_exprs, new_prs); \
TRACE(TAG, ast_mark visited; display_ll(tout, visited);); \
if (changed && REDUCE) { \
reduce_and_solve(); \
TRACE(TAG, ast_mark visited; display_ll(tout, visited);); \
} \
return changed; \
}
MK_SIMPLIFIER(pull_cheap_ite_trees, pull_cheap_ite_tree_star functor(m_manager, m_simplifier), "pull_cheap_ite_trees", "pull cheap ite trees", false);
MK_SIMPLIFIER(pull_nested_quantifiers, pull_nested_quant functor(m_manager), "pull_nested_quantifiers", "pull nested quantifiers", false);
proof * asserted_formulas::get_inconsistency_proof() const {
if (!inconsistent())
return 0;
if (!m_manager.proofs_enabled())
return 0;
unsigned sz = m_asserted_formulas.size();
for (unsigned i = 0; i < sz; i++) {
expr * f = m_asserted_formulas.get(i);
if (m_manager.is_false(f))
return m_asserted_formula_prs.get(i);
}
UNREACHABLE();
return 0;
}
MK_SIMPLE_SIMPLIFIER(context_simplifier, expr_context_simplifier functor(m_manager), "context_simplifier", "context simplifier");
MK_SIMPLE_SIMPLIFIER(strong_context_simplifier, expr_strong_context_simplifier functor(m_params, m_manager), "strong_context_simplifier", "strong context simplifier");
void asserted_formulas::refine_inj_axiom() {
IF_IVERBOSE(10, verbose_stream() << "refining injectivity...\n";);
TRACE("inj_axiom", display(tout););
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
expr_ref new_n(m_manager);
if (is_quantifier(n) && simplify_inj_axiom(m_manager, to_quantifier(n), new_n)) {
TRACE("inj_axiom", tout << "simplifying...\n" << mk_pp(n, m_manager) << "\n" << mk_pp(new_n, m_manager) << "\n";);
m_asserted_formulas.set(i, new_n);
if (m_manager.proofs_enabled()) {
proof_ref new_pr(m_manager);
new_pr = m_manager.mk_rewrite(n, new_n);
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
m_asserted_formula_prs.set(i, new_pr);
}
}
}
TRACE("inj_axiom", display(tout););
}
MK_SIMPLIFIER(apply_bit2int, bit2int& functor = m_bit2int, "bit2int", "propagate bit-vector over integers", true);
MK_SIMPLIFIER(apply_user_rewriter, user_rewriter& functor = m_user_rewriter, "user_rewriter", "apply user supplied rewriting", true);
MK_SIMPLIFIER(apply_der_core, der_star functor(m_manager), "der", "destructive equality resolution", true);
void asserted_formulas::apply_der() {
// Keep applying DER until it cannot be applied anymore.
// The simplifications applied by REDUCE may create new opportunities for applying DER.
while(!inconsistent() && apply_der_core()) {
}
TRACE("a_der", for (unsigned i = 0; i<m_asserted_formulas.size(); i++)
tout << mk_pp(m_asserted_formulas.get(i), m_manager) << std::endl; );
}
MK_SIMPLIFIER(cheap_quant_fourier_motzkin, elim_bounds_star functor(m_manager), "elim_bounds", "cheap fourier-motzkin", true);
MK_SIMPLIFIER(quant_elim, qe::expr_quant_elim_star1 &functor = m_quant_elim,
"quantifiers", "quantifier elimination procedures", true);
MK_SIMPLIFIER(apply_eager_bit_blaster, eager_bit_blaster functor(m_manager, m_params), "eager_bb", "eager bit blasting", false);
MK_SIMPLIFIER(elim_bvs_from_quantifiers, bv_elim_star functor(m_manager), "bv_elim", "eliminate bit-vectors from quantifiers", true);
#define LIFT_ITE(NAME, FUNCTOR, MSG) \
void asserted_formulas::NAME() { \
IF_IVERBOSE(10, verbose_stream() << MSG;); \
TRACE("lift_ite", display(tout);); \
FUNCTOR; \
unsigned i = m_asserted_qhead; \
unsigned sz = m_asserted_formulas.size(); \
for (; i < sz; i++) { \
expr * n = m_asserted_formulas.get(i); \
proof * pr = m_asserted_formula_prs.get(i, 0); \
expr_ref new_n(m_manager); \
proof_ref new_pr(m_manager); \
functor(n, new_n, new_pr); \
TRACE("lift_ite_step", tout << mk_pp(n, m_manager) << "\n";); \
IF_IVERBOSE(10000, verbose_stream() << "lift before: " << get_num_exprs(n) << ", after: " << get_num_exprs(new_n) << "\n";); \
m_asserted_formulas.set(i, new_n); \
if (m_manager.proofs_enabled()) { \
new_pr = m_manager.mk_modus_ponens(pr, new_pr); \
m_asserted_formula_prs.set(i, new_pr); \
} \
} \
TRACE("lift_ite", display(tout);); \
reduce_and_solve(); \
}
LIFT_ITE(lift_ite, push_app_ite functor(m_simplifier, m_params.m_lift_ite == LI_CONSERVATIVE), "lifting ite...\n");
LIFT_ITE(ng_lift_ite, ng_push_app_ite functor(m_simplifier, m_params.m_ng_lift_ite == LI_CONSERVATIVE), "lifting ng ite...\n");
unsigned asserted_formulas::get_total_size() const {
expr_mark visited;
unsigned r = 0;
unsigned sz = m_asserted_formulas.size();
for (unsigned i = 0; i < sz; i++)
r += get_num_exprs(m_asserted_formulas.get(i), visited);
return r;
}
void asserted_formulas::max_bv_sharing() {
IF_IVERBOSE(10, verbose_stream() << "maximizing bv sharing...\n";);
TRACE("bv_sharing", display(tout););
unsigned i = m_asserted_qhead;
unsigned sz = m_asserted_formulas.size();
for (; i < sz; i++) {
expr * n = m_asserted_formulas.get(i);
proof * pr = m_asserted_formula_prs.get(i, 0);
expr_ref new_n(m_manager);
proof_ref new_pr(m_manager);
m_bv_sharing(n, new_n, new_pr);
m_asserted_formulas.set(i, new_n);
if (m_manager.proofs_enabled()) {
new_pr = m_manager.mk_modus_ponens(pr, new_pr);
m_asserted_formula_prs.set(i, new_pr);
}
}
reduce_asserted_formulas();
TRACE("bv_sharing", display(tout););
}