3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-09 16:55:47 +00:00
z3/src/ackermannization/ackr_helper.h
Nikolaj Bjorner d0e20e44ff booyah
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2020-07-04 15:56:30 -07:00

152 lines
4.3 KiB
C++

/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
ackr_helper.h
Abstract:
Author:
Mikolas Janota
Revision History:
--*/
#pragma once
#include "ast/bv_decl_plugin.h"
#include "ast/array_decl_plugin.h"
class ackr_helper {
public:
struct app_occ {
obj_hashtable<app> const_args;
obj_hashtable<app> var_args;
};
typedef app_occ app_set;
typedef obj_map<func_decl, app_set*> fun2terms_map;
typedef obj_map<app, app_set*> sel2terms_map;
ackr_helper(ast_manager& m) : m_bvutil(m), m_autil(m) {}
/**
\brief Determines if a given function should be Ackermannized.
This includes all uninterpreted functions but also "special" functions, e.g. OP_BSMOD0,
which are not marked as uninterpreted but effectively are.
*/
inline bool is_uninterp_fn(app const * a) const {
if (is_uninterp(a))
return true;
else {
decl_plugin * p = m_bvutil.get_manager().get_plugin(a->get_family_id());
return p->is_considered_uninterpreted(a->get_decl());
}
}
/**
\brief determines if a term is a candidate select for Ackerman reduction
*/
inline bool is_select(app* a) {
return m_autil.is_select(a) && is_uninterp_const(a->get_arg(0));
}
void mark_non_select(app* a, expr_mark& non_select) {
if (m_autil.is_select(a)) {
bool first = true;
for (expr* arg : *a) {
if (first)
first = false;
else
non_select.mark(arg, true);
}
}
else {
for (expr* arg : *a) {
non_select.mark(arg, true);
}
}
}
void prune_non_select(obj_map<app, app_set*> & sels, expr_mark& non_select) {
ptr_vector<app> nons;
for (auto& kv : sels) {
if (non_select.is_marked(kv.m_key)) {
nons.push_back(kv.m_key);
dealloc(kv.m_value);
}
}
for (app* s : nons) {
sels.erase(s);
}
}
void prune_non_funs(fun2terms_map& f2t, ast_mark& non_funs) {
ptr_vector<func_decl> to_delete;
for (auto& kv : f2t) {
if (non_funs.is_marked(kv.m_key)) {
to_delete.push_back(kv.m_key);
dealloc(kv.m_value);
}
}
for (func_decl * f : to_delete)
f2t.erase(f);
}
inline bv_util& bvutil() { return m_bvutil; }
/**
\brief Calculates an upper bound for congruence lemmas given a map of function of occurrences.
*/
static double calculate_lemma_bound(fun2terms_map const& occs1, sel2terms_map const& occs2);
/** \brief Calculate n choose 2. **/
inline static unsigned n_choose_2(unsigned n) { return (n & 1) ? (n * (n >> 1)) : (n >> 1) * (n - 1); }
/** \brief Calculate n choose 2 guarded for overflow. Returns infinity if unsafe. **/
inline static double n_choose_2_chk(unsigned n) {
SASSERT(std::numeric_limits<unsigned>().max() & 32);
return n & (1 << 16) ? std::numeric_limits<double>().infinity() : n_choose_2(n);
}
void insert(fun2terms_map& f2t, sel2terms_map& s2t, app* a) {
if (a->get_num_args() == 0) return;
ast_manager& m = m_bvutil.get_manager();
app_set* ts = nullptr;
bool is_const_args = true;
if (is_select(a)) {
app* sel = to_app(a->get_arg(0));
if (!s2t.find(sel, ts)) {
ts = alloc(app_set);
s2t.insert(sel, ts);
}
}
else if (is_uninterp_fn(a)) {
func_decl* const fd = a->get_decl();
if (!f2t.find(fd, ts)) {
ts = alloc(app_set);
f2t.insert(fd, ts);
}
is_const_args = m.is_value(a->get_arg(0));
}
else {
return;
}
for (unsigned i = 1; is_const_args && i < a->get_num_args(); ++i) {
is_const_args &= m.is_value(a->get_arg(i));
}
if (is_const_args) {
ts->const_args.insert(a);
}
else {
ts->var_args.insert(a);
}
}
private:
bv_util m_bvutil;
array_util m_autil;
};