3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 21:38:44 +00:00
z3/src/math/grobner/pdd_grobner.h
Nikolaj Bjorner 77868f3d96 added notes
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2019-12-23 12:32:02 -08:00

171 lines
5.6 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/dependency.h"
#include "util/obj_hashtable.h"
#include "util/region.h"
#include "util/rlimit.h"
#include "util/statistics.h"
#include "math/dd/dd_pdd.h"
namespace dd {
class grobner {
public:
struct stats {
unsigned m_simplified;
double m_max_expr_size;
unsigned m_max_expr_degree;
unsigned m_superposed;
unsigned m_compute_steps;
void reset() { memset(this, 0, sizeof(*this)); }
stats() { reset(); }
};
struct config {
unsigned m_eqs_threshold;
unsigned m_expr_size_limit;
enum { basic, tuned } m_algorithm;
config() :
m_eqs_threshold(UINT_MAX),
m_expr_size_limit(UINT_MAX),
m_algorithm(basic)
{}
};
class equation {
bool m_processed; //!< state
unsigned m_idx; //!< unique index
pdd m_poly; //!< polynomial in pdd form
u_dependency * m_dep; //!< justification for the equality
public:
equation(pdd const& p, u_dependency* d, unsigned idx):
m_processed(false),
m_idx(idx),
m_poly(p),
m_dep(d)
{}
const pdd& poly() const { return m_poly; }
u_dependency * dep() const { return m_dep; }
unsigned idx() const { return m_idx; }
void operator=(pdd& p) { m_poly = p; }
void operator=(u_dependency* d) { m_dep = d; }
bool is_processed() const { return m_processed; }
void set_processed(bool p) { m_processed = p; }
void set_index(unsigned idx) { m_idx = idx; }
};
private:
typedef ptr_vector<equation> equation_vector;
typedef std::function<void (u_dependency* d, std::ostream& out)> print_dep_t;
pdd_manager& m;
reslimit& m_limit;
stats m_stats;
config m_config;
print_dep_t m_print_dep;
equation_vector m_processed;
equation_vector m_to_simplify;
mutable u_dependency_manager m_dep_manager;
equation_vector m_all_eqs;
equation const* m_conflict;
public:
grobner(reslimit& lim, pdd_manager& m);
~grobner();
void operator=(print_dep_t& pd) { m_print_dep = pd; }
void operator=(config const& c) { m_config = c; }
void reset();
void add(pdd const& p) { add(p, nullptr); }
void add(pdd const& p, u_dependency * dep);
void saturate();
equation_vector const& equations();
u_dependency_manager& dep() const { return m_dep_manager; }
void collect_statistics(statistics & st) const;
std::ostream& display(std::ostream& out, const equation& eq) const;
std::ostream& display(std::ostream& out) const;
private:
bool step();
bool basic_step();
equation* pick_next();
bool canceled();
bool done();
void superpose(equation const& eq1, equation const& eq2);
void superpose(equation const& eq);
bool simplify_source_target(equation const& source, equation& target, bool& changed_leading_term);
bool simplify_using(equation_vector& set, equation const& eq);
bool simplify_using(equation& eq, equation_vector const& eqs);
bool eliminate(equation& eq) { return is_trivial(eq) && (del_equation(eq), true); }
bool is_trivial(equation const& eq) const { return eq.poly().is_zero(); }
bool is_simpler(equation const& eq1, equation const& eq2) { return eq1.poly() < eq2.poly(); }
bool check_conflict(equation const& eq) { return eq.poly().is_val() && !is_trivial(eq) && (set_conflict(eq), true); }
void set_conflict(equation const& eq) { m_conflict = &eq; }
bool is_too_complex(const equation& eq) const { return is_too_complex(eq.poly()); }
bool is_too_complex(const pdd& p) const { return p.tree_size() > m_config.m_expr_size_limit; }
// tuned implementation
vector<equation_vector> m_watch; // watch list mapping variables to vector of equations where they occur (generally a subset)
unsigned m_levelp1; // index into level+1
unsigned_vector m_level2var; // level -> var
unsigned_vector m_var2level; // var -> level
bool tuned_step();
void tuned_init();
equation* tuned_pick_next();
bool simplify_to_simplify(equation const& eq);
void add_to_watch(equation& eq);
void del_equation(equation& eq);
void retire(equation* eq) {
dealloc(eq);
}
void pop_equation(unsigned idx, equation_vector& v);
void push_equation(equation& eq, equation_vector& v);
void invariant() const;
struct scoped_detach {
grobner& g;
equation* e;
scoped_detach(grobner& g, equation* e): g(g), e(e) {}
~scoped_detach() {
if (e) {
e->set_processed(true);
e->set_index(g.m_processed.size());
g.m_processed.push_back(e);
}
}
};
void update_stats_max_degree_and_size(const equation& e);
bool is_tuned() const { return m_config.m_algorithm == config::tuned; }
bool is_basic() const { return m_config.m_algorithm == config::basic; }
};
}