3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 20:38:43 +00:00
z3/src/sat/sat_local_search.cpp
Nikolaj Bjorner 76eed064eb bug fixes, prepare for retaining blocked clauses
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2017-10-19 22:19:05 -07:00

945 lines
33 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
sat_local_search.cpp
Abstract:
Local search module for cardinality clauses.
Author:
Sixue Liu 2017-2-21
Notes:
--*/
#include "sat/sat_local_search.h"
#include "sat/sat_solver.h"
#include "sat/ba_solver.h"
#include "sat/sat_params.hpp"
#include "util/timer.h"
namespace sat {
void local_search::init() {
for (unsigned i = 0; i < m_assumptions.size(); ++i) {
add_clause(1, m_assumptions.c_ptr() + i);
}
// add sentinel variable.
m_vars.push_back(var_info());
for (unsigned v = 0; v < num_vars(); ++v) {
m_vars[v].m_value = (0 == (m_rand() % 2));
}
m_best_solution.resize(num_vars() + 1, false);
m_index_in_unsat_stack.resize(num_constraints(), 0);
coefficient_in_ob_constraint.resize(num_vars() + 1, 0);
if (m_config.mode() == local_search_mode::gsat) {
uint_set is_neighbor;
for (bool_var v = 0; v < num_vars(); ++v) {
is_neighbor.reset();
bool pol = true;
var_info& vi = m_vars[v];
for (unsigned k = 0; k < 2; pol = !pol, k++) {
for (unsigned i = 0; i < m_vars[v].m_watch[pol].size(); ++i) {
constraint const& c = m_constraints[m_vars[v].m_watch[pol][i].m_constraint_id];
for (unsigned j = 0; j < c.size(); ++j) {
bool_var w = c[j].var();
if (w == v || is_neighbor.contains(w)) continue;
is_neighbor.insert(w);
vi.m_neighbors.push_back(w);
}
}
}
}
}
for (auto const& c : ob_constraint) {
coefficient_in_ob_constraint[c.var_id] = c.coefficient;
}
set_parameters();
}
void local_search::init_cur_solution() {
for (unsigned v = 0; v < num_vars(); ++v) {
// use bias with a small probability
if (m_rand() % 100 < 2) {
m_vars[v].m_value = ((unsigned)(m_rand() % 100) < m_vars[v].m_bias);
}
}
}
// figure out slack, and init unsat stack
void local_search::init_slack() {
for (unsigned v = 0; v < num_vars(); ++v) {
bool is_true = cur_solution(v);
coeff_vector& truep = m_vars[v].m_watch[is_true];
for (unsigned i = 0; i < truep.size(); ++i) {
unsigned c = truep[i].m_constraint_id;
constraint& cn = m_constraints[c];
cn.m_slack -= truep[i].m_coeff;
}
}
for (unsigned c = 0; c < num_constraints(); ++c) {
// violate the at-most-k constraint
if (m_constraints[c].m_slack < 0)
unsat(c);
}
}
// figure out variables scores and slack_scores
void local_search::init_scores() {
for (unsigned v = 0; v < num_vars(); ++v) {
bool is_true = cur_solution(v);
coeff_vector& truep = m_vars[v].m_watch[is_true];
coeff_vector& falsep = m_vars[v].m_watch[!is_true];
for (unsigned i = 0; i < falsep.size(); ++i) {
constraint& c = m_constraints[falsep[i].m_constraint_id];
SASSERT(falsep[i].m_coeff == 1);
// will --slack
if (c.m_slack <= 0) {
dec_slack_score(v);
if (c.m_slack == 0)
dec_score(v);
}
}
for (unsigned i = 0; i < truep.size(); ++i) {
SASSERT(truep[i].m_coeff == 1);
constraint& c = m_constraints[truep[i].m_constraint_id];
// will --true_terms_count[c]
// will ++slack
if (c.m_slack <= -1) {
inc_slack_score(v);
if (c.m_slack == -1)
inc_score(v);
}
}
}
}
// init goodvars
void local_search::init_goodvars() {
m_goodvar_stack.reset();
for (unsigned v = 0; v < num_vars(); ++v) {
if (score(v) > 0) { // && conf_change[v] == true
m_vars[v].m_in_goodvar_stack = true;
m_goodvar_stack.push_back(v);
}
}
}
void local_search::reinit() {
if (!m_is_pb) {
//
// the following methods does NOT converge for pseudo-boolean
// can try other way to define "worse" and "better"
// the current best noise is below 1000
//
if (m_best_unsat_rate > m_last_best_unsat_rate) {
// worse
m_noise -= m_noise * 2 * m_noise_delta;
m_best_unsat_rate *= 1000.0;
}
else {
// better
m_noise += (10000 - m_noise) * m_noise_delta;
}
}
for (unsigned i = 0; i < m_constraints.size(); ++i) {
constraint& c = m_constraints[i];
c.m_slack = c.m_k;
}
// init unsat stack
m_unsat_stack.reset();
// init solution using the bias
init_cur_solution();
// init varibale information
// the last variable is the virtual variable
m_vars.back().m_score = INT_MIN;
m_vars.back().m_conf_change = false;
m_vars.back().m_slack_score = INT_MIN;
m_vars.back().m_cscc = 0;
m_vars.back().m_time_stamp = m_max_steps + 1;
for (unsigned i = 0; i < num_vars(); ++i) {
m_vars[i].m_time_stamp = 0;
m_vars[i].m_cscc = 1;
m_vars[i].m_conf_change = true;
m_vars[i].m_in_goodvar_stack = false;
m_vars[i].m_score = 0;
m_vars[i].m_slack_score = 0;
}
init_slack();
init_scores();
init_goodvars();
m_best_unsat = m_unsat_stack.size();
}
void local_search::calculate_and_update_ob() {
unsigned i, v;
int objective_value = 0;
for (i = 0; i < ob_constraint.size(); ++i) {
v = ob_constraint[i].var_id;
if (cur_solution(v))
objective_value += ob_constraint[i].coefficient;
}
if (objective_value > m_best_objective_value) {
m_best_solution.reset();
for (unsigned v = 0; v < num_vars(); ++v) {
m_best_solution.push_back(cur_solution(v));
}
m_best_objective_value = objective_value;
}
}
bool local_search::all_objectives_are_met() const {
for (unsigned i = 0; i < ob_constraint.size(); ++i) {
bool_var v = ob_constraint[i].var_id;
if (!cur_solution(v)) return false;
}
return true;
}
void local_search::verify_solution() const {
for (unsigned i = 0; i < m_constraints.size(); ++i) {
verify_constraint(m_constraints[i]);
}
}
void local_search::verify_unsat_stack() const {
for (unsigned i = 0; i < m_unsat_stack.size(); ++i) {
constraint const& c = m_constraints[m_unsat_stack[i]];
SASSERT(c.m_k < constraint_value(c));
}
}
unsigned local_search::constraint_value(constraint const& c) const {
unsigned value = 0;
for (unsigned i = 0; i < c.size(); ++i) {
value += is_true(c[i]) ? 1 : 0;
}
return value;
}
void local_search::verify_constraint(constraint const& c) const {
unsigned value = constraint_value(c);
if (c.m_k < value) {
IF_VERBOSE(0, display(verbose_stream() << "violated constraint: ", c);
verbose_stream() << "value: " << value << "\n";);
UNREACHABLE();
}
}
void local_search::add_clause(unsigned sz, literal const* c) {
add_cardinality(sz, c, sz - 1);
}
// ~c <= k
void local_search::add_cardinality(unsigned sz, literal const* c, unsigned k) {
unsigned id = m_constraints.size();
m_constraints.push_back(constraint(k));
for (unsigned i = 0; i < sz; ++i) {
m_vars.reserve(c[i].var() + 1);
literal t(~c[i]);
m_vars[t.var()].m_watch[is_pos(t)].push_back(pbcoeff(id, 1));
m_constraints.back().push(t);
}
if (sz == 1 && k == 0) {
m_vars[c[0].var()].m_bias = c[0].sign() ? 0 : 100;
}
}
void local_search::add_pb(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k) {
unsigned id = m_constraints.size();
m_constraints.push_back(constraint(k));
for (unsigned i = 0; i < sz; ++i) {
m_vars.reserve(c[i].var() + 1);
literal t(~c[i]);
m_vars[t.var()].m_watch[is_pos(t)].push_back(pbcoeff(id, coeffs[i]));
m_constraints.back().push(t); // add coefficient to constraint?
}
if (sz == 1 && k == 0) {
m_vars[c[0].var()].m_bias = c[0].sign() ? 0 : 100;
}
}
local_search::local_search() :
m_par(0) {
}
void local_search::import(solver& s, bool _init) {
m_is_pb = false;
m_vars.reset();
m_constraints.reset();
m_vars.reserve(s.num_vars());
// copy units
unsigned trail_sz = s.init_trail_size();
for (unsigned i = 0; i < trail_sz; ++i) {
add_clause(1, s.m_trail.c_ptr() + i);
}
// copy binary clauses
{
unsigned sz = s.m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
literal l1 = ~to_literal(l_idx);
watch_list const & wlist = s.m_watches[l_idx];
watch_list::const_iterator it = wlist.begin();
watch_list::const_iterator end = wlist.end();
for (; it != end; ++it) {
if (!it->is_binary_unblocked_clause())
continue;
literal l2 = it->get_literal();
if (l1.index() > l2.index())
continue;
literal ls[2] = { l1, l2 };
add_clause(2, ls);
}
}
}
// copy clauses
clause_vector::const_iterator it = s.m_clauses.begin();
clause_vector::const_iterator end = s.m_clauses.end();
for (; it != end; ++it) {
clause& c = *(*it);
add_clause(c.size(), c.begin());
}
m_num_non_binary_clauses = s.m_clauses.size();
// copy cardinality clauses
ba_solver* ext = dynamic_cast<ba_solver*>(s.get_extension());
if (ext) {
unsigned_vector coeffs;
literal_vector lits;
for (ba_solver::constraint* cp : ext->m_constraints) {
switch (cp->tag()) {
case ba_solver::card_t: {
ba_solver::card const& c = cp->to_card();
unsigned n = c.size();
unsigned k = c.k();
if (c.lit() == null_literal) {
// c.lits() >= k
// <=>
// ~c.lits() <= n - k
lits.reset();
for (unsigned j = 0; j < n; ++j) lits.push_back(c[j]);
add_cardinality(lits.size(), lits.c_ptr(), n - k);
}
else {
//
// c.lit() <=> c.lits() >= k
//
// (c.lits() < k) or c.lit()
// = (c.lits() + (n - k + 1)*~c.lit()) <= n
//
// ~c.lit() or (c.lits() >= k)
// = ~c.lit() or (~c.lits() <= n - k)
// = k*c.lit() + ~c.lits() <= n
//
m_is_pb = true;
lits.reset();
coeffs.reset();
for (literal l : c) lits.push_back(l), coeffs.push_back(1);
lits.push_back(~c.lit()); coeffs.push_back(n - k + 1);
add_pb(lits.size(), lits.c_ptr(), coeffs.c_ptr(), n);
lits.reset();
coeffs.reset();
for (unsigned j = 0; j < n; ++j) lits.push_back(~c[j]), coeffs.push_back(1);
lits.push_back(c.lit()); coeffs.push_back(k);
add_pb(lits.size(), lits.c_ptr(), coeffs.c_ptr(), n);
}
break;
}
case ba_solver::pb_t: {
ba_solver::pb const& p = cp->to_pb();
lits.reset();
coeffs.reset();
m_is_pb = true;
unsigned sum = 0;
for (ba_solver::wliteral wl : p) sum += wl.first;
if (p.lit() == null_literal) {
// w1 + .. + w_n >= k
// <=>
// ~wl + ... + ~w_n <= sum_of_weights - k
for (ba_solver::wliteral wl : p) lits.push_back(~(wl.second)), coeffs.push_back(wl.first);
add_pb(lits.size(), lits.c_ptr(), coeffs.c_ptr(), sum - p.k());
}
else {
// lit <=> w1 + .. + w_n >= k
// <=>
// lit or w1 + .. + w_n <= k - 1
// ~lit or w1 + .. + w_n >= k
// <=>
// (sum - k + 1)*~lit + w1 + .. + w_n <= sum
// k*lit + ~wl + ... + ~w_n <= sum
lits.push_back(p.lit()), coeffs.push_back(p.k());
for (ba_solver::wliteral wl : p) lits.push_back(~(wl.second)), coeffs.push_back(wl.first);
add_pb(lits.size(), lits.c_ptr(), coeffs.c_ptr(), sum);
lits.reset();
coeffs.reset();
lits.push_back(~p.lit()), coeffs.push_back(sum + 1 - p.k());
for (ba_solver::wliteral wl : p) lits.push_back(wl.second), coeffs.push_back(wl.first);
add_pb(lits.size(), lits.c_ptr(), coeffs.c_ptr(), sum);
}
break;
}
case ba_solver::xor_t:
NOT_IMPLEMENTED_YET();
break;
}
}
}
if (_init) {
init();
}
}
local_search::~local_search() {
}
void local_search::add_soft(bool_var v, int weight) {
ob_constraint.push_back(ob_term(v, weight));
}
lbool local_search::check() {
return check(0, 0);
}
#define PROGRESS(tries, flips) \
if (tries % 10 == 0 || m_unsat_stack.empty()) { \
IF_VERBOSE(1, verbose_stream() << "(sat-local-search" \
<< " :flips " << flips \
<< " :noise " << m_noise \
<< " :unsat " << /*m_unsat_stack.size()*/ m_best_unsat \
<< " :constraints " << m_constraints.size() \
<< " :time " << (timer.get_seconds() < 0.001 ? 0.0 : timer.get_seconds()) << ")\n";); \
}
void local_search::walksat() {
m_best_unsat_rate = 1;
m_last_best_unsat_rate = 1;
reinit();
timer timer;
timer.start();
unsigned step = 0, total_flips = 0, tries = 0;
PROGRESS(tries, total_flips);
for (tries = 1; !m_unsat_stack.empty() && m_limit.inc(); ++tries) {
if (m_unsat_stack.size() < m_best_unsat) {
m_best_unsat = m_unsat_stack.size();
m_last_best_unsat_rate = m_best_unsat_rate;
m_best_unsat_rate = (double)m_unsat_stack.size() / num_constraints();
}
for (step = 0; step < m_max_steps && !m_unsat_stack.empty(); ++step) {
pick_flip_walksat();
}
total_flips += step;
PROGRESS(tries, total_flips);
if (m_par && tries % 1 == 0) {
m_par->get_phase(*this);
reinit();
}
}
}
void local_search::gsat() {
reinit();
bool reach_known_best_value = false;
bool_var flipvar;
timer timer;
timer.start();
unsigned tries, step = 0, total_flips = 0;
for (tries = 1; m_limit.inc() && !m_unsat_stack.empty(); ++tries) {
reinit();
for (step = 1; step <= m_max_steps; ) {
// feasible
if (m_unsat_stack.empty()) {
calculate_and_update_ob();
if (m_best_objective_value >= m_best_known_value) {
break;
}
}
flipvar = pick_var_gsat();
flip_gsat(flipvar);
m_vars[flipvar].m_time_stamp = step++;
}
total_flips += step;
PROGRESS(tries, total_flips);
// tell the SAT solvers about the phase of variables.
if (m_par && tries % 10 == 0) {
m_par->get_phase(*this);
}
}
}
lbool local_search::check(unsigned sz, literal const* assumptions, parallel* p) {
flet<parallel*> _p(m_par, p);
m_model.reset();
m_assumptions.reset();
m_assumptions.append(sz, assumptions);
init();
switch (m_config.mode()) {
case local_search_mode::gsat:
gsat();
break;
case local_search_mode::wsat:
walksat();
break;
}
// remove unit clauses from assumptions.
m_constraints.shrink(num_constraints() - sz);
TRACE("sat", display(tout););
lbool result;
if (m_unsat_stack.empty() && all_objectives_are_met()) {
verify_solution();
extract_model();
result = l_true;
}
else {
result = l_undef;
}
IF_VERBOSE(1, verbose_stream() << "(sat-local-search " << result << ")\n";);
IF_VERBOSE(20, display(verbose_stream()););
return result;
}
void local_search::sat(unsigned c) {
unsigned last_unsat_constraint = m_unsat_stack.back();
int index = m_index_in_unsat_stack[c];
m_unsat_stack[index] = last_unsat_constraint;
m_index_in_unsat_stack[last_unsat_constraint] = index;
m_unsat_stack.pop_back();
}
// swap the deleted one with the last one and pop
void local_search::unsat(unsigned c) {
m_index_in_unsat_stack[c] = m_unsat_stack.size();
m_unsat_stack.push_back(c);
}
void local_search::pick_flip_walksat() {
bool_var best_var = null_bool_var;
unsigned n = 1;
bool_var v = null_bool_var;
unsigned num_unsat = m_unsat_stack.size();
constraint const& c = m_constraints[m_unsat_stack[m_rand() % m_unsat_stack.size()]];
SASSERT(c.m_k < constraint_value(c));
// TBD: dynamic noise strategy
//if (m_rand() % 100 < 98) {
if (m_rand() % 10000 <= m_noise) {
// take this branch with 98% probability.
// find the first one, to fast break the rest
unsigned best_bsb = 0;
literal_vector::const_iterator cit = c.m_literals.begin(), cend = c.m_literals.end();
literal l;
for (; !is_true(*cit); ++cit) { SASSERT(cit != cend); }
l = *cit;
best_var = v = l.var();
bool tt = cur_solution(v);
coeff_vector const& falsep = m_vars[v].m_watch[!tt];
coeff_vector::const_iterator it = falsep.begin(), end = falsep.end();
for (; it != end; ++it) {
int slack = constraint_slack(it->m_constraint_id);
if (slack < 0)
++best_bsb;
else if (slack < static_cast<int>(it->m_coeff))
best_bsb += num_unsat;
}
++cit;
for (; cit != cend; ++cit) {
l = *cit;
if (is_true(l)) {
v = l.var();
unsigned bsb = 0;
coeff_vector const& falsep = m_vars[v].m_watch[!cur_solution(v)];
coeff_vector::const_iterator it = falsep.begin(), end = falsep.end();
for (; it != end; ++it) {
int slack = constraint_slack(it->m_constraint_id);
if (slack < 0) {
if (bsb == best_bsb) {
break;
}
else {
++bsb;
}
}
else if (slack < static_cast<int>(it->m_coeff)) {
bsb += num_unsat;
if (bsb > best_bsb) {
break;
}
}
}
if (it == end) {
if (bsb < best_bsb) {
best_bsb = bsb;
best_var = v;
n = 1;
}
else {// if (bsb == best_bb)
++n;
if (m_rand() % n == 0) {
best_var = v;
}
}
}
}
}
}
else {
for (literal l : c) {
if (is_true(l)) {
if (m_rand() % n == 0) {
best_var = l.var();
}
++n;
}
}
}
flip_walksat(best_var);
}
void local_search::flip_walksat(bool_var flipvar) {
m_vars[flipvar].m_value = !cur_solution(flipvar);
bool flip_is_true = cur_solution(flipvar);
coeff_vector const& truep = m_vars[flipvar].m_watch[flip_is_true];
coeff_vector const& falsep = m_vars[flipvar].m_watch[!flip_is_true];
coeff_vector::const_iterator it = truep.begin(), end = truep.end();
for (; it != end; ++it) {
unsigned ci = it->m_constraint_id;
constraint& c = m_constraints[ci];
int old_slack = c.m_slack;
c.m_slack -= it->m_coeff;
if (c.m_slack < 0 && old_slack >= 0) { // from non-negative to negative: sat -> unsat
unsat(ci);
}
}
it = falsep.begin(), end = falsep.end();
for (; it != end; ++it) {
unsigned ci = it->m_constraint_id;
constraint& c = m_constraints[ci];
int old_slack = c.m_slack;
c.m_slack += it->m_coeff;
if (c.m_slack >= 0 && old_slack < 0) { // from negative to non-negative: unsat -> sat
sat(ci);
}
}
// verify_unsat_stack();
}
void local_search::flip_gsat(bool_var flipvar) {
// already changed truth value!!!!
m_vars[flipvar].m_value = !cur_solution(flipvar);
unsigned v;
int org_flipvar_score = score(flipvar);
int org_flipvar_slack_score = slack_score(flipvar);
bool flip_is_true = cur_solution(flipvar);
coeff_vector& truep = m_vars[flipvar].m_watch[flip_is_true];
coeff_vector& falsep = m_vars[flipvar].m_watch[!flip_is_true];
// update related clauses and neighbor vars
for (unsigned i = 0; i < truep.size(); ++i) {
constraint & c = m_constraints[truep[i].m_constraint_id];
//++true_terms_count[c];
--c.m_slack;
switch (c.m_slack) {
case -2: // from -1 to -2
for (literal l : c) {
v = l.var();
// flipping the slack increasing var will no longer satisfy this constraint
if (is_true(l)) {
//score[v] -= constraint_weight[c];
dec_score(v);
}
}
break;
case -1: // from 0 to -1: sat -> unsat
for (literal l : c) {
v = l.var();
inc_cscc(v);
//score[v] += constraint_weight[c];
inc_score(v);
// slack increasing var
if (is_true(l))
inc_slack_score(v);
}
unsat(truep[i].m_constraint_id);
break;
case 0: // from 1 to 0
for (literal l : c) {
v = l.var();
// flip the slack decreasing var will falsify this constraint
if (is_false(l)) {
// score[v] -= constraint_weight[c];
dec_score(v);
dec_slack_score(v);
}
}
break;
default:
break;
}
}
for (pbcoeff const& f : falsep) {
constraint& c = m_constraints[f.m_constraint_id];
//--true_terms_count[c];
++c.m_slack;
switch (c.m_slack) {
case 1: // from 0 to 1
for (literal l : c) {
v = l.var();
// flip the slack decreasing var will no long falsify this constraint
if (is_false(l)) {
//score[v] += constraint_weight[c];
inc_score(v);
inc_slack_score(v);
}
}
break;
case 0: // from -1 to 0: unsat -> sat
for (literal l : c) {
v = l.var();
inc_cscc(v);
//score[v] -= constraint_weight[c];
dec_score(v);
// slack increasing var no longer sat this var
if (is_true(l))
dec_slack_score(v);
}
sat(f.m_constraint_id);
break;
case -1: // from -2 to -1
for (literal l : c) {
v = l.var();
// flip the slack increasing var will satisfy this constraint
if (is_true(l)) {
//score[v] += constraint_weight[c];
inc_score(v);
}
}
break;
default:
break;
}
}
m_vars[flipvar].m_score = -org_flipvar_score;
m_vars[flipvar].m_slack_score = -org_flipvar_slack_score;
m_vars[flipvar].m_conf_change = false;
m_vars[flipvar].m_cscc = 0;
/* update CCD */
// remove the vars no longer goodvar in goodvar stack
for (unsigned i = m_goodvar_stack.size(); i > 0;) {
--i;
v = m_goodvar_stack[i];
if (score(v) <= 0) {
m_goodvar_stack[i] = m_goodvar_stack.back();
m_goodvar_stack.pop_back();
m_vars[v].m_in_goodvar_stack = false;
}
}
// update all flipvar's neighbor's conf_change to true, add goodvar/okvar
var_info& vi = m_vars[flipvar];
unsigned sz = vi.m_neighbors.size();
for (auto v : vi.m_neighbors) {
m_vars[v].m_conf_change = true;
if (score(v) > 0 && !already_in_goodvar_stack(v)) {
m_goodvar_stack.push_back(v);
m_vars[v].m_in_goodvar_stack = true;
}
}
}
bool local_search::tie_breaker_sat(bool_var v, bool_var best_var) {
// most improvement on objective value
int v_imp = cur_solution(v) ? -coefficient_in_ob_constraint.get(v, 0) : coefficient_in_ob_constraint.get(v, 0);
int b_imp = cur_solution(best_var) ? -coefficient_in_ob_constraint.get(best_var, 0) : coefficient_in_ob_constraint.get(best_var, 0);
// std::cout << v_imp << "\n";
// break tie 1: max imp
// break tie 2: conf_change
// break tie 3: time_stamp
return
(v_imp > b_imp) ||
((v_imp == b_imp) &&
((conf_change(v) && !conf_change(best_var)) ||
((conf_change(v) == conf_change(best_var)) &&
(time_stamp(v) < time_stamp(best_var)))));
}
bool local_search::tie_breaker_ccd(bool_var v, bool_var best_var) {
// break tie 1: max score
// break tie 2: max slack_score
// break tie 3: cscc
// break tie 4: oldest one
return
((score(v) > score(best_var)) ||
((score(v) == score(best_var)) &&
((slack_score(v) > slack_score(best_var)) ||
((slack_score(v) == slack_score(best_var)) &&
((cscc(v) > cscc(best_var)) ||
((cscc(v) == cscc(best_var)) &&
(time_stamp(v) < time_stamp(best_var))))))));
}
bool_var local_search::pick_var_gsat() {
bool_var best_var = m_vars.size()-1; // sentinel variable
// SAT Mode
if (m_unsat_stack.empty()) {
//std::cout << "as\t";
for (auto const& c : ob_constraint) {
bool_var v = c.var_id;
if (tie_breaker_sat(v, best_var))
best_var = v;
}
return best_var;
}
// Unsat Mode: CCD > RD
// CCD mode
if (!m_goodvar_stack.empty()) {
//++ccd;
best_var = m_goodvar_stack[0];
for (bool_var v : m_goodvar_stack) {
if (tie_breaker_ccd(v, best_var))
best_var = v;
}
return best_var;
}
// Diversification Mode
constraint const& c = m_constraints[m_unsat_stack[m_rand() % m_unsat_stack.size()]]; // a random unsat constraint
// Within c, from all slack increasing var, choose the oldest one
for (literal l : c) {
bool_var v = l.var();
if (is_true(l) && time_stamp(v) < time_stamp(best_var))
best_var = v;
}
return best_var;
}
void local_search::set_parameters() {
SASSERT(s_id == 0);
m_rand.set_seed(m_config.seed());
//srand(m_config.seed());
s_id = m_config.strategy_id();
m_best_known_value = m_config.best_known_value();
switch (m_config.mode()) {
case local_search_mode::gsat:
m_max_steps = 2 * num_vars();
break;
case local_search_mode::wsat:
m_max_steps = std::min(static_cast<unsigned>(20 * num_vars()), static_cast<unsigned>(1 << 17)); // cut steps off at 100K
break;
}
TRACE("sat",
tout << "seed:\t" << m_config.seed() << '\n';
tout << "strategy id:\t" << m_config.strategy_id() << '\n';
tout << "best_known_value:\t" << m_config.best_known_value() << '\n';
tout << "max_steps:\t" << m_max_steps << '\n';
);
}
void local_search::print_info(std::ostream& out) {
for (unsigned v = 0; v < num_vars(); ++v) {
out << "v" << v << "\t"
<< m_vars[v].m_neighbors.size() << '\t'
<< cur_solution(v) << '\t'
<< conf_change(v) << '\t'
<< score(v) << '\t'
<< slack_score(v) << '\n';
}
}
void local_search::extract_model() {
m_model.reset();
for (unsigned v = 0; v < num_vars(); ++v) {
m_model.push_back(cur_solution(v) ? l_true : l_false);
}
}
void local_search::display(std::ostream& out) const {
for (constraint const& c : m_constraints) {
display(out, c);
}
for (bool_var v = 0; v < num_vars(); ++v) {
display(out, v, m_vars[v]);
}
}
void local_search::display(std::ostream& out, constraint const& c) const {
out << c.m_literals << " <= " << c.m_k << " lhs value: " << constraint_value(c) << "\n";
}
void local_search::display(std::ostream& out, unsigned v, var_info const& vi) const {
out << "v" << v << " := " << (vi.m_value?"true":"false") << " bias: " << vi.m_bias << "\n";
}
bool local_search::check_goodvar() {
unsigned g = 0;
for (unsigned v = 0; v < num_vars(); ++v) {
if (conf_change(v) && score(v) > 0) {
++g;
if (!already_in_goodvar_stack(v))
std::cout << "3\n";
}
}
if (g == m_goodvar_stack.size())
return true;
else {
if (g < m_goodvar_stack.size())
std::cout << "1\n";
else
std::cout << "2\n"; // delete too many
return false;
}
}
void local_search::set_phase(bool_var v, lbool f) {
unsigned& bias = m_vars[v].m_bias;
if (f == l_true && bias < 100) bias++;
if (f == l_false && bias > 0) bias--;
// f == l_undef ?
}
}