mirror of
https://github.com/Z3Prover/z3
synced 2025-08-23 03:27:52 +00:00
588 lines
20 KiB
C++
588 lines
20 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Conflict explanation using forbidden intervals as described in
|
|
"Solving bitvectors with MCSAT: explanations from bits and pieces"
|
|
by S. Graham-Lengrand, D. Jovanovic, B. Dutertre.
|
|
|
|
Author:
|
|
|
|
Jakob Rath 2021-04-06
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
|
|
--*/
|
|
#include "sat/smt/polysat/polysat_fi.h"
|
|
#include "sat/smt/polysat/polysat_interval.h"
|
|
#include "sat/smt/polysat/polysat_umul_ovfl.h"
|
|
#include "sat/smt/polysat/polysat_ule.h"
|
|
#include "sat/smt/polysat/polysat_core.h"
|
|
|
|
namespace polysat {
|
|
|
|
/**
|
|
*
|
|
* \param[in] c Original constraint
|
|
* \param[in] v Variable that is bounded by constraint
|
|
* \param[out] fi "forbidden interval" record that captures values not allowed for v
|
|
* \returns True iff a forbidden interval exists and the output parameters were set.
|
|
*/
|
|
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, fi_record& fi) {
|
|
// verbose_stream() << "get_interval for v" << v << " " << c << "\n";
|
|
SASSERT(fi.side_cond.empty());
|
|
SASSERT(fi.src.empty());
|
|
fi.bit_width = s.size(v); // TODO: preliminary
|
|
if (c.is_ule())
|
|
return get_interval_ule(c, v, fi);
|
|
if (c.is_umul_ovfl())
|
|
return get_interval_umul_ovfl(c, v, fi);
|
|
return false;
|
|
}
|
|
|
|
bool forbidden_intervals::get_interval_umul_ovfl(signed_constraint const& c, pvar v, fi_record& fi) {
|
|
using std::swap;
|
|
|
|
backtrack _backtrack(fi.side_cond);
|
|
|
|
fi.coeff = 1;
|
|
fi.src.push_back(c);
|
|
|
|
// eval(lhs) = a1*v + eval(e1) = a1*v + b1
|
|
// eval(rhs) = a2*v + eval(e2) = a2*v + b2
|
|
// We keep the e1, e2 around in case we need side conditions such as e1=b1, e2=b2.
|
|
auto [ok1, a1, e1, b1] = linear_decompose(v, c.to_umul_ovfl().p(), fi.side_cond);
|
|
auto [ok2, a2, e2, b2] = linear_decompose(v, c.to_umul_ovfl().q(), fi.side_cond);
|
|
|
|
auto& m = e1.manager();
|
|
rational bound = m.max_value();
|
|
|
|
if (ok2 && !ok1) {
|
|
swap(a1, a2);
|
|
swap(e1, e2);
|
|
swap(b1, b2);
|
|
swap(ok1, ok2);
|
|
}
|
|
if (ok1 && !ok2 && a1.is_one() && b1.is_zero()) {
|
|
if (c.is_positive()) {
|
|
_backtrack.released = true;
|
|
rational lo_val(0);
|
|
rational hi_val(2);
|
|
pdd lo = m.mk_val(lo_val);
|
|
pdd hi = m.mk_val(hi_val);
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!ok1 || !ok2)
|
|
return false;
|
|
|
|
|
|
if (a2.is_one() && a1.is_zero()) {
|
|
swap(a1, a2);
|
|
swap(e1, e2);
|
|
swap(b1, b2);
|
|
}
|
|
|
|
if (!a1.is_one() || !a2.is_zero())
|
|
return false;
|
|
|
|
if (!b1.is_zero())
|
|
return false;
|
|
|
|
_backtrack.released = true;
|
|
|
|
// Ovfl(v, e2)
|
|
|
|
|
|
if (c.is_positive()) {
|
|
if (b2.val() <= 1) {
|
|
fi.interval = eval_interval::full();
|
|
fi.side_cond.push_back(s.cs().ule(e2, 1));
|
|
}
|
|
else {
|
|
// [0, div(bound, b2.val()) + 1[
|
|
rational lo_val(0);
|
|
rational hi_val(div(bound, b2.val()) + 1);
|
|
pdd lo = m.mk_val(lo_val);
|
|
pdd hi = m.mk_val(hi_val);
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
fi.side_cond.push_back(s.cs().ule(e2, b2.val()));
|
|
}
|
|
|
|
}
|
|
else {
|
|
if (b2.val() <= 1) {
|
|
_backtrack.released = false;
|
|
return false;
|
|
}
|
|
else {
|
|
// [div(bound, b2.val()) + 1, 0[
|
|
rational lo_val(div(bound, b2.val()) + 1);
|
|
rational hi_val(0);
|
|
pdd lo = m.mk_val(lo_val);
|
|
pdd hi = m.mk_val(hi_val);
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
fi.side_cond.push_back(s.cs().ule(b2.val(), e2));
|
|
}
|
|
}
|
|
|
|
// LOG("overflow interval " << fi.interval);
|
|
|
|
return true;
|
|
}
|
|
|
|
static char const* _last_function = "";
|
|
|
|
bool forbidden_intervals::get_interval_ule(signed_constraint const& c, pvar v, fi_record& fi) {
|
|
|
|
backtrack _backtrack(fi.side_cond);
|
|
|
|
fi.coeff = 1;
|
|
fi.src.push_back(c);
|
|
|
|
struct show {
|
|
forbidden_intervals& f;
|
|
signed_constraint const& c;
|
|
pvar v;
|
|
fi_record& fi;
|
|
backtrack& _backtrack;
|
|
show(forbidden_intervals& f,
|
|
signed_constraint const& c,
|
|
pvar v,
|
|
fi_record& fi,
|
|
backtrack& _backtrack):f(f), c(c), v(v), fi(fi), _backtrack(_backtrack) {}
|
|
~show() {
|
|
if (!_backtrack.released)
|
|
return;
|
|
IF_VERBOSE(0, verbose_stream() << _last_function << " " << v << " " << c << " " << fi.interval << " " << fi.side_cond << "\n");
|
|
}
|
|
};
|
|
// uncomment to trace intervals
|
|
// show _show(*this, c, v, fi, _backtrack);
|
|
|
|
// eval(lhs) = a1*v + eval(e1) = a1*v + b1
|
|
// eval(rhs) = a2*v + eval(e2) = a2*v + b2
|
|
// We keep the e1, e2 around in case we need side conditions such as e1=b1, e2=b2.
|
|
auto [ok1, a1, e1, b1] = linear_decompose(v, c.to_ule().lhs(), fi.side_cond);
|
|
auto [ok2, a2, e2, b2] = linear_decompose(v, c.to_ule().rhs(), fi.side_cond);
|
|
|
|
_backtrack.released = true;
|
|
|
|
// v > q
|
|
if (false && ok1 && !ok2 && match_non_zero(c, a1, b1, e1, c.to_ule().rhs(), fi))
|
|
return true;
|
|
|
|
// p > v
|
|
if (false && !ok1 && ok2 && match_non_max(c, c.to_ule().lhs(), a2, b2, e2, fi))
|
|
return true;
|
|
|
|
if (!ok1 || !ok2 || (a1.is_zero() && a2.is_zero())) {
|
|
_backtrack.released = false;
|
|
return false;
|
|
}
|
|
SASSERT(b1.is_val());
|
|
SASSERT(b2.is_val());
|
|
|
|
// a*v + b <= 0, a odd
|
|
// a*v + b > 0, a odd
|
|
if (match_zero(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
|
|
// -1 <= a*v + b, a odd
|
|
// -1 > a*v + b, a odd
|
|
if (match_max(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
|
|
if (match_linear1(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
if (match_linear2(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
if (match_linear3(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
if (match_linear4(c, a1, b1, e1, a2, b2, e2, fi))
|
|
return true;
|
|
|
|
_backtrack.released = false;
|
|
return false;
|
|
}
|
|
|
|
void forbidden_intervals::push_eq(bool is_zero, pdd const& p, vector<signed_constraint>& side_cond) {
|
|
SASSERT(!p.is_val() || (is_zero == p.is_zero()));
|
|
if (p.is_val())
|
|
return;
|
|
else if (is_zero)
|
|
side_cond.push_back(s.eq(p));
|
|
else
|
|
side_cond.push_back(~s.eq(p));
|
|
}
|
|
|
|
std::tuple<bool, rational, pdd, pdd> forbidden_intervals::linear_decompose(pvar v, pdd const& p, vector<signed_constraint>& out_side_cond) {
|
|
auto& m = p.manager();
|
|
pdd q = m.zero();
|
|
pdd e = m.zero();
|
|
unsigned const deg = p.degree(v);
|
|
if (deg == 0)
|
|
// p = 0*v + e
|
|
e = p;
|
|
else if (deg == 1)
|
|
// p = q*v + e
|
|
p.factor(v, 1, q, e);
|
|
else
|
|
return std::tuple(false, rational(0), q, e);
|
|
|
|
// r := eval(q)
|
|
// Add side constraint q = r.
|
|
if (!q.is_val()) {
|
|
pdd r = s.subst(q);
|
|
|
|
|
|
if (!r.is_val())
|
|
return std::tuple(false, rational(0), q, e);
|
|
out_side_cond.push_back(s.eq(q, r));
|
|
q = r;
|
|
}
|
|
auto b = s.subst(e);
|
|
return std::tuple(b.is_val(), q.val(), e, b);
|
|
};
|
|
|
|
eval_interval forbidden_intervals::to_interval(
|
|
signed_constraint const& c, bool is_trivial, rational & coeff,
|
|
rational & lo_val, pdd & lo,
|
|
rational & hi_val, pdd & hi) {
|
|
|
|
dd::pdd_manager& m = lo.manager();
|
|
|
|
if (is_trivial) {
|
|
if (c.is_positive())
|
|
// TODO: we cannot use empty intervals for interpolation. So we
|
|
// can remove the empty case (make it represent 'full' instead),
|
|
// and return 'false' here. Then we do not need the proper/full
|
|
// tag on intervals.
|
|
return eval_interval::empty(m);
|
|
else
|
|
return eval_interval::full();
|
|
}
|
|
|
|
rational pow2 = m.two_to_N();
|
|
|
|
if (coeff > pow2/2) {
|
|
// TODO: if coeff != pow2 - 1, isn't this counterproductive now? considering the gap condition on refine-equal-lin acceleration.
|
|
|
|
coeff = pow2 - coeff;
|
|
SASSERT(coeff > 0);
|
|
// Transform according to: y \in [l;u[ <=> -y \in [1-u;1-l[
|
|
// -y \in [1-u;1-l[
|
|
// <=> -y - (1 - u) < (1 - l) - (1 - u) { by: y \in [l;u[ <=> y - l < u - l }
|
|
// <=> u - y - 1 < u - l { simplified }
|
|
// <=> (u-l) - (u-y-1) - 1 < u-l { by: a < b <=> b - a - 1 < b }
|
|
// <=> y - l < u - l { simplified }
|
|
// <=> y \in [l;u[.
|
|
lo = 1 - lo;
|
|
hi = 1 - hi;
|
|
swap(lo, hi);
|
|
lo_val = mod(1 - lo_val, pow2);
|
|
hi_val = mod(1 - hi_val, pow2);
|
|
lo_val.swap(hi_val);
|
|
}
|
|
|
|
if (c.is_positive())
|
|
return eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
else
|
|
return eval_interval::proper(hi, hi_val, lo, lo_val);
|
|
}
|
|
|
|
/**
|
|
* Match e1 + t <= e2, with t = a1*y
|
|
* condition for empty/full: e2 == -1
|
|
*/
|
|
bool forbidden_intervals::match_linear1(signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a2.is_zero() && !a1.is_zero()) {
|
|
SASSERT(!a1.is_zero());
|
|
bool is_trivial = (b2 + 1).is_zero();
|
|
push_eq(is_trivial, e2 + 1, fi.side_cond);
|
|
auto lo = e2 - e1 + 1;
|
|
rational lo_val = (b2 - b1 + 1).val();
|
|
auto hi = -e1;
|
|
rational hi_val = (-b1).val();
|
|
fi.coeff = a1;
|
|
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
|
|
add_non_unit_side_conds(fi, b1, e1, b2, e2);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* e1 <= e2 + t, with t = a2*y
|
|
* condition for empty/full: e1 == 0
|
|
*/
|
|
bool forbidden_intervals::match_linear2(signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a1.is_zero() && !a2.is_zero()) {
|
|
SASSERT(!a2.is_zero());
|
|
bool is_trivial = b1.is_zero();
|
|
push_eq(is_trivial, e1, fi.side_cond);
|
|
auto lo = -e2;
|
|
rational lo_val = (-b2).val();
|
|
auto hi = e1 - e2;
|
|
rational hi_val = (b1 - b2).val();
|
|
fi.coeff = a2;
|
|
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
|
|
add_non_unit_side_conds(fi, b1, e1, b2, e2);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* e1 + t <= e2 + t, with t = a1*y = a2*y
|
|
* condition for empty/full: e1 == e2
|
|
*/
|
|
bool forbidden_intervals::match_linear3(signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a1 == a2 && !a1.is_zero()) {
|
|
bool is_trivial = b1.val() == b2.val();
|
|
push_eq(is_trivial, e1 - e2, fi.side_cond);
|
|
auto lo = -e2;
|
|
rational lo_val = (-b2).val();
|
|
auto hi = -e1;
|
|
rational hi_val = (-b1).val();
|
|
fi.coeff = a1;
|
|
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
|
|
add_non_unit_side_conds(fi, b1, e1, b2, e2);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* e1 + t <= e2 + t', with t = a1*y, t' = a2*y, a1 != a2, a1, a2 non-zero
|
|
*/
|
|
bool forbidden_intervals::match_linear4(signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a1 != a2 && !a1.is_zero() && !a2.is_zero()) {
|
|
// NOTE: we don't have an interval here in the same sense as in the other cases.
|
|
// We use the interval to smuggle out the values a1,b1,a2,b2 without adding additional fields.
|
|
// to_interval flips a1,b1 with a2,b2 for negative constraints, which we also need for this case.
|
|
auto lo = b1;
|
|
rational lo_val = a1;
|
|
auto hi = b2;
|
|
rational hi_val = a2;
|
|
// We use fi.coeff = -1 to tell the caller to treat it as a diseq_lin.
|
|
fi.coeff = -1;
|
|
fi.interval = to_interval(c, false, fi.coeff, lo_val, lo, hi_val, hi);
|
|
add_non_unit_side_conds(fi, b1, e1, b2, e2);
|
|
SASSERT(!fi.interval.is_currently_empty());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* a*v <= 0, a odd
|
|
* forbidden interval for v is [1;0[
|
|
*
|
|
* a*v + b <= 0, a odd
|
|
* forbidden interval for v is [n+1;n[ where n = -b * a^-1
|
|
*
|
|
* TODO: extend to
|
|
* 2^k*a*v <= 0, a odd
|
|
* (using intervals for the lower bits of v)
|
|
*/
|
|
bool forbidden_intervals::match_zero(
|
|
signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a1.is_odd() && a2.is_zero() && b2.is_zero()) {
|
|
auto& m = e1.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational a1_inv;
|
|
VERIFY(a1.mult_inverse(m.power_of_2(), a1_inv));
|
|
|
|
// interval for a*v + b > 0 is [n;n+1[ where n = -b * a^-1
|
|
rational lo_val = mod(-b1.val() * a1_inv, mod_value);
|
|
pdd lo = -e1 * a1_inv;
|
|
rational hi_val = mod(lo_val + 1, mod_value);
|
|
pdd hi = lo + 1;
|
|
|
|
// interval for a*v + b <= 0 is the complement
|
|
if (c.is_positive()) {
|
|
std::swap(lo_val, hi_val);
|
|
std::swap(lo, hi);
|
|
}
|
|
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
// RHS == 0 is a precondition because we can only multiply with a^-1 in equations, not inequalities
|
|
if (b2 != e2)
|
|
fi.side_cond.push_back(s.eq(b2, e2));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* -1 <= a*v + b, a odd
|
|
* forbidden interval for v is [n+1;n[ where n = (-b-1) * a^-1
|
|
*/
|
|
bool forbidden_intervals::match_max(
|
|
signed_constraint const& c,
|
|
rational const & a1, pdd const& b1, pdd const& e1,
|
|
rational const & a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
if (a1.is_zero() && b1.is_max() && a2.is_odd()) {
|
|
auto& m = e2.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational a2_inv;
|
|
VERIFY(a2.mult_inverse(m.power_of_2(), a2_inv));
|
|
|
|
// interval for -1 > a*v + b is [n;n+1[ where n = (-b-1) * a^-1
|
|
rational lo_val = mod((-1 - b2.val()) * a2_inv, mod_value);
|
|
pdd lo = (-1 - e2) * a2_inv;
|
|
rational hi_val = mod(lo_val + 1, mod_value);
|
|
pdd hi = lo + 1;
|
|
|
|
// interval for -1 <= a*v + b is the complement
|
|
if (c.is_positive()) {
|
|
std::swap(lo_val, hi_val);
|
|
std::swap(lo, hi);
|
|
}
|
|
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
// LHS == -1 is a precondition because we can only multiply with a^-1 in equations, not inequalities
|
|
if (b1 != e1)
|
|
fi.side_cond.push_back(s.eq(b1, e1));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* v > q
|
|
* forbidden interval for v is [0,1[
|
|
*
|
|
* v - k > q
|
|
* forbidden interval for v is [k,k+1[
|
|
*
|
|
* v > q
|
|
* forbidden interval for v is [0;q+1[ but at least [0;1[
|
|
*
|
|
* The following cases are implemented, and subsume the simple ones above.
|
|
*
|
|
* v - k > q
|
|
* forbidden interval for v is [k;k+q+1[ but at least [k;k+1[
|
|
*
|
|
* a*v - k > q, a odd
|
|
* forbidden interval for v is [a^-1*k, a^-1*k + 1[
|
|
*/
|
|
bool forbidden_intervals::match_non_zero(
|
|
signed_constraint const& c,
|
|
rational const& a1, pdd const& b1, pdd const& e1,
|
|
pdd const& q,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
SASSERT(b1.is_val());
|
|
if (a1.is_one() && c.is_negative()) {
|
|
// v - k > q
|
|
auto& m = e1.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational lo_val = (-b1).val();
|
|
pdd lo = -e1;
|
|
rational hi_val = mod(lo_val + 1, mod_value);
|
|
pdd hi = lo + q + 1;
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
return true;
|
|
}
|
|
if (a1.is_odd() && c.is_negative()) {
|
|
// a*v - k > q, a odd
|
|
auto& m = e1.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational a1_inv;
|
|
VERIFY(a1.mult_inverse(m.power_of_2(), a1_inv));
|
|
rational lo_val(mod(-b1.val() * a1_inv, mod_value));
|
|
auto lo = -e1 * a1_inv;
|
|
rational hi_val(mod(lo_val + 1, mod_value));
|
|
auto hi = lo + 1;
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* p > v
|
|
* forbidden interval for v is [p;0[ but at least [-1,0[
|
|
*
|
|
* p > v + k
|
|
* forbidden interval for v is [p-k;-k[ but at least [-1-k,-k[
|
|
*
|
|
* p > a*v + k, a odd
|
|
* forbidden interval for v is [ a^-1*(-1-k) ; a^-1*(-1-k) + 1 [
|
|
*/
|
|
bool forbidden_intervals::match_non_max(
|
|
signed_constraint const& c,
|
|
pdd const& p,
|
|
rational const& a2, pdd const& b2, pdd const& e2,
|
|
fi_record& fi) {
|
|
_last_function = __func__;
|
|
SASSERT(b2.is_val());
|
|
if (a2.is_one() && c.is_negative()) {
|
|
// p > v + k
|
|
auto& m = e2.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational hi_val = (-b2).val();
|
|
pdd hi = -e2;
|
|
rational lo_val = mod(hi_val - 1, mod_value);
|
|
pdd lo = p - e2;
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
return true;
|
|
}
|
|
if (a2.is_odd() && c.is_negative()) {
|
|
// p > a*v + k, a odd
|
|
auto& m = e2.manager();
|
|
rational const& mod_value = m.two_to_N();
|
|
rational a2_inv;
|
|
VERIFY(a2.mult_inverse(m.power_of_2(), a2_inv));
|
|
rational lo_val = mod(a2_inv * (-1 - b2.val()), mod_value);
|
|
pdd lo = a2_inv * (-1 - e2);
|
|
rational hi_val = mod(lo_val + 1, mod_value);
|
|
pdd hi = lo + 1;
|
|
fi.coeff = 1;
|
|
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void forbidden_intervals::add_non_unit_side_conds(fi_record& fi, pdd const& b1, pdd const& e1, pdd const& b2, pdd const& e2) {
|
|
if (fi.coeff == 1)
|
|
return;
|
|
if (b1 != e1)
|
|
fi.side_cond.push_back(s.eq(b1, e1));
|
|
if (b2 != e2)
|
|
fi.side_cond.push_back(s.eq(b2, e2));
|
|
}
|
|
}
|