3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 03:27:52 +00:00
z3/src/sat/smt/polysat/polysat_fi.cpp
Nikolaj Bjorner 81c6f00c99 reorganize polysat functionality to use abstract solver interface
make dependency be self-contained
2023-12-16 16:12:49 -08:00

588 lines
20 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
Conflict explanation using forbidden intervals as described in
"Solving bitvectors with MCSAT: explanations from bits and pieces"
by S. Graham-Lengrand, D. Jovanovic, B. Dutertre.
Author:
Jakob Rath 2021-04-06
Nikolaj Bjorner (nbjorner) 2021-03-19
--*/
#include "sat/smt/polysat/polysat_fi.h"
#include "sat/smt/polysat/polysat_interval.h"
#include "sat/smt/polysat/polysat_umul_ovfl.h"
#include "sat/smt/polysat/polysat_ule.h"
#include "sat/smt/polysat/polysat_core.h"
namespace polysat {
/**
*
* \param[in] c Original constraint
* \param[in] v Variable that is bounded by constraint
* \param[out] fi "forbidden interval" record that captures values not allowed for v
* \returns True iff a forbidden interval exists and the output parameters were set.
*/
bool forbidden_intervals::get_interval(signed_constraint const& c, pvar v, fi_record& fi) {
// verbose_stream() << "get_interval for v" << v << " " << c << "\n";
SASSERT(fi.side_cond.empty());
SASSERT(fi.src.empty());
fi.bit_width = s.size(v); // TODO: preliminary
if (c.is_ule())
return get_interval_ule(c, v, fi);
if (c.is_umul_ovfl())
return get_interval_umul_ovfl(c, v, fi);
return false;
}
bool forbidden_intervals::get_interval_umul_ovfl(signed_constraint const& c, pvar v, fi_record& fi) {
using std::swap;
backtrack _backtrack(fi.side_cond);
fi.coeff = 1;
fi.src.push_back(c);
// eval(lhs) = a1*v + eval(e1) = a1*v + b1
// eval(rhs) = a2*v + eval(e2) = a2*v + b2
// We keep the e1, e2 around in case we need side conditions such as e1=b1, e2=b2.
auto [ok1, a1, e1, b1] = linear_decompose(v, c.to_umul_ovfl().p(), fi.side_cond);
auto [ok2, a2, e2, b2] = linear_decompose(v, c.to_umul_ovfl().q(), fi.side_cond);
auto& m = e1.manager();
rational bound = m.max_value();
if (ok2 && !ok1) {
swap(a1, a2);
swap(e1, e2);
swap(b1, b2);
swap(ok1, ok2);
}
if (ok1 && !ok2 && a1.is_one() && b1.is_zero()) {
if (c.is_positive()) {
_backtrack.released = true;
rational lo_val(0);
rational hi_val(2);
pdd lo = m.mk_val(lo_val);
pdd hi = m.mk_val(hi_val);
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
return true;
}
}
if (!ok1 || !ok2)
return false;
if (a2.is_one() && a1.is_zero()) {
swap(a1, a2);
swap(e1, e2);
swap(b1, b2);
}
if (!a1.is_one() || !a2.is_zero())
return false;
if (!b1.is_zero())
return false;
_backtrack.released = true;
// Ovfl(v, e2)
if (c.is_positive()) {
if (b2.val() <= 1) {
fi.interval = eval_interval::full();
fi.side_cond.push_back(s.cs().ule(e2, 1));
}
else {
// [0, div(bound, b2.val()) + 1[
rational lo_val(0);
rational hi_val(div(bound, b2.val()) + 1);
pdd lo = m.mk_val(lo_val);
pdd hi = m.mk_val(hi_val);
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
fi.side_cond.push_back(s.cs().ule(e2, b2.val()));
}
}
else {
if (b2.val() <= 1) {
_backtrack.released = false;
return false;
}
else {
// [div(bound, b2.val()) + 1, 0[
rational lo_val(div(bound, b2.val()) + 1);
rational hi_val(0);
pdd lo = m.mk_val(lo_val);
pdd hi = m.mk_val(hi_val);
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
fi.side_cond.push_back(s.cs().ule(b2.val(), e2));
}
}
// LOG("overflow interval " << fi.interval);
return true;
}
static char const* _last_function = "";
bool forbidden_intervals::get_interval_ule(signed_constraint const& c, pvar v, fi_record& fi) {
backtrack _backtrack(fi.side_cond);
fi.coeff = 1;
fi.src.push_back(c);
struct show {
forbidden_intervals& f;
signed_constraint const& c;
pvar v;
fi_record& fi;
backtrack& _backtrack;
show(forbidden_intervals& f,
signed_constraint const& c,
pvar v,
fi_record& fi,
backtrack& _backtrack):f(f), c(c), v(v), fi(fi), _backtrack(_backtrack) {}
~show() {
if (!_backtrack.released)
return;
IF_VERBOSE(0, verbose_stream() << _last_function << " " << v << " " << c << " " << fi.interval << " " << fi.side_cond << "\n");
}
};
// uncomment to trace intervals
// show _show(*this, c, v, fi, _backtrack);
// eval(lhs) = a1*v + eval(e1) = a1*v + b1
// eval(rhs) = a2*v + eval(e2) = a2*v + b2
// We keep the e1, e2 around in case we need side conditions such as e1=b1, e2=b2.
auto [ok1, a1, e1, b1] = linear_decompose(v, c.to_ule().lhs(), fi.side_cond);
auto [ok2, a2, e2, b2] = linear_decompose(v, c.to_ule().rhs(), fi.side_cond);
_backtrack.released = true;
// v > q
if (false && ok1 && !ok2 && match_non_zero(c, a1, b1, e1, c.to_ule().rhs(), fi))
return true;
// p > v
if (false && !ok1 && ok2 && match_non_max(c, c.to_ule().lhs(), a2, b2, e2, fi))
return true;
if (!ok1 || !ok2 || (a1.is_zero() && a2.is_zero())) {
_backtrack.released = false;
return false;
}
SASSERT(b1.is_val());
SASSERT(b2.is_val());
// a*v + b <= 0, a odd
// a*v + b > 0, a odd
if (match_zero(c, a1, b1, e1, a2, b2, e2, fi))
return true;
// -1 <= a*v + b, a odd
// -1 > a*v + b, a odd
if (match_max(c, a1, b1, e1, a2, b2, e2, fi))
return true;
if (match_linear1(c, a1, b1, e1, a2, b2, e2, fi))
return true;
if (match_linear2(c, a1, b1, e1, a2, b2, e2, fi))
return true;
if (match_linear3(c, a1, b1, e1, a2, b2, e2, fi))
return true;
if (match_linear4(c, a1, b1, e1, a2, b2, e2, fi))
return true;
_backtrack.released = false;
return false;
}
void forbidden_intervals::push_eq(bool is_zero, pdd const& p, vector<signed_constraint>& side_cond) {
SASSERT(!p.is_val() || (is_zero == p.is_zero()));
if (p.is_val())
return;
else if (is_zero)
side_cond.push_back(s.eq(p));
else
side_cond.push_back(~s.eq(p));
}
std::tuple<bool, rational, pdd, pdd> forbidden_intervals::linear_decompose(pvar v, pdd const& p, vector<signed_constraint>& out_side_cond) {
auto& m = p.manager();
pdd q = m.zero();
pdd e = m.zero();
unsigned const deg = p.degree(v);
if (deg == 0)
// p = 0*v + e
e = p;
else if (deg == 1)
// p = q*v + e
p.factor(v, 1, q, e);
else
return std::tuple(false, rational(0), q, e);
// r := eval(q)
// Add side constraint q = r.
if (!q.is_val()) {
pdd r = s.subst(q);
if (!r.is_val())
return std::tuple(false, rational(0), q, e);
out_side_cond.push_back(s.eq(q, r));
q = r;
}
auto b = s.subst(e);
return std::tuple(b.is_val(), q.val(), e, b);
};
eval_interval forbidden_intervals::to_interval(
signed_constraint const& c, bool is_trivial, rational & coeff,
rational & lo_val, pdd & lo,
rational & hi_val, pdd & hi) {
dd::pdd_manager& m = lo.manager();
if (is_trivial) {
if (c.is_positive())
// TODO: we cannot use empty intervals for interpolation. So we
// can remove the empty case (make it represent 'full' instead),
// and return 'false' here. Then we do not need the proper/full
// tag on intervals.
return eval_interval::empty(m);
else
return eval_interval::full();
}
rational pow2 = m.two_to_N();
if (coeff > pow2/2) {
// TODO: if coeff != pow2 - 1, isn't this counterproductive now? considering the gap condition on refine-equal-lin acceleration.
coeff = pow2 - coeff;
SASSERT(coeff > 0);
// Transform according to: y \in [l;u[ <=> -y \in [1-u;1-l[
// -y \in [1-u;1-l[
// <=> -y - (1 - u) < (1 - l) - (1 - u) { by: y \in [l;u[ <=> y - l < u - l }
// <=> u - y - 1 < u - l { simplified }
// <=> (u-l) - (u-y-1) - 1 < u-l { by: a < b <=> b - a - 1 < b }
// <=> y - l < u - l { simplified }
// <=> y \in [l;u[.
lo = 1 - lo;
hi = 1 - hi;
swap(lo, hi);
lo_val = mod(1 - lo_val, pow2);
hi_val = mod(1 - hi_val, pow2);
lo_val.swap(hi_val);
}
if (c.is_positive())
return eval_interval::proper(lo, lo_val, hi, hi_val);
else
return eval_interval::proper(hi, hi_val, lo, lo_val);
}
/**
* Match e1 + t <= e2, with t = a1*y
* condition for empty/full: e2 == -1
*/
bool forbidden_intervals::match_linear1(signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a2.is_zero() && !a1.is_zero()) {
SASSERT(!a1.is_zero());
bool is_trivial = (b2 + 1).is_zero();
push_eq(is_trivial, e2 + 1, fi.side_cond);
auto lo = e2 - e1 + 1;
rational lo_val = (b2 - b1 + 1).val();
auto hi = -e1;
rational hi_val = (-b1).val();
fi.coeff = a1;
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
add_non_unit_side_conds(fi, b1, e1, b2, e2);
return true;
}
return false;
}
/**
* e1 <= e2 + t, with t = a2*y
* condition for empty/full: e1 == 0
*/
bool forbidden_intervals::match_linear2(signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a1.is_zero() && !a2.is_zero()) {
SASSERT(!a2.is_zero());
bool is_trivial = b1.is_zero();
push_eq(is_trivial, e1, fi.side_cond);
auto lo = -e2;
rational lo_val = (-b2).val();
auto hi = e1 - e2;
rational hi_val = (b1 - b2).val();
fi.coeff = a2;
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
add_non_unit_side_conds(fi, b1, e1, b2, e2);
return true;
}
return false;
}
/**
* e1 + t <= e2 + t, with t = a1*y = a2*y
* condition for empty/full: e1 == e2
*/
bool forbidden_intervals::match_linear3(signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a1 == a2 && !a1.is_zero()) {
bool is_trivial = b1.val() == b2.val();
push_eq(is_trivial, e1 - e2, fi.side_cond);
auto lo = -e2;
rational lo_val = (-b2).val();
auto hi = -e1;
rational hi_val = (-b1).val();
fi.coeff = a1;
fi.interval = to_interval(c, is_trivial, fi.coeff, lo_val, lo, hi_val, hi);
add_non_unit_side_conds(fi, b1, e1, b2, e2);
return true;
}
return false;
}
/**
* e1 + t <= e2 + t', with t = a1*y, t' = a2*y, a1 != a2, a1, a2 non-zero
*/
bool forbidden_intervals::match_linear4(signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a1 != a2 && !a1.is_zero() && !a2.is_zero()) {
// NOTE: we don't have an interval here in the same sense as in the other cases.
// We use the interval to smuggle out the values a1,b1,a2,b2 without adding additional fields.
// to_interval flips a1,b1 with a2,b2 for negative constraints, which we also need for this case.
auto lo = b1;
rational lo_val = a1;
auto hi = b2;
rational hi_val = a2;
// We use fi.coeff = -1 to tell the caller to treat it as a diseq_lin.
fi.coeff = -1;
fi.interval = to_interval(c, false, fi.coeff, lo_val, lo, hi_val, hi);
add_non_unit_side_conds(fi, b1, e1, b2, e2);
SASSERT(!fi.interval.is_currently_empty());
return true;
}
return false;
}
/**
* a*v <= 0, a odd
* forbidden interval for v is [1;0[
*
* a*v + b <= 0, a odd
* forbidden interval for v is [n+1;n[ where n = -b * a^-1
*
* TODO: extend to
* 2^k*a*v <= 0, a odd
* (using intervals for the lower bits of v)
*/
bool forbidden_intervals::match_zero(
signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a1.is_odd() && a2.is_zero() && b2.is_zero()) {
auto& m = e1.manager();
rational const& mod_value = m.two_to_N();
rational a1_inv;
VERIFY(a1.mult_inverse(m.power_of_2(), a1_inv));
// interval for a*v + b > 0 is [n;n+1[ where n = -b * a^-1
rational lo_val = mod(-b1.val() * a1_inv, mod_value);
pdd lo = -e1 * a1_inv;
rational hi_val = mod(lo_val + 1, mod_value);
pdd hi = lo + 1;
// interval for a*v + b <= 0 is the complement
if (c.is_positive()) {
std::swap(lo_val, hi_val);
std::swap(lo, hi);
}
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
// RHS == 0 is a precondition because we can only multiply with a^-1 in equations, not inequalities
if (b2 != e2)
fi.side_cond.push_back(s.eq(b2, e2));
return true;
}
return false;
}
/**
* -1 <= a*v + b, a odd
* forbidden interval for v is [n+1;n[ where n = (-b-1) * a^-1
*/
bool forbidden_intervals::match_max(
signed_constraint const& c,
rational const & a1, pdd const& b1, pdd const& e1,
rational const & a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
if (a1.is_zero() && b1.is_max() && a2.is_odd()) {
auto& m = e2.manager();
rational const& mod_value = m.two_to_N();
rational a2_inv;
VERIFY(a2.mult_inverse(m.power_of_2(), a2_inv));
// interval for -1 > a*v + b is [n;n+1[ where n = (-b-1) * a^-1
rational lo_val = mod((-1 - b2.val()) * a2_inv, mod_value);
pdd lo = (-1 - e2) * a2_inv;
rational hi_val = mod(lo_val + 1, mod_value);
pdd hi = lo + 1;
// interval for -1 <= a*v + b is the complement
if (c.is_positive()) {
std::swap(lo_val, hi_val);
std::swap(lo, hi);
}
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
// LHS == -1 is a precondition because we can only multiply with a^-1 in equations, not inequalities
if (b1 != e1)
fi.side_cond.push_back(s.eq(b1, e1));
return true;
}
return false;
}
/**
* v > q
* forbidden interval for v is [0,1[
*
* v - k > q
* forbidden interval for v is [k,k+1[
*
* v > q
* forbidden interval for v is [0;q+1[ but at least [0;1[
*
* The following cases are implemented, and subsume the simple ones above.
*
* v - k > q
* forbidden interval for v is [k;k+q+1[ but at least [k;k+1[
*
* a*v - k > q, a odd
* forbidden interval for v is [a^-1*k, a^-1*k + 1[
*/
bool forbidden_intervals::match_non_zero(
signed_constraint const& c,
rational const& a1, pdd const& b1, pdd const& e1,
pdd const& q,
fi_record& fi) {
_last_function = __func__;
SASSERT(b1.is_val());
if (a1.is_one() && c.is_negative()) {
// v - k > q
auto& m = e1.manager();
rational const& mod_value = m.two_to_N();
rational lo_val = (-b1).val();
pdd lo = -e1;
rational hi_val = mod(lo_val + 1, mod_value);
pdd hi = lo + q + 1;
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
return true;
}
if (a1.is_odd() && c.is_negative()) {
// a*v - k > q, a odd
auto& m = e1.manager();
rational const& mod_value = m.two_to_N();
rational a1_inv;
VERIFY(a1.mult_inverse(m.power_of_2(), a1_inv));
rational lo_val(mod(-b1.val() * a1_inv, mod_value));
auto lo = -e1 * a1_inv;
rational hi_val(mod(lo_val + 1, mod_value));
auto hi = lo + 1;
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
return true;
}
return false;
}
/**
* p > v
* forbidden interval for v is [p;0[ but at least [-1,0[
*
* p > v + k
* forbidden interval for v is [p-k;-k[ but at least [-1-k,-k[
*
* p > a*v + k, a odd
* forbidden interval for v is [ a^-1*(-1-k) ; a^-1*(-1-k) + 1 [
*/
bool forbidden_intervals::match_non_max(
signed_constraint const& c,
pdd const& p,
rational const& a2, pdd const& b2, pdd const& e2,
fi_record& fi) {
_last_function = __func__;
SASSERT(b2.is_val());
if (a2.is_one() && c.is_negative()) {
// p > v + k
auto& m = e2.manager();
rational const& mod_value = m.two_to_N();
rational hi_val = (-b2).val();
pdd hi = -e2;
rational lo_val = mod(hi_val - 1, mod_value);
pdd lo = p - e2;
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
return true;
}
if (a2.is_odd() && c.is_negative()) {
// p > a*v + k, a odd
auto& m = e2.manager();
rational const& mod_value = m.two_to_N();
rational a2_inv;
VERIFY(a2.mult_inverse(m.power_of_2(), a2_inv));
rational lo_val = mod(a2_inv * (-1 - b2.val()), mod_value);
pdd lo = a2_inv * (-1 - e2);
rational hi_val = mod(lo_val + 1, mod_value);
pdd hi = lo + 1;
fi.coeff = 1;
fi.interval = eval_interval::proper(lo, lo_val, hi, hi_val);
return true;
}
return false;
}
void forbidden_intervals::add_non_unit_side_conds(fi_record& fi, pdd const& b1, pdd const& e1, pdd const& b2, pdd const& e2) {
if (fi.coeff == 1)
return;
if (b1 != e1)
fi.side_cond.push_back(s.eq(b1, e1));
if (b2 != e2)
fi.side_cond.push_back(s.eq(b2, e2));
}
}