mirror of
https://github.com/Z3Prover/z3
synced 2025-08-12 06:00:53 +00:00
This allows using z3 for limited E-saturation simplification. The tactic rewrites all assertions using the E-graph induced by the equalities and instantiated equality axioms. It does allow solving with conditionals, although this is a first inefficient cut. The following is a sample use case that rewrites to false. ``` (declare-fun prime () Int) (declare-fun add (Int Int) Int) (declare-fun mul (Int Int) Int) (declare-fun ^ (Int Int) Int) (declare-fun sub (Int Int) Int) (declare-fun i () Int) (declare-fun j () Int) (declare-fun base () Int) (declare-fun S () (Seq Int)) (declare-fun hash ((Seq Int) Int Int Int Int) Int) (assert (let ((a!1 (mul (seq.nth S i) (^ base (sub (sub j i) 1))))) (let ((a!2 (mod (add (hash S base prime (add i 1) j) a!1) prime))) (not (= (hash S base prime i j) a!2))))) (assert (forall ((x Int)) (! (= (mod (mod x prime) prime) (mod x prime)) :pattern ((mod (mod x prime) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (mul x y) prime) (mod (mul (mod x prime) y) prime)) :pattern ((mod (mul x y) prime)) :pattern ((mod (mul (mod x prime) y) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (mul x y) prime) (mod (mul x (mod y prime)) prime)) :pattern ((mod (mul x y) prime)) :pattern ((mod (mul x (mod y prime)) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (add x y) prime) (mod (add x (mod y prime)) prime)) :pattern ((mod (add x y) prime)) :pattern ((mod (add x (mod y prime)) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mod (add x y) prime) (mod (add (mod x prime) y) prime)) :pattern ((mod (add x y) prime)) :pattern ((mod (add (mod x prime) y) prime))))) (assert (forall ((x Int) (y Int)) (! (= (mul x (^ x y)) (^ x (add y 1))) :pattern ((mul x (^ x y)))))) (assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y))))) (assert (forall ((x Int) (y Int)) (! (= (add x y) (add y x)) :pattern ((add x y))))) (assert (forall ((x Int) (y Int)) (! (= (mul x y) (mul y x)) :pattern ((mul x y))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (add x (add y z)) (add (add x y) z)) :pattern ((add x (add y z))) :pattern ((add (add x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (mul x (mul y z)) (mul (mul x y) z)) :pattern ((mul x (mul y z))) :pattern ((mul (mul x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (sub (sub x y) z) (sub (sub x z) y)) :pattern ((sub (sub x y) z))))) (assert (forall ((x Int) (y Int) (z Int)) (! (= (mul x (add y z)) (add (mul x y) (mul x z))) :pattern ((mul x (add y z)))))) (assert (forall ((x Int)) (! (= (sub (add x 1) 1) x) :pattern ((add x 1))))) (assert (forall ((x Int)) (! (= (add (sub x 1) 1) x) :pattern ((sub x 1))))) (assert (let ((a!1 (^ base (sub (sub (sub j 1) i) 1)))) (let ((a!2 (mod (add (hash S base prime (add i 1) (sub j 1)) (mul (seq.nth S i) a!1)) prime))) (= (hash S base prime i (sub j 1)) a!2)))) (assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime i (sub j 1)))))) (= (hash S base prime i j) (mod a!1 prime)))) (assert (let ((a!1 (add (seq.nth S (- j 1)) (mul base (hash S base prime (add i 1) (sub j 1)))))) (= (hash S base prime (add i 1) j) (mod a!1 prime)))) (apply euf-completion) ``` To use conditional rewriting you can ``` (assert (not (= 0 prime))) ``` and update axioms using modulus with prime to be of the form: ``` (=> (not (= 0 prime)) <original-body of quantifier>) ``` |
||
---|---|---|
.. | ||
blast_term_ite_tactic.cpp | ||
blast_term_ite_tactic.h | ||
CMakeLists.txt | ||
cofactor_elim_term_ite.cpp | ||
cofactor_elim_term_ite.h | ||
cofactor_term_ite_tactic.cpp | ||
cofactor_term_ite_tactic.h | ||
collect_occs.cpp | ||
collect_occs.h | ||
collect_statistics_tactic.cpp | ||
collect_statistics_tactic.h | ||
ctx_simplify_tactic.cpp | ||
ctx_simplify_tactic.h | ||
demodulator_tactic.h | ||
der_tactic.cpp | ||
der_tactic.h | ||
distribute_forall_tactic.h | ||
dom_simplify_tactic.h | ||
elim_term_ite_tactic.cpp | ||
elim_term_ite_tactic.h | ||
elim_uncnstr2_tactic.h | ||
elim_uncnstr_tactic.cpp | ||
elim_uncnstr_tactic.h | ||
eliminate_predicates_tactic.h | ||
injectivity_tactic.cpp | ||
injectivity_tactic.h | ||
nnf_tactic.cpp | ||
nnf_tactic.h | ||
occf_tactic.cpp | ||
occf_tactic.h | ||
pb_preprocess_tactic.cpp | ||
pb_preprocess_tactic.h | ||
propagate_values2_tactic.h | ||
propagate_values_tactic.cpp | ||
propagate_values_tactic.h | ||
reduce_args_tactic.cpp | ||
reduce_args_tactic.h | ||
simplify_tactic.cpp | ||
simplify_tactic.h | ||
solve_eqs_tactic.h | ||
special_relations_tactic.cpp | ||
special_relations_tactic.h | ||
split_clause_tactic.cpp | ||
split_clause_tactic.h | ||
symmetry_reduce_tactic.cpp | ||
symmetry_reduce_tactic.h | ||
tseitin_cnf_tactic.cpp | ||
tseitin_cnf_tactic.h |