3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 03:27:52 +00:00
z3/src/sat/smt/polysat/umul_ovfl_constraint.cpp
2024-01-11 11:45:05 -08:00

162 lines
5.2 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat multiplication overflow constraint
Author:
Jakob Rath, Nikolaj Bjorner (nbjorner) 2021-12-09
--*/
#include "util/log.h"
#include "sat/smt/polysat/core.h"
#include "sat/smt/polysat/constraints.h"
#include "sat/smt/polysat/assignment.h"
#include "sat/smt/polysat/umul_ovfl_constraint.h"
namespace polysat {
umul_ovfl_constraint::umul_ovfl_constraint(pdd const& p, pdd const& q):
m_p(p), m_q(q) {
simplify();
vars().append(m_p.free_vars());
for (auto v : m_q.free_vars())
if (!vars().contains(v))
vars().push_back(v);
}
void umul_ovfl_constraint::simplify() {
if (m_p.is_zero() || m_q.is_zero() || m_p.is_one() || m_q.is_one()) {
m_q = 0;
m_p = 0;
return;
}
if (m_p.index() > m_q.index())
swap(m_p, m_q);
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out, lbool status) const {
switch (status) {
case l_true: return display(out);
case l_false: return display(out << "~");
case l_undef: return display(out << "?");
}
return out;
}
std::ostream& umul_ovfl_constraint::display(std::ostream& out) const {
return out << "ovfl*(" << m_p << ", " << m_q << ")";
}
lbool umul_ovfl_constraint::eval(pdd const& p, pdd const& q) {
if (p.is_zero() || q.is_zero() || p.is_one() || q.is_one())
return l_false;
if (p.is_val() && q.is_val()) {
if (p.val() * q.val() > p.manager().max_value())
return l_true;
else
return l_false;
}
return l_undef;
}
lbool umul_ovfl_constraint::eval() const {
return eval(p(), q());
}
lbool umul_ovfl_constraint::weak_eval(assignment const& a) const {
return eval();
}
lbool umul_ovfl_constraint::strong_eval(assignment const& a) const {
return eval(a.apply_to(p()), a.apply_to(q()));
}
void umul_ovfl_constraint::activate(core& c, bool sign, dependency const& dep) {
}
bool umul_ovfl_constraint::propagate(core& c, lbool value, dependency const& dep) {
if (value == l_undef)
return false;
auto& C = c.cs();
auto p1 = c.subst(p());
auto q1 = c.subst(q());
if (narrow_bound(c, value == l_true, p(), q(), p1, q1, dep))
return true;
if (narrow_bound(c, value == l_true, q(), p(), q1, p1, dep))
return true;
return false;
}
/**
* if p constant, q, propagate inequality
*/
bool umul_ovfl_constraint::narrow_bound(core& c, bool is_positive, pdd const& p0, pdd const& q0, pdd const& p, pdd const& q, dependency const& d) {
LOG("p: " << p0 << " := " << p);
LOG("q: " << q0 << " := " << q);
if (!p.is_val())
return false;
SASSERT(!p.is_zero() && !p.is_one()); // evaluation should catch this case
rational const& M = p.manager().two_to_N();
auto& C = c.cs();
// q_bound
// = min q . Ovfl(p_val, q)
// = min q . p_val * q >= M
// = min q . q >= M / p_val
// = ceil(M / p_val)
rational const q_bound = ceil(M / p.val());
SASSERT(2 <= q_bound && q_bound <= M / 2);
SASSERT(p.val() * q_bound >= M);
SASSERT(p.val() * (q_bound - 1) < M);
// LOG("q_bound: " << q.manager().mk_val(q_bound));
// We need the following properties for the bounds:
//
// p_bound * (q_bound - 1) < M
// p_bound * q_bound >= M
//
// With these properties we get:
//
// p <= p_bound & q < q_bound ==> ~Ovfl(p, q)
// p >= p_bound & q >= q_bound ==> Ovfl(p, q)
//
// Written as lemmas:
//
// Ovfl(p, q) & p <= p_bound ==> q >= q_bound
// ~Ovfl(p, q) & p >= p_bound ==> q < q_bound
//
if (is_positive) {
// Find largest bound for p such that q_bound is still correct.
// p_bound = max p . (q_bound - 1)*p < M
// = max p . p < M / (q_bound - 1)
// = ceil(M / (q_bound - 1)) - 1
rational const p_bound = ceil(M / (q_bound - 1)) - 1;
SASSERT(p.val() <= p_bound);
SASSERT(p_bound * q_bound >= M);
SASSERT(p_bound * (q_bound - 1) < M);
// LOG("p_bound: " << p.manager().mk_val(p_bound));
c.add_axiom("~Ovfl(p, q) & p <= p_bound -> q < q_bound", { d, ~C.ule(p0, p_bound), C.ule(q_bound, q0) }, true);
}
else {
// Find lowest bound for p such that q_bound is still correct.
// p_bound = min p . Ovfl(p, q_bound) = ceil(M / q_bound)
rational const p_bound = ceil(M / q_bound);
SASSERT(p_bound <= p.val());
SASSERT(p_bound * q_bound >= M);
SASSERT(p_bound * (q_bound - 1) < M);
// LOG("p_bound: " << p.manager().mk_val(p_bound));
c.add_axiom("~Ovfl(p, q) & p >= p_bound -> q < q_bound", { d, ~C.ule(p_bound, p0), C.ult(q0, q_bound) }, true);
}
return true;
}
}