3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00
z3/src/math/lp/nla_grobner.cpp
Lev Nachmanson 7416a8cbb9 port Grobner: solve the first problem with it
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
2020-01-28 10:04:21 -08:00

846 lines
28 KiB
C++

/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
--*/
#include "math/lp/nla_grobner.h"
#include "math/lp/nla_core.h"
#include "math/lp/factorization_factory_imp.h"
namespace nla {
nla_grobner::nla_grobner(core *c, intervals *s)
: common(c, s),
m_nl_gb_exhausted(false),
m_dep_manager(m_val_manager, m_alloc),
m_changed_leading_term(false) {}
// Scan the grobner basis eqs for equations of the form x - k = 0 or x = 0 is found, and x is not fixed,
// then assert bounds for x, and continue
bool nla_grobner::scan_for_linear(ptr_vector<equation>& eqs) {
bool result = false;
for (nla_grobner::equation* eq : eqs) {
if (!eq->is_linear_combination()) {
TRACE("non_linear", tout << "processing new equality:\n"; display_equation(tout, *eq););
TRACE("non_linear_bug", tout << "processing new equality:\n"; display_equation(tout, *eq););
if (internalize_gb_eq(eq))
result = true;
}
}
return result;
}
bool nla_grobner::internalize_gb_eq(equation* ) {
NOT_IMPLEMENTED_YET();
return false;
}
void nla_grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, std::queue<lpvar> & q) {
SASSERT(!c().active_var_set_contains(j));
const auto& matrix = c().m_lar_solver.A_r();
c().insert_to_active_var_set(j);
for (auto & s : matrix.m_columns[j]) {
unsigned row = s.var();
if (m_rows.contains(row)) continue;
m_rows.insert(row);
for (auto& rc : matrix.m_rows[row]) {
if (c().active_var_set_contains(rc.var()))
continue;
q.push(rc.var());
}
}
if (!c().is_monic_var(j))
return;
const monic& m = c().emons()[j];
for (auto fcn : factorization_factory_imp(m, c())) {
for (const factor& fc: fcn) {
lpvar j = var(fc);
if (! c().active_var_set_contains(j))
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
}
}
}
void nla_grobner::find_nl_cluster() {
prepare_rows_and_active_vars();
std::queue<lpvar> q;
for (lpvar j : c().m_to_refine) {
TRACE("grobner", c().print_monic(c().emons()[j], tout) << "\n";);
q.push(j);
}
while (!q.empty()) {
unsigned j = q.front();
q.pop();
if (c().active_var_set_contains(j))
continue;
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
}
set_active_vars_weights();
TRACE("grobner", display(tout););
}
void nla_grobner::prepare_rows_and_active_vars() {
m_rows.clear();
m_rows.resize(c().m_lar_solver.row_count());
c().clear_and_resize_active_var_set();
}
void nla_grobner::display_matrix(std::ostream & out) const {
const auto& matrix = c().m_lar_solver.A_r();
out << m_rows.size() << " rows" <<"\n";
out << "the matrix\n";
for (const auto & r : matrix.m_rows) {
c().print_term(r, out) << std::endl;
}
}
std::ostream & nla_grobner::display(std::ostream & out) const {
display_equations(out, m_to_superpose, "m_to_superpose:");
display_equations(out, m_to_simplify, "m_to_simplify:");
return out;
}
void nla_grobner::process_var(nex_mul* m, lpvar j, ci_dependency* & dep, rational & coeff) {
if (c().var_is_fixed(j)) {
if (!m_tmp_var_set.contains(j)) {
m_tmp_var_set.insert(j);
lp::constraint_index lc,uc;
c().m_lar_solver.get_bound_constraint_witnesses_for_column(j, lc, uc);
dep = m_dep_manager.mk_join(dep, m_dep_manager.mk_join(m_dep_manager.mk_leaf(lc), m_dep_manager.mk_leaf(uc)));
}
coeff *= c().m_lar_solver.column_upper_bound(j).x;
}
else {
m->add_child(m_nex_creator.mk_var(j));
}
}
common::ci_dependency* nla_grobner::dep_from_vector(svector<lp::constraint_index> & cs) {
ci_dependency * d = nullptr;
for (auto c : cs)
d = m_dep_manager.mk_join(d, m_dep_manager.mk_leaf(c));
return d;
}
void nla_grobner::add_row(unsigned i) {
const auto& row = c().m_lar_solver.A_r().m_rows[i];
TRACE("grobner", tout << "adding row to gb\n"; c().m_lar_solver.print_row(row, tout););
nex_sum * ns = m_nex_creator.mk_sum();
svector<lp::constraint_index> fixed_vars_constraints;
create_sum_from_row(row, m_nex_creator, *ns, true); // true to treat fixed vars as scalars
nex* e = m_nex_creator.simplify(ns);
TRACE("grobner", tout << "e = " << *e << "\n";);
m_tmp_var_set.clear();
assert_eq_0(e, get_fixed_vars_dep_from_row(row, m_dep_manager));
}
void nla_grobner::simplify_equations_to_process() {
for (equation *eq : m_to_simplify) {
eq->exp() = m_nex_creator.simplify(eq->exp());
}
}
void nla_grobner::init() {
m_reported = 0;
m_conflict = false;
m_equations_to_unfreeze.clear();
del_equations(0);
SASSERT(m_equations_to_delete.size() == 0);
m_num_of_equations = 0;
m_to_superpose.reset();
m_to_simplify.reset();
find_nl_cluster();
c().clear_and_resize_active_var_set();
for (unsigned i : m_rows) {
add_row(i);
}
simplify_equations_to_process();
}
bool nla_grobner::is_trivial(equation* eq) const {
SASSERT(m_nex_creator.is_simplified(eq->exp()));
return eq->exp()->size() == 0;
}
bool nla_grobner::is_better_choice(equation * eq1, equation * eq2) {
if (!eq2)
return true;
if (is_trivial(eq1))
return true;
if (is_trivial(eq2))
return false;
return m_nex_creator.lt(eq1->exp(), eq2->exp());
}
void nla_grobner::del_equation(equation * eq) {
m_to_superpose.erase(eq);
m_to_simplify.erase(eq);
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
m_equations_to_delete[eq->m_bidx] = 0;
dealloc(eq);
}
nla_grobner::equation* nla_grobner::pick_next() {
equation * r = nullptr;
ptr_buffer<equation> to_delete;
for (equation * curr : m_to_simplify) {
if (is_trivial(curr))
to_delete.push_back(curr);
else if (is_better_choice(curr, r))
r = curr;
}
for (equation * e : to_delete)
del_equation(e);
if (r)
m_to_simplify.erase(r);
TRACE("grobner", tout << "selected equation: "; if (!r) tout << "<null>\n"; else display_equation(tout, *r););
return r;
}
nla_grobner::equation* nla_grobner::simplify_using_processed(equation* eq) {
bool result = false;
bool simplified;
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *eq); tout << "using already processed equalities of size " << m_to_superpose.size() << "\n";);
do {
simplified = false;
for (equation * p : m_to_superpose) {
equation * new_eq = simplify_source_target(p, eq);
if (new_eq) {
result = true;
simplified = true;
eq = new_eq;
}
if (canceled()) {
return nullptr;
}
if (eq->exp()->is_scalar())
break;
}
if (eq->exp()->is_scalar())
break;
}
while (simplified);
if (result && eq->exp()->is_scalar()) {
TRACE("grobner",);
}
TRACE("grobner", tout << "simplification result: "; display_equation(tout, *eq););
return result ? eq : nullptr;
}
const nex* nla_grobner::get_highest_monomial(const nex* e) const {
switch (e->type()) {
case expr_type::MUL:
return to_mul(e);
case expr_type::SUM:
return *(to_sum(e)->begin());
case expr_type::VAR:
return e;
default:
TRACE("grobner", tout << *e << "\n";);
return nullptr;
}
}
// source 3f + k + l = 0, so f = (-k - l)/3
// target 2fg + 3fp + e = 0
// target is replaced by 2(-k/3 - l/3)g + 3(-k/3 - l/3)p + e = -2/3kg -2/3lg - kp -lp + e
bool nla_grobner::simplify_target_monomials(equation * source, equation * target) {
auto * high_mon = get_highest_monomial(source->exp());
if (high_mon == nullptr)
return false;
SASSERT(high_mon->all_factors_are_elementary());
TRACE("grobner", tout << "source = "; display_equation(tout, *source) << "target = "; display_equation(tout, *target) << "high_mon = " << *high_mon << "\n";);
nex * te = target->exp();
nex_sum * targ_sum;
if (te->is_sum()) {
targ_sum = to_sum(te);
} else if (te->is_mul()) {
targ_sum = m_nex_creator.mk_sum(te);
} else {
TRACE("grobner", tout << "return false\n";);
return false;
}
return simplify_target_monomials_sum(source, target, targ_sum, high_mon);
}
unsigned nla_grobner::find_divisible(nex_sum* targ_sum,
const nex* high_mon) const {
for (unsigned j = 0; j < targ_sum->size(); j++) {
auto t = (*targ_sum)[j];
if (divide_ignore_coeffs_check_only(t, high_mon)) {
TRACE("grobner", tout << "yes div: " << *targ_sum << " / " << *high_mon << "\n";);
return j;
}
}
TRACE("grobner", tout << "no div: " << *targ_sum << " / " << *high_mon << "\n";);
return -1;
}
bool nla_grobner::simplify_target_monomials_sum(equation * source,
equation * target, nex_sum* targ_sum,
const nex* high_mon) {
unsigned j = find_divisible(targ_sum, high_mon);
if (j + 1 == 0)
return false;
m_changed_leading_term = (j == 0);
unsigned targ_orig_size = targ_sum->size();
for (; j < targ_orig_size; j++) {
simplify_target_monomials_sum_j(source, target, targ_sum, high_mon, j);
}
target->exp() = m_nex_creator.simplify(targ_sum);
target->dep() = m_dep_manager.mk_join(source->dep(), target->dep());
TRACE("grobner", tout << "target = "; display_equation(tout, *target););
return true;
}
nex_mul* nla_grobner::divide_ignore_coeffs(nex* ej, const nex* h) {
TRACE("grobner", tout << "ej = " << *ej << " , h = " << *h << "\n";);
if (!divide_ignore_coeffs_check_only(ej, h))
return nullptr;
return divide_ignore_coeffs_perform(ej, h);
}
bool nla_grobner::divide_ignore_coeffs_check_only_nex_mul(nex_mul* t , const nex* h) const {
TRACE("grobner", tout << "t = " << *t << ", h=" << *h << "\n";);
SASSERT(m_nex_creator.is_simplified(t) && m_nex_creator.is_simplified(h));
unsigned j = 0; // points to t
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
lpvar h_var = to_var(h->get_child_exp(k))->var();
bool p_swallowed = false;
for (; j < t->size() && !p_swallowed; j++) {
auto &tp = (*t)[j];
if (to_var(tp.e())->var() == h_var) {
if (tp.pow() >= static_cast<int>(h->get_child_pow(k))) {
p_swallowed = true;
}
}
}
if (!p_swallowed) {
TRACE("grobner", tout << "no div " << *t << " / " << *h << "\n";);
return false;
}
}
TRACE("grobner", tout << "division " << *t << " / " << *h << "\n";);
return true;
}
// return true if h divides t
bool nla_grobner::divide_ignore_coeffs_check_only(nex* n , const nex* h) const {
if (n->is_mul())
return divide_ignore_coeffs_check_only_nex_mul(to_mul(n), h);
if (!n->is_var())
return false;
const nex_var * v = to_var(n);
if (h->is_var()) {
return v->var() == to_var(h)->var();
}
if (h->is_mul() || h->is_var()) {
if (h->number_of_child_powers() > 1)
return false;
if (h->get_child_pow(0) != 1)
return false;
const nex* e = h->get_child_exp(0);
return e->is_var() && to_var(e)->var() == v->var();
}
return false;
}
nex_mul * nla_grobner::divide_ignore_coeffs_perform_nex_mul(nex_mul* t, const nex* h) {
nex_mul * r = m_nex_creator.mk_mul();
unsigned j = 0; // points to t
for(unsigned k = 0; k < h->number_of_child_powers(); k++) {
lpvar h_var = to_var(h->get_child_exp(k))->var();
for (; j < t->size(); j++) {
auto &tp = (*t)[j];
if (to_var(tp.e())->var() == h_var) {
int h_pow = h->get_child_pow(k);
SASSERT(tp.pow() >= h_pow);
j++;
if (tp.pow() > h_pow)
r->add_child_in_power(tp.e(), tp.pow() - h_pow);
break;
} else {
r->add_child_in_power(tp);
}
}
}
TRACE("grobner", tout << "r = " << *r << " = " << *t << " / " << *h << "\n";);
return r;
}
// perform the division t / h, but ignores the coefficients
// h does not change
nex_mul * nla_grobner::divide_ignore_coeffs_perform(nex* e, const nex* h) {
if (e->is_mul())
return divide_ignore_coeffs_perform_nex_mul(to_mul(e), h);
SASSERT(e->is_var());
return m_nex_creator.mk_mul(); // return the empty nex_mul
}
// if targ_sum->children()[j] = c*high_mon*p,
// and b*high_mon + e = 0, so high_mon = -e/b
// then targ_sum->children()[j] = - (c/b) * e*p
void nla_grobner::simplify_target_monomials_sum_j(equation * source, equation *target, nex_sum* targ_sum, const nex* high_mon, unsigned j) {
nex * ej = (*targ_sum)[j];
TRACE("grobner", tout << "high_mon = " << *high_mon << ", ej = " << *ej << "\n";);
nex_mul * ej_over_high_mon = divide_ignore_coeffs(ej, high_mon);
if (ej_over_high_mon == nullptr) {
TRACE("grobner", tout << "no div\n";);
return;
}
TRACE("grobner", tout << "ej_over_high_mon = " << *ej_over_high_mon << "\n";);
rational c = ej->is_mul()? to_mul(ej)->coeff() : rational(1);
nex_sum * ej_sum = m_nex_creator.mk_sum();
(*targ_sum)[j] = ej_sum;
add_mul_skip_first(ej_sum ,-c/high_mon->coeff(), source->exp(), ej_over_high_mon);
TRACE("grobner", tout << "targ_sum = " << *targ_sum << "\n";);
}
nla_grobner::equation * nla_grobner::simplify_source_target(equation * source, equation * target) {
TRACE("grobner", tout << "simplifying: "; display_equation(tout, *target); tout << "using: "; display_equation(tout, *source););
SASSERT(m_nex_creator.is_simplified(source->exp()));
SASSERT(m_nex_creator.is_simplified(target->exp()));
if (target->exp()->is_scalar()) {
return nullptr;
}
if (source->get_num_monomials() == 0)
return nullptr;
m_stats.m_simplify++;
bool result = false;
do {
if (simplify_target_monomials(source, target)) {
TRACE("grobner", tout << "simplified target = ";display_equation(tout, *target) << "\n";);
result = true;
} else {
break;
}
} while (!canceled());
TRACE("grobner", tout << "result: " << result << "\n"; if (result) display_equation(tout, *target););
if (result) {
target->dep() = m_dep_manager.mk_join(target->dep(), source->dep());
return target;
}
return nullptr;
}
void nla_grobner::process_simplified_target(ptr_buffer<equation>& to_insert, equation* new_target, equation*& target, ptr_buffer<equation>& to_remove) {
if (new_target != target) {
m_equations_to_unfreeze.push_back(target);
to_remove.push_back(target);
if (m_changed_leading_term) {
insert_to_simplify(new_target);
to_remove.push_back(target);
}
else {
to_insert.push_back(new_target);
}
target = new_target;
}
else {
if (m_changed_leading_term) {
insert_to_simplify(target);
to_remove.push_back(target);
}
}
if(m_intervals->check_cross_nested_expr(target->exp(), target->dep())) {
TRACE("grobner", tout << "created a lemma for "; display_equation(tout, *target) << "\n";
tout << "vars = \n";
for (lpvar j : get_vars_of_expr(target->exp())) {
c().print_var(j, tout);
}
tout << "\ntarget->exp() val = " << get_nex_val(target->exp(), [this](unsigned j) { return c().val(j); }) << "\n";);
register_report();
}
}
bool nla_grobner::simplify_to_superpose_with_eq(equation* eq) {
ptr_buffer<equation> to_insert;
ptr_buffer<equation> to_remove;
ptr_buffer<equation> to_delete;
equation_set::iterator it = m_to_superpose.begin();
equation_set::iterator end = m_to_superpose.end();
for (; it != end && !canceled() && !done(); ++it) {
equation * target = *it;
m_changed_leading_term = false;
// if the leading term is simplified, then the equation has to be moved to m_to_simplify
equation * new_target = simplify_source_target(eq, target);
if (new_target != nullptr) {
process_simplified_target(to_insert, new_target, target, to_remove);
}
if (is_trivial(target))
to_delete.push_back(target);
else
SASSERT(m_nex_creator.is_simplified(target->exp()));
}
for (equation* eq : to_insert)
insert_to_superpose(eq);
for (equation* eq : to_remove)
m_to_superpose.erase(eq);
for (equation* eq : to_delete)
del_equation(eq);
return !canceled();
}
void nla_grobner::simplify_to_superpose(equation* eq) {
ptr_buffer<equation> to_insert;
ptr_buffer<equation> to_remove;
ptr_buffer<equation> to_delete;
for (equation* target : m_to_simplify) {
equation * new_target = simplify_source_target(eq, target);
if (new_target != nullptr && new_target != target) {
m_equations_to_unfreeze.push_back(target);
to_insert.push_back(new_target);
to_remove.push_back(target);
target = new_target;
}
if (is_trivial(target))
to_delete.push_back(target);
}
for (equation* eq : to_insert)
insert_to_simplify(eq);
for (equation* eq : to_remove)
m_to_simplify.erase(eq);
for (equation* eq : to_delete)
del_equation(eq);
}
// if e is the sum then add to r all children of e multiplied by beta, except the first one
// which corresponds to the highest monomial,
// otherwise do nothing
void nla_grobner::add_mul_skip_first(nex_sum* r, const rational& beta, nex *e, nex_mul* c) {
if (e->is_sum()) {
nex_sum *es = to_sum(e);
for (unsigned j = 1; j < es->size(); j++) {
r->add_child(m_nex_creator.mk_mul(beta, (*es)[j], c));
}
TRACE("grobner", tout << "r = " << *r << "\n";);
} else {
TRACE("grobner", tout << "e = " << *e << "\n";);
}
}
// let e1: alpha*ab+q=0, and e2: beta*ac+e=0, then beta*qc - alpha*eb = 0
nex * nla_grobner::expr_superpose(nex* e1, nex* e2, const nex* ab, const nex* ac, nex_mul* b, nex_mul* c) {
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\n";);
nex_sum * r = m_nex_creator.mk_sum();
rational alpha = - ab->coeff();
TRACE("grobner", tout << "e2 *= " << alpha << "*(" << *b << ")\n";);
add_mul_skip_first(r, alpha, e2, b);
rational beta = ac->coeff();
TRACE("grobner", tout << "e1 *= " << beta << "*(" << *c << ")\n";);
add_mul_skip_first(r, beta, e1, c);
nex * ret = m_nex_creator.simplify(r);
TRACE("grobner", tout << "e1 = " << *e1 << "\ne2 = " << *e2 <<"\nsuperpose = " << *ret << "\n";);
if (ret->is_scalar()) {
TRACE("grobner",);
}
return ret;
}
// let eq1: ab+q=0, and eq2: ac+e=0, then qc - eb = 0
void nla_grobner::superpose(equation * eq1, equation * eq2) {
TRACE("grobner", tout << "eq1="; display_equation(tout, *eq1) << "eq2="; display_equation(tout, *eq2););
const nex * ab = get_highest_monomial(eq1->exp());
const nex * ac = get_highest_monomial(eq2->exp());
nex_mul *b, *c;
TRACE("grobner", tout << "ab="; if(ab) { tout << *ab; } else { tout << "null"; };
tout << " , " << " ac="; if(ac) { tout << *ac; } else { tout << "null"; }; tout << "\n";);
if (!find_b_c(ab, ac, b, c)) {
return;
}
equation* eq = alloc(equation);
init_equation(eq, expr_superpose( eq1->exp(), eq2->exp(), ab, ac, b, c), m_dep_manager.mk_join(eq1->dep(), eq2->dep()));
if(m_intervals->check_cross_nested_expr(eq->exp(), eq->dep())) {
register_report();
}
insert_to_simplify(eq);
}
void nla_grobner::register_report() {
m_reported++;
if (c().current_lemma().expl().size() == 0)
m_conflict = true;
}
// Let a be the greatest common divider of ab and bc,
// then ab/a is stored in b, and ac/a is stored in c
bool nla_grobner::find_b_c(const nex* ab, const nex* ac, nex_mul*& b, nex_mul*& c) {
if (!find_b_c_check_only(ab, ac))
return false;
b = m_nex_creator.mk_mul(); c = m_nex_creator.mk_mul();
unsigned ab_size = ab->number_of_child_powers();
unsigned ac_size = ac->number_of_child_powers();
unsigned i = 0, j = 0;
// nex_pow* bp = ab->begin();
// nex_pow* cp = ac->begin();
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.lt(m, n)) {
b->add_child_in_power(const_cast<nex*>(m), ab->get_child_pow(i));
if (++i == ab_size)
break;
} else if (m_nex_creator.lt(n, m)) {
c->add_child_in_power(const_cast<nex*>(n), ac->get_child_pow(j));
if (++j == ac_size)
break;
} else {
unsigned b_pow = ab->get_child_pow(i);
unsigned c_pow = ac->get_child_pow(j);
if (b_pow > c_pow) {
b->add_child_in_power(const_cast<nex*>(m), b_pow - c_pow);
} else if (c_pow > b_pow) {
c->add_child_in_power(const_cast<nex*>(n), c_pow - b_pow);
} // otherwise the power are equal and no child added to either b or c
i++; j++;
if (i == ab_size || j == ac_size) {
break;
}
}
}
while (i != ab_size) {
c->add_child_in_power(const_cast<nex*>(ab->get_child_exp(i)), ab->get_child_pow(i));
i++;
}
while (j != ac_size) {
c->add_child_in_power(const_cast<nex*>(ac->get_child_exp(j)), ac->get_child_pow(j));
j++;
}
TRACE("nla_grobner", tout << "b=" << *b << ", c=" <<*c << "\n";);
return true;
}
// Finds out if ab and bc have a non-trivial common divider
bool nla_grobner::find_b_c_check_only(const nex* ab, const nex* ac) const {
if (ab == nullptr || ac == nullptr)
return false;
SASSERT(m_nex_creator.is_simplified(ab) && m_nex_creator.is_simplified(ab));
unsigned i = 0, j = 0; // i points to ab, j points to ac
for (;;) {
const nex* m = ab->get_child_exp(i);
const nex* n = ac->get_child_exp(j);
if (m_nex_creator.lt(m , n)) {
i++;
if (i == ab->number_of_child_powers())
return false;
} else if (m_nex_creator.lt(n, m)) {
j++;
if (j == ac->number_of_child_powers())
return false;
} else {
TRACE("grobner", tout << "found common " << *m << "\n";);
return true;
}
}
TRACE("grobner", tout << "not found common " << " in " << *ab << " and " << *ac << "\n";);
return false;
}
void nla_grobner::superpose(equation * eq) {
for (equation * target : m_to_superpose) {
superpose(eq, target);
}
}
bool nla_grobner::compute_basis_step() {
equation * eq = pick_next();
if (!eq)
return true;
m_stats.m_num_processed++;
equation * new_eq = simplify_using_processed(eq);
if (new_eq != nullptr && eq != new_eq) {
// equation was updated using non destructive updates
m_equations_to_unfreeze.push_back(eq);
eq = new_eq;
}
if (canceled()) return false;
if (!simplify_to_superpose_with_eq(eq)) return false;
TRACE("grobner", tout << "eq = "; display_equation(tout, *eq););
superpose(eq);
insert_to_superpose(eq);
simplify_to_superpose(eq);
TRACE("grobner", tout << "end of iteration:\n"; display(tout););
return false;
}
void nla_grobner::compute_basis(){
compute_basis_init();
if (!compute_basis_loop()) {
set_gb_exhausted();
}
}
void nla_grobner::compute_basis_init(){
c().lp_settings().stats().m_grobner_basis_computatins++;
m_num_of_equations = 0;
}
bool nla_grobner::canceled() const {
return c().lp_settings().get_cancel_flag();
}
bool nla_grobner::done() const {
if (
m_num_of_equations >= c().m_nla_settings.grobner_eqs_threshold()
||
canceled()
||
m_reported > 0 // 10
||
m_conflict) {
TRACE("grobner", tout << "done()\n";);
return true;
}
return false;
}
bool nla_grobner::compute_basis_loop(){
while (!done()) {
if (compute_basis_step())
return true;
}
return false;
}
void nla_grobner::set_gb_exhausted(){
m_nl_gb_exhausted = true;
}
void nla_grobner::update_statistics(){
/* todo : implement
m_stats.m_gb_simplify += gb.m_stats.m_simplify;
m_stats.m_gb_superpose += gb.m_stats.m_superpose;
m_stats.m_gb_num_to_superpose += gb.m_stats.m_num_to_superpose;
m_stats.m_gb_compute_basis++;*/
}
bool nla_grobner::push_calculation_forward(ptr_vector<equation>& eqs, unsigned & next_weight) {
return scan_for_linear(eqs)
&&
(!m_nl_gb_exhausted) &&
try_to_modify_eqs(eqs, next_weight);
}
bool nla_grobner::try_to_modify_eqs(ptr_vector<equation>& eqs, unsigned& next_weight) {
NOT_IMPLEMENTED_YET();
return false;
}
void nla_grobner::grobner_lemmas() {
c().lp_settings().stats().m_grobner_calls++;
init();
ptr_vector<equation> eqs;
unsigned next_weight =
(unsigned)(var_weight::MAX_DEFAULT_WEIGHT) + 1; // next weight using during perturbation phase.
do {
TRACE("grobner", tout << "before:\n"; display(tout););
compute_basis();
update_statistics();
TRACE("grobner", tout << "after:\n"; display(tout););
// if (find_conflict(eqs))
// return;
}
while(push_calculation_forward(eqs, next_weight));
}
void nla_grobner:: del_equations(unsigned old_size) {
TRACE("grobner", );
SASSERT(m_equations_to_delete.size() >= old_size);
equation_vector::iterator it = m_equations_to_delete.begin();
equation_vector::iterator end = m_equations_to_delete.end();
it += old_size;
for (; it != end; ++it) {
equation * eq = *it;
if (eq)
del_equation(eq);
}
m_equations_to_delete.shrink(old_size);
}
void nla_grobner::display_equations(std::ostream & out, equation_set const & v, char const * header) const {
out << header << "\n";
for (const equation* e : v)
display_equation(out, *e);
}
std::ostream& nla_grobner::display_equation(std::ostream & out, const equation & eq) const {
out << "m_exp = " << *eq.exp() << "\n";
out << "dep = "; display_dependency(out, eq.dep()) << "\n";
return out;
}
void nla_grobner::assert_eq_0(nex* e, ci_dependency * dep) {
TRACE("grobner", tout << "e = " << *e << "\n";);
if (e == nullptr)
return;
equation * eq = alloc(equation);
init_equation(eq, e, dep);
insert_to_simplify(eq);
}
void nla_grobner::init_equation(equation* eq, nex*e, ci_dependency * dep) {
unsigned bidx = m_equations_to_delete.size();
eq->m_bidx = bidx;
eq->dep() = dep;
eq->m_lc = true;
eq->exp() = e;
m_equations_to_delete.push_back(eq);
SASSERT(m_equations_to_delete[eq->m_bidx] == eq);
}
nla_grobner::~nla_grobner() {
del_equations(0);
}
std::ostream& nla_grobner::display_dependency(std::ostream& out, ci_dependency* dep) const {
svector<lp::constraint_index> expl;
m_dep_manager.linearize(dep, expl);
{
lp::explanation e(expl);
if (!expl.empty()) {
out << "upper constraints\n";
m_core->print_explanation(e, out);
}else {
out << "no constraints\n";
}
}
return out;
}
} // end of nla namespace