mirror of
https://github.com/Z3Prover/z3
synced 2026-02-20 07:24:40 +00:00
347 lines
13 KiB
C++
347 lines
13 KiB
C++
/*++
|
|
Copyright (c) 2025 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
finite_set_decl_plugin.cpp
|
|
|
|
Abstract:
|
|
|
|
Declaration plugin for finite sets
|
|
|
|
Author:
|
|
|
|
GitHub Copilot Agent 2025
|
|
|
|
Revision History:
|
|
|
|
--*/
|
|
#include<sstream>
|
|
#include "ast/finite_set_decl_plugin.h"
|
|
#include "ast/arith_decl_plugin.h"
|
|
#include "ast/array_decl_plugin.h"
|
|
#include "ast/polymorphism_util.h"
|
|
#include "ast/ast_pp.h"
|
|
#include "util/warning.h"
|
|
|
|
finite_set_decl_plugin::finite_set_decl_plugin():
|
|
m_init(false) {
|
|
m_names.resize(LAST_FINITE_SET_OP, nullptr);
|
|
m_names[OP_FINITE_SET_EMPTY] = "set.empty";
|
|
m_names[OP_FINITE_SET_SINGLETON] = "set.singleton";
|
|
m_names[OP_FINITE_SET_UNION] = "set.union";
|
|
m_names[OP_FINITE_SET_INTERSECT] = "set.intersect";
|
|
m_names[OP_FINITE_SET_DIFFERENCE] = "set.difference";
|
|
m_names[OP_FINITE_SET_IN] = "set.in";
|
|
m_names[OP_FINITE_SET_SIZE] = "set.size";
|
|
m_names[OP_FINITE_SET_SUBSET] = "set.subset";
|
|
m_names[OP_FINITE_SET_MAP] = "set.map";
|
|
m_names[OP_FINITE_SET_FILTER] = "set.filter";
|
|
m_names[OP_FINITE_SET_RANGE] = "set.range";
|
|
m_names[OP_FINITE_SET_EXT] = "set.diff";
|
|
m_names[OP_FINITE_SET_MAP_INVERSE] = "set.map.inverse";
|
|
m_names[OP_FINITE_SET_UNIQUE_SET] = "set.unique";
|
|
}
|
|
|
|
finite_set_decl_plugin::~finite_set_decl_plugin() {
|
|
for (polymorphism::psig* s : m_sigs)
|
|
dealloc(s);
|
|
}
|
|
|
|
void finite_set_decl_plugin::init() {
|
|
if (m_init) return;
|
|
ast_manager& m = *m_manager;
|
|
array_util autil(m);
|
|
m_init = true;
|
|
|
|
sort* A = m.mk_type_var(symbol("A"));
|
|
sort* B = m.mk_type_var(symbol("B"));
|
|
parameter paramA(A);
|
|
parameter paramB(B);
|
|
sort* setA = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mA);
|
|
sort* setB = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mB);
|
|
sort* boolT = m.mk_bool_sort();
|
|
sort* intT = arith_util(m).mk_int();
|
|
parameter paramInt(intT);
|
|
sort* setInt = m.mk_sort(m_family_id, FINITE_SET_SORT, 1, ¶mInt);
|
|
sort* arrAB = autil.mk_array_sort(A, B);
|
|
sort* arrABool = autil.mk_array_sort(A, boolT);
|
|
|
|
sort* setAsetA[2] = { setA, setA };
|
|
sort* AsetA[2] = { A, setA };
|
|
sort* arrABsetA[2] = { arrAB, setA };
|
|
sort* arrABoolsetA[2] = { arrABool, setA };
|
|
sort* intintT[2] = { intT, intT };
|
|
sort *arrABBsetA[3] = {arrAB, B, setA};
|
|
|
|
m_sigs.resize(LAST_FINITE_SET_OP);
|
|
m_sigs[OP_FINITE_SET_EMPTY] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EMPTY], 1, 0, nullptr, setA);
|
|
m_sigs[OP_FINITE_SET_SINGLETON] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SINGLETON], 1, 1, &A, setA);
|
|
m_sigs[OP_FINITE_SET_UNION] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_UNION], 1, 2, setAsetA, setA);
|
|
m_sigs[OP_FINITE_SET_INTERSECT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_INTERSECT], 1, 2, setAsetA, setA);
|
|
m_sigs[OP_FINITE_SET_DIFFERENCE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_DIFFERENCE], 1, 2, setAsetA, setA);
|
|
m_sigs[OP_FINITE_SET_IN] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_IN], 1, 2, AsetA, boolT);
|
|
m_sigs[OP_FINITE_SET_SIZE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SIZE], 1, 1, &setA, intT);
|
|
m_sigs[OP_FINITE_SET_SUBSET] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_SUBSET], 1, 2, setAsetA, boolT);
|
|
m_sigs[OP_FINITE_SET_MAP] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_MAP], 2, 2, arrABsetA, setB);
|
|
m_sigs[OP_FINITE_SET_FILTER] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_FILTER], 1, 2, arrABoolsetA, setA);
|
|
m_sigs[OP_FINITE_SET_RANGE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_RANGE], 0, 2, intintT, setInt);
|
|
m_sigs[OP_FINITE_SET_EXT] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_EXT], 1, 2, setAsetA, A);
|
|
m_sigs[OP_FINITE_SET_MAP_INVERSE] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_MAP_INVERSE], 2, 3, arrABBsetA, A);
|
|
m_sigs[OP_FINITE_SET_UNIQUE_SET] = alloc(polymorphism::psig, m, m_names[OP_FINITE_SET_UNIQUE_SET], 1, 2, intintT, setA);
|
|
}
|
|
|
|
sort * finite_set_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
|
|
if (k == FINITE_SET_SORT) {
|
|
if (num_parameters != 1) {
|
|
m_manager->raise_exception("FiniteSet sort expects exactly one parameter (element sort)");
|
|
return nullptr;
|
|
}
|
|
if (!parameters[0].is_ast() || !is_sort(parameters[0].get_ast())) {
|
|
m_manager->raise_exception("FiniteSet sort parameter must be a sort");
|
|
return nullptr;
|
|
}
|
|
sort * element_sort = to_sort(parameters[0].get_ast());
|
|
sort_size sz;
|
|
|
|
// Compute the size of the finite_set sort based on the element sort
|
|
sort_size const& elem_sz = element_sort->get_num_elements();
|
|
if (elem_sz.is_finite() && !elem_sz.is_very_big()) {
|
|
uint64_t elem_size = elem_sz.size();
|
|
// If elem_size > 30, the powerset would be > 2^30, so mark as very_big
|
|
if (elem_size > 30) {
|
|
sz = sort_size::mk_very_big();
|
|
}
|
|
else {
|
|
// Compute 2^elem_size
|
|
sz = sort_size(rational::power_of_two(static_cast<unsigned>(elem_size)));
|
|
}
|
|
}
|
|
else {
|
|
// If element sort is infinite or very_big, the finite_set has the same size
|
|
sz = elem_sz;
|
|
}
|
|
|
|
sort_info info(m_family_id, FINITE_SET_SORT, sz, num_parameters, parameters);
|
|
return m_manager->mk_sort(symbol("FiniteSet"), info);
|
|
}
|
|
m_manager->raise_exception("unknown finite set sort");
|
|
return nullptr;
|
|
}
|
|
|
|
bool finite_set_decl_plugin::is_finite_set(sort* s) const {
|
|
return s->get_family_id() == m_family_id && s->get_decl_kind() == FINITE_SET_SORT;
|
|
}
|
|
|
|
sort * finite_set_decl_plugin::get_element_sort(sort* finite_set_sort) const {
|
|
if (!is_finite_set(finite_set_sort)) {
|
|
return nullptr;
|
|
}
|
|
if (finite_set_sort->get_num_parameters() != 1) {
|
|
return nullptr;
|
|
}
|
|
parameter const* params = finite_set_sort->get_parameters();
|
|
if (!params[0].is_ast() || !is_sort(params[0].get_ast())) {
|
|
return nullptr;
|
|
}
|
|
return to_sort(params[0].get_ast());
|
|
}
|
|
|
|
func_decl * finite_set_decl_plugin::mk_empty(sort* finite_set_sort) {
|
|
parameter param(finite_set_sort);
|
|
if (!is_finite_set(finite_set_sort))
|
|
m_manager->raise_exception("set.empty range must be a finite set sort");
|
|
sort * const * no_domain = nullptr;
|
|
return m_manager->mk_func_decl(m_sigs[OP_FINITE_SET_EMPTY]->m_name, 0u, no_domain, finite_set_sort,
|
|
func_decl_info(m_family_id, OP_FINITE_SET_EMPTY, 1, ¶m));
|
|
}
|
|
|
|
func_decl * finite_set_decl_plugin::mk_finite_set_op(decl_kind k, unsigned arity, sort * const * domain, sort* range) {
|
|
ast_manager& m = *m_manager;
|
|
polymorphism::util poly_util(m);
|
|
sort_ref rng(m);
|
|
poly_util.match(*m_sigs[k], arity, domain, range, rng);
|
|
unsigned np = k == OP_FINITE_SET_UNIQUE_SET ? 1 : 0;
|
|
parameter p(rng.get());
|
|
func_decl_info info(m_family_id, k, np, &p);
|
|
if (k == OP_FINITE_SET_UNION || k == OP_FINITE_SET_INTERSECT) {
|
|
info.set_commutative(true);
|
|
info.set_associative(true);
|
|
}
|
|
return m.mk_func_decl(m_sigs[k]->m_name, arity, domain, rng, info);
|
|
}
|
|
|
|
func_decl * finite_set_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters,
|
|
parameter const * parameters,
|
|
unsigned arity, sort * const * domain,
|
|
sort * range) {
|
|
init();
|
|
|
|
switch (k) {
|
|
case OP_FINITE_SET_EMPTY:
|
|
if (!range) {
|
|
if ((num_parameters != 1 || !parameters[0].is_ast() || !is_sort(parameters[0].get_ast()))) {
|
|
m_manager->raise_exception("set.empty requires one sort parameter");
|
|
return nullptr;
|
|
}
|
|
range = to_sort(parameters[0].get_ast());
|
|
}
|
|
return mk_empty(range);
|
|
case OP_FINITE_SET_UNIQUE_SET:
|
|
if (!range) {
|
|
if ((num_parameters != 1 || !parameters[0].is_ast() || !is_sort(parameters[0].get_ast()))) {
|
|
m_manager->raise_exception("set.unique requires one sort parameter");
|
|
return nullptr;
|
|
}
|
|
range = to_sort(parameters[0].get_ast());
|
|
}
|
|
return mk_finite_set_op(k, arity, domain, range);
|
|
case OP_FINITE_SET_UNION:
|
|
case OP_FINITE_SET_INTERSECT:
|
|
return mk_finite_set_op(k, 2, domain, range);
|
|
case OP_FINITE_SET_SINGLETON:
|
|
case OP_FINITE_SET_DIFFERENCE:
|
|
case OP_FINITE_SET_IN:
|
|
case OP_FINITE_SET_SIZE:
|
|
case OP_FINITE_SET_SUBSET:
|
|
case OP_FINITE_SET_MAP:
|
|
case OP_FINITE_SET_MAP_INVERSE:
|
|
case OP_FINITE_SET_FILTER:
|
|
case OP_FINITE_SET_RANGE:
|
|
case OP_FINITE_SET_EXT:
|
|
return mk_finite_set_op(k, arity, domain, range);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void finite_set_decl_plugin::get_op_names(svector<builtin_name>& op_names, symbol const & logic) {
|
|
for (unsigned i = 0; i < m_names.size(); ++i)
|
|
if (m_names[i] && i != OP_FINITE_SET_UNIQUE_SET)
|
|
op_names.push_back(builtin_name(std::string(m_names[i]), i));
|
|
}
|
|
|
|
void finite_set_decl_plugin::get_sort_names(svector<builtin_name>& sort_names, symbol const & logic) {
|
|
sort_names.push_back(builtin_name("FiniteSet", FINITE_SET_SORT));
|
|
}
|
|
|
|
expr * finite_set_decl_plugin::get_some_value(sort * s) {
|
|
if (is_finite_set(s)) {
|
|
// Return empty set for the given sort
|
|
parameter param(s);
|
|
return m_manager->mk_app(m_family_id, OP_FINITE_SET_EMPTY, 1, ¶m, 0, nullptr);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool finite_set_decl_plugin::is_fully_interp(sort * s) const {
|
|
SASSERT(is_finite_set(s));
|
|
sort* element_sort = get_element_sort(s);
|
|
return element_sort && m_manager->is_fully_interp(element_sort);
|
|
}
|
|
|
|
bool finite_set_decl_plugin::is_value(app * e) const {
|
|
// Check if e is a union of either empty sets or singleton sets,
|
|
// where the singleton member is a value.
|
|
// Use ptr_buffer and expr_fast_mark1 to avoid exponential overhead.
|
|
|
|
ptr_buffer<expr> todo;
|
|
expr_fast_mark1 visited;
|
|
|
|
todo.push_back(e);
|
|
|
|
while (!todo.empty()) {
|
|
expr* current = todo.back();
|
|
todo.pop_back();
|
|
|
|
// Skip if already visited
|
|
if (visited.is_marked(current))
|
|
continue;
|
|
visited.mark(current);
|
|
|
|
// Check if current is an app
|
|
if (!is_app(current))
|
|
return false;
|
|
|
|
app* a = to_app(current);
|
|
|
|
// Check if it's an empty set
|
|
if (is_app_of(a, m_family_id, OP_FINITE_SET_EMPTY))
|
|
continue;
|
|
|
|
// Check if it's a singleton with a value element
|
|
if (is_app_of(a, m_family_id, OP_FINITE_SET_SINGLETON)) {
|
|
if (a->get_num_args() != 1)
|
|
return false;
|
|
expr* elem = a->get_arg(0);
|
|
if (!m_manager->is_value(elem))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
bool is_setop =
|
|
is_app_of(a, m_family_id, OP_FINITE_SET_UNION)
|
|
|| is_app_of(a, m_family_id, OP_FINITE_SET_INTERSECT)
|
|
|| is_app_of(a, m_family_id, OP_FINITE_SET_DIFFERENCE);
|
|
// Check if it's a union
|
|
if (is_setop) {
|
|
// Add arguments to todo list
|
|
for (auto arg : *a)
|
|
todo.push_back(arg);
|
|
continue;
|
|
}
|
|
|
|
if (is_app_of(a, m_family_id, OP_FINITE_SET_RANGE)) {
|
|
for (auto arg : *a)
|
|
if (!m_manager->is_value(arg))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// can add also ranges where lo and hi are values.
|
|
|
|
// If it's none of the above, it's not a value
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool finite_set_decl_plugin::is_unique_value(app* e) const {
|
|
// Empty set is a value
|
|
// A singleton of a unique value is tagged as unique
|
|
// ranges are not considered unique even if the bounds are values
|
|
return is_app_of(e, m_family_id, OP_FINITE_SET_EMPTY) ||
|
|
(is_app_of(e, m_family_id, OP_FINITE_SET_SINGLETON) && m_manager->is_unique_value(to_app(e->get_arg(0))));
|
|
}
|
|
|
|
bool finite_set_decl_plugin::are_distinct(app* e1, app* e2) const {
|
|
if (is_unique_value(e1) && is_unique_value(e2))
|
|
return e1 != e2;
|
|
finite_set_recognizers r(get_family_id());
|
|
if (r.is_empty(e1) && r.is_singleton(e2))
|
|
return true;
|
|
if (r.is_singleton(e1) && r.is_empty(e2))
|
|
return true;
|
|
expr *x = nullptr, *y = nullptr;
|
|
if(r.is_singleton(e1, x) && r.is_singleton(e2, y))
|
|
return m_manager->are_distinct(x, y);
|
|
|
|
// TODO: could be extended to cases where we can prove the sets are different by containing one element
|
|
// that the other doesn't contain. Such as (union (singleton a) (singleton b)) and (singleton c) where c is different from a, b.
|
|
return false;
|
|
}
|
|
|
|
func_decl *finite_set_util::mk_range_decl() {
|
|
arith_util a(m_manager);
|
|
sort *i = a.mk_int();
|
|
sort *domain[2] = {i, i};
|
|
return m_manager.mk_func_decl(m_fid, OP_FINITE_SET_RANGE, 0, nullptr, 2, domain, nullptr);
|
|
}
|
|
|
|
app* finite_set_util::mk_unique_set(expr* index, expr* cardinality, sort* s) {
|
|
parameter params[1] = { parameter(s) };
|
|
expr *args[2] = {index, cardinality};
|
|
return m_manager.mk_app(m_fid, OP_FINITE_SET_UNIQUE_SET, 1, params, 2, args);
|
|
}
|
|
|