3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-11 09:44:43 +00:00
z3/src/math/polysat/ule_constraint.cpp
Jakob Rath fd1758ffab
Polysat: check test results, forbidden intervals for coefficient -1 (#5241)
* Use scoped_ptr for condition

* Check solver result in unit tests

* Add test for unusual cjust

* Add solver::get_value

* Broken assertion

* Support forbidden interval for coefficient -1
2021-05-04 09:33:55 -07:00

286 lines
9.3 KiB
C++

/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat unsigned <= constraints
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#include "math/polysat/constraint.h"
#include "math/polysat/solver.h"
#include "math/polysat/log.h"
namespace polysat {
std::ostream& ule_constraint::display(std::ostream& out) const {
return out << m_lhs << (sign() == pos_t ? " <=u " : " >u ") << m_rhs << " [" << m_status << "]";
}
constraint* ule_constraint::resolve(solver& s, pvar v) {
return nullptr;
}
void ule_constraint::narrow(solver& s) {
SASSERT(!is_undef());
LOG("Assignment: " << s.m_search);
auto p = lhs().subst_val(s.m_search);
LOG("Substituted LHS: " << lhs() << " := " << p);
auto q = rhs().subst_val(s.m_search);
LOG("Substituted RHS: " << rhs() << " := " << q);
if (is_always_false(p, q)) {
s.set_conflict(*this);
return;
}
if (p.is_val() && q.is_val()) {
SASSERT(!is_positive() || p.val() <= q.val());
SASSERT(!is_negative() || p.val() > q.val());
return;
}
pvar v = null_var;
rational a, b, c, d;
if (p.is_unilinear() && q.is_unilinear() && p.var() == q.var()) {
// a*x + b <=u c*x + d
v = p.var();
a = p.hi().val();
b = p.lo().val();
c = q.hi().val();
d = q.lo().val();
}
else if (p.is_unilinear() && q.is_val()) {
// a*x + b <=u d
v = p.var();
a = p.hi().val();
b = p.lo().val();
c = rational::zero();
d = q.val();
}
else if (p.is_val() && q.is_unilinear()) {
// b <=u c*x + d
v = q.var();
a = rational::zero();
b = p.val();
c = q.hi().val();
d = q.lo().val();
}
if (v != null_var) {
bddv const& x = s.var2bits(v).var();
bddv l = a * x + b;
bddv r = c * x + d;
bdd xs = is_positive() ? (l <= r) : (l > r);
s.push_cjust(v, this);
s.intersect_viable(v, xs);
rational val;
if (s.find_viable(v, val) == dd::find_t::singleton) {
s.propagate(v, val, *this);
}
return;
}
// TODO: other cheap constraints possible?
}
bool ule_constraint::is_always_false(pdd const& lhs, pdd const& rhs) {
// TODO: other conditions (e.g. when forbidden interval would be full)
VERIFY(!is_undef());
if (is_positive())
return lhs.is_val() && rhs.is_val() && lhs.val() > rhs.val();
else
return lhs.is_val() && rhs.is_val() && lhs.val() <= rhs.val();
}
bool ule_constraint::is_always_false() {
return is_always_false(lhs(), rhs());
}
bool ule_constraint::is_currently_false(solver& s) {
auto p = lhs().subst_val(s.m_search);
auto q = rhs().subst_val(s.m_search);
return is_always_false(p, q);
}
bool ule_constraint::is_currently_true(solver& s) {
auto p = lhs().subst_val(s.m_search);
auto q = rhs().subst_val(s.m_search);
VERIFY(!is_undef());
if (is_positive())
return p.is_val() && q.is_val() && p.val() <= q.val();
else
return p.is_val() && q.is_val() && p.val() > q.val();
}
bool ule_constraint::forbidden_interval(solver& s, pvar v, eval_interval& out_interval, scoped_ptr<constraint>& out_neg_cond)
{
SASSERT(!is_undef());
// Current only works when degree(v) is at most one on both sides
unsigned const deg1 = lhs().degree(v);
unsigned const deg2 = rhs().degree(v);
if (deg1 > 1 || deg2 > 1)
return false;
if (deg1 == 0 && deg2 == 0) {
UNREACHABLE(); // this case is not useful for conflict resolution (but it could be handled in principle)
// i is empty or full, condition would be this constraint itself?
return true;
}
unsigned const sz = s.size(v);
dd::pdd_manager& m = s.sz2pdd(sz);
rational const pow2 = rational::power_of_two(sz);
rational const minus_one = pow2 - 1;
pdd p1 = m.zero();
pdd e1 = m.zero();
if (deg1 == 0)
e1 = lhs();
else
lhs().factor(v, 1, p1, e1);
pdd p2 = m.zero();
pdd e2 = m.zero();
if (deg2 == 0)
e2 = rhs();
else
rhs().factor(v, 1, p2, e2);
// Interval extraction only works if v-coefficients are the same
if (deg1 != 0 && deg2 != 0 && p1 != p2)
return false;
// Currently only works if coefficient is a power of two
if (!p1.is_val())
return false;
if (!p2.is_val())
return false;
rational a1 = p1.val();
rational a2 = p2.val();
// TODO: to express the interval for coefficient 2^i symbolically, we need right-shift/upper-bits-extract in the language.
// So currently we can only do it if the coefficient is 1 or -1.
if (!a1.is_zero() && !a1.is_one() && a1 != minus_one)
return false;
if (!a2.is_zero() && !a2.is_one() && a2 != minus_one)
return false;
/*
unsigned j1 = 0;
unsigned j2 = 0;
if (!a1.is_zero() && !a1.is_power_of_two(j1))
return false;
if (!a2.is_zero() && !a2.is_power_of_two(j2))
return false;
*/
rational const y_coeff = a1.is_zero() ? a2 : a1;
SASSERT(!y_coeff.is_zero());
// Concrete values of evaluable terms
auto e1s = e1.subst_val(s.m_search);
auto e2s = e2.subst_val(s.m_search);
SASSERT(e1s.is_val());
SASSERT(e2s.is_val());
bool is_trivial;
pdd condition_body = m.zero();
pdd lo = m.zero();
rational lo_val = rational::zero();
pdd hi = m.zero();
rational hi_val = rational::zero();
if (a2.is_zero()) {
SASSERT(!a1.is_zero());
// e1 + t <= e2, with t = 2^j1*y
// condition for empty/full: e2 == -1
is_trivial = (e2s + 1).is_zero();
condition_body = e2 + 1;
if (!is_trivial) {
lo = e2 - e1 + 1;
lo_val = (e2s - e1s + 1).val();
hi = -e1;
hi_val = (-e1s).val();
}
}
else if (a1.is_zero()) {
SASSERT(!a2.is_zero());
// e1 <= e2 + t, with t = 2^j2*y
// condition for empty/full: e1 == 0
is_trivial = e1s.is_zero();
condition_body = e1;
if (!is_trivial) {
lo = -e2;
lo_val = (-e2s).val();
hi = e1 - e2;
hi_val = (e1s - e2s).val();
}
}
else {
SASSERT(!a1.is_zero());
SASSERT(!a2.is_zero());
SASSERT_EQ(a1, a2);
// e1 + t <= e2 + t, with t = 2^j1*y = 2^j2*y
// condition for empty/full: e1 == e2
is_trivial = e1s.val() == e2s.val();
condition_body = e1 - e2;
if (!is_trivial) {
lo = -e2;
lo_val = (-e2s).val();
hi = -e1;
hi_val = (-e1s).val();
}
}
if (condition_body.is_val()) {
// Condition is trivial; no need to create a constraint for that.
SASSERT(is_trivial == condition_body.is_zero());
out_neg_cond = nullptr;
}
else
out_neg_cond = constraint::eq(level(), s.m_next_bvar++, is_trivial ? neg_t : pos_t, condition_body, m_dep);
if (is_trivial) {
if (is_positive())
// TODO: we cannot use empty intervals for interpolation. So we
// can remove the empty case (make it represent 'full' instead),
// and return 'false' here. Then we do not need the proper/full
// tag on intervals.
out_interval = eval_interval::empty(m);
else
out_interval = eval_interval::full();
} else {
if (y_coeff == minus_one) {
// Transform according to: y \in [l;u[ <=> -y \in [1-u;1-l[
// -y \in [1-u;1-l[
// <=> -y - (1 - u) < (1 - l) - (1 - u) { by: y \in [l;u[ <=> y - l < u - l }
// <=> u - y - 1 < u - l { simplified }
// <=> (u-l) - (u-y-1) - 1 < u-l { by: a < b <=> b - a - 1 < b }
// <=> y - l < u - l { simplified }
// <=> y \in [l;u[.
lo = 1 - lo;
hi = 1 - hi;
swap(lo, hi);
lo_val = mod(1 - lo_val, pow2);
hi_val = mod(1 - hi_val, pow2);
lo_val.swap(hi_val);
}
else
SASSERT(y_coeff.is_one());
if (is_negative()) {
swap(lo, hi);
lo_val.swap(hi_val);
}
out_interval = eval_interval::proper(lo, lo_val, hi, hi_val);
}
return true;
}
}