3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-26 18:45:33 +00:00
z3/src/api/dotnet/NativeSolver.cs
John Fleisher ce04c16a6f
Jfleisher/nightlynuget (#5916)
* WiP: Test nightly version number change

* Fix debug assert

* WiP: test nuget publish to AzDo feed for nightly build

* WiP: Make Nuget deploy separate stage

* WiP: fix nightly stage name

* change nuget push to vstsfeed

* Try case sensitive name for artifacts

* WiP: use artifact folder names

* add Rev version to package

* WiP: build def variation on nightly build version

* WiP: use Build_BuildNumber and Build_DefinitionName

* WiP: using hyphen in nightly version

* Tag nightly packages with datetime

* fix commit

* Build.BuildId and Build.DefinitionName

* WiP: change suffix format to lead with alpha

* test z3public feed publish

* revert public publish test

* WiP: test build# versioning scheme

* WiP: another variant on version number for nightly

Co-authored-by: jfleisher <jofleish@microsoft.com>
Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2022-03-22 12:19:58 -07:00

451 lines
16 KiB
C#

/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
NativeSolver.cs
Abstract:
Z3 Managed API: Native Solver
Author:
Christoph Wintersteiger (cwinter) 2012-03-22
Nikolaj Bjorner (nbjorner) 2022-03-01
Notes:
--*/
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
namespace Microsoft.Z3
{
using Z3_ast = System.IntPtr;
using Z3_context = System.IntPtr;
using Z3_func_decl = System.IntPtr;
using Z3_params = System.IntPtr;
using Z3_solver = System.IntPtr;
using Z3_sort = System.IntPtr;
using Z3_symbol = System.IntPtr;
/// <summary>
/// Solvers.
/// </summary>
public class NativeSolver : IDisposable
{
/// <summary>
/// A string that describes all available solver parameters.
/// </summary>
public string Help => Native.Z3_solver_get_help(nCtx, z3solver);
private void SetParam(Action<Z3_params> setter)
{
Z3_params p = Native.Z3_mk_params(nCtx);
Native.Z3_params_inc_ref(nCtx, p);
setter(p);
Native.Z3_solver_set_params(nCtx, z3solver, p);
Native.Z3_params_dec_ref(nCtx, p);
}
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(string name, bool value)
{
SetParam((Z3_params p) => Native.Z3_params_set_bool(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), (byte)(value ? 1 : 0)));
}
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(string name, uint value)
{
SetParam((Z3_params p) => Native.Z3_params_set_uint(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value));
}
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(string name, double value)
{
SetParam((Z3_params p) => Native.Z3_params_set_double(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value));
}
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(string name, string value)
{
var value_sym = Native.Z3_mk_string_symbol(nCtx, value);
SetParam((Z3_params p) => Native.Z3_params_set_symbol(nCtx, p, Native.Z3_mk_string_symbol(nCtx, name), value_sym));
}
#if false
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(string name, Symbol value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(Symbol name, bool value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(Symbol name, uint value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(Symbol name, double value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(Symbol name, string value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Sets parameter on the solver
/// </summary>
public void Set(Symbol name, Symbol value) { Parameters = Context.MkParams().Add(name, value); }
/// <summary>
/// Retrieves parameter descriptions for solver.
/// </summary>
public ParamDescrs ParameterDescriptions
{
get { return new ParamDescrs(Context, Native.Z3_solver_get_param_descrs(nCtx, NativeObject)); }
}
#endif
/// <summary>
/// The current number of backtracking points (scopes).
/// </summary>
/// <seealso cref="Pop"/>
/// <seealso cref="Push"/>
public uint NumScopes => Native.Z3_solver_get_num_scopes(nCtx, z3solver);
/// <summary>
/// Creates a backtracking point.
/// </summary>
/// <seealso cref="Pop"/>
public void Push() => Native.Z3_solver_push(nCtx, z3solver);
/// <summary>
/// Backtracks <paramref name="n"/> backtracking points.
/// </summary>
/// <remarks>Note that an exception is thrown if <paramref name="n"/> is not smaller than <c>NumScopes</c></remarks>
/// <seealso cref="Push"/>
public void Pop(uint n = 1) => Native.Z3_solver_pop(nCtx, z3solver, n);
/// <summary>
/// Resets the Solver.
/// </summary>
/// <remarks>This removes all assertions from the solver.</remarks>
public void Reset() => Native.Z3_solver_reset(nCtx, z3solver);
/// <summary>
/// Assert a constraint (or multiple) into the solver.
/// </summary>
public void Assert(params Z3_ast[] constraints)
{
Debug.Assert(constraints != null);
Debug.Assert(constraints.All(c => c != IntPtr.Zero));
foreach (Z3_ast a in constraints)
{
Native.Z3_solver_assert(nCtx, z3solver, a);
}
}
/// <summary>
/// Alias for Assert.
/// </summary>
public void Add(params Z3_ast[] constraints) => Assert(constraints);
/// <summary>
/// Alias for Assert.
/// </summary>
public void Add(IEnumerable<Z3_ast> constraints) => Assert(constraints.ToArray());
/// <summary>
/// Add constraints to ensure the function f can only be injective.
/// Example:
/// for function f : D1 x D2 -> R
/// assert axioms
/// forall (x1 : D1, x2 : D2) x1 = inv1(f(x1,x2))
/// forall (x1 : D1, x2 : D2) x2 = inv2(f(x1,x2))
/// </summary>
/// <param name="f"></param>
public void AssertInjective(Z3_func_decl f)
{
uint arity = Native.Z3_get_arity(nCtx, f);
Z3_sort range = Native.Z3_get_range(nCtx, f);
Z3_ast[] vars = new Z3_ast[arity];
Z3_sort[] sorts = new Z3_sort[arity];
Z3_symbol[] names = new Z3_symbol[arity];
for (uint i = 0; i < arity; ++i)
{
Z3_sort domain = Native.Z3_get_domain(nCtx, f, i);
vars[i] = ntvContext.MkBound(arity - i - 1, domain);
sorts[i] = domain;
names[i] = Native.Z3_mk_int_symbol(nCtx, (int)i);
}
Z3_ast app_f = IntPtr.Zero; // Context.MkApp(f, vars);
for (uint i = 0; i < arity; ++i)
{
Z3_sort domain = Native.Z3_get_domain(nCtx, f, i);
Z3_func_decl proj = ntvContext.MkFreshFuncDecl("inv", new Z3_sort[] { range }, domain);
Z3_ast body = ntvContext.MkEq(vars[i], ntvContext.MkApp(proj, app_f));
Z3_ast q = ntvContext.MkForall(names, sorts, body);
Assert(q);
}
}
/// <summary>
/// Assert multiple constraints into the solver, and track them (in the unsat) core
/// using the Boolean constants in ps.
/// </summary>
/// <remarks>
/// This API is an alternative to <see cref="Check(Z3_ast[])"/> with assumptions for extracting unsat cores.
/// Both APIs can be used in the same solver. The unsat core will contain a combination
/// of the Boolean variables provided using <see cref="AssertAndTrack(Z3_ast[],Z3_ast[])"/>
/// and the Boolean literals
/// provided using <see cref="Check(Z3_ast[])"/> with assumptions.
/// </remarks>
public void AssertAndTrack(Z3_ast[] constraints, Z3_ast[] ps)
{
Debug.Assert(constraints != null);
Debug.Assert(constraints.All(c => c != IntPtr.Zero));
Debug.Assert(ps.All(c => c != IntPtr.Zero));
if (constraints.Length != ps.Length)
throw new Z3Exception("Argument size mismatch");
for (int i = 0; i < constraints.Length; i++)
Native.Z3_solver_assert_and_track(nCtx, z3solver, constraints[i], ps[i]);
}
/// <summary>
/// Assert a constraint into the solver, and track it (in the unsat) core
/// using the Boolean constant p.
/// </summary>
/// <remarks>
/// This API is an alternative to <see cref="Check(Z3_ast[])"/> with assumptions for extracting unsat cores.
/// Both APIs can be used in the same solver. The unsat core will contain a combination
/// of the Boolean variables provided using <see cref="AssertAndTrack(Z3_ast[],Z3_ast[])"/>
/// and the Boolean literals
/// provided using <see cref="Check(Z3_ast[])"/> with assumptions.
/// </remarks>
public void AssertAndTrack(Z3_ast constraint, Z3_ast p)
{
Debug.Assert(constraint != null);
Debug.Assert(p != null);
Native.Z3_solver_assert_and_track(nCtx, z3solver, constraint, p);
}
/// <summary>
/// Load solver assertions from a file.
/// </summary>
public void FromFile(string file)
=> Native.Z3_solver_from_file(nCtx, z3solver, file);
/// <summary>
/// Load solver assertions from a string.
/// </summary>
public void FromString(string str)
=> Native.Z3_solver_from_string(nCtx, z3solver, str);
/// <summary>
/// The number of assertions in the solver.
/// </summary>
public uint NumAssertions
=> (uint)ntvContext.ToArray(Native.Z3_solver_get_assertions(nCtx, z3solver)).Length;
/// <summary>
/// The set of asserted formulas.
/// </summary>
public Z3_ast[] Assertions
=> ntvContext.ToArray(Native.Z3_solver_get_assertions(nCtx, z3solver));
/// <summary>
/// Currently inferred units.
/// </summary>
public Z3_ast[] Units
=> ntvContext.ToArray(Native.Z3_solver_get_units(nCtx, z3solver));
/// <summary>
/// Checks whether the assertions in the solver are consistent or not.
/// </summary>
/// <remarks>
/// <seealso cref="Model"/>
/// <seealso cref="UnsatCore"/>
/// <seealso cref="Proof"/>
/// </remarks>
public Status Check(params Z3_ast[] assumptions)
{
Z3_lbool r;
if (assumptions == null || assumptions.Length == 0)
r = (Z3_lbool)Native.Z3_solver_check(nCtx, z3solver);
else
r = (Z3_lbool)Native.Z3_solver_check_assumptions(nCtx, z3solver, (uint)assumptions.Length, assumptions);
return lboolToStatus(r);
}
/// <summary>
/// Checks whether the assertions in the solver are consistent or not.
/// </summary>
/// <remarks>
/// <seealso cref="Model"/>
/// <seealso cref="UnsatCore"/>
/// <seealso cref="Proof"/>
/// </remarks>
public Status Check(IEnumerable<Z3_ast> assumptions)
{
Z3_lbool r;
Z3_ast[] asms = assumptions.ToArray();
if (asms.Length == 0)
r = (Z3_lbool)Native.Z3_solver_check(nCtx, z3solver);
else
r = (Z3_lbool)Native.Z3_solver_check_assumptions(nCtx, z3solver, (uint)asms.Length, asms);
return lboolToStatus(r);
}
/// <summary>
/// The model of the last <c>Check(params Expr[] assumptions)</c>.
/// </summary>
/// <remarks>
/// The result is <c>null</c> if <c>Check(params Expr[] assumptions)</c> was not invoked before,
/// if its results was not <c>SATISFIABLE</c>, or if model production is not enabled.
/// </remarks>
public NativeModel Model
{
get
{
IntPtr x = Native.Z3_solver_get_model(nCtx, z3solver);
return x == IntPtr.Zero
? null
: new NativeModel(ntvContext, x);
}
}
/// <summary>
/// The proof of the last <c>Check(params Expr[] assumptions)</c>.
/// </summary>
/// <remarks>
/// The result is <c>null</c> if <c>Check(params Expr[] assumptions)</c> was not invoked before,
/// if its results was not <c>UNSATISFIABLE</c>, or if proof production is disabled.
/// </remarks>
public Z3_ast Proof
=> Native.Z3_solver_get_proof(nCtx, z3solver);
/// <summary>
/// The unsat core of the last <c>Check</c>.
/// </summary>
/// <remarks>
/// The unsat core is a subset of <c>Assertions</c>
/// The result is empty if <c>Check</c> was not invoked before,
/// if its results was not <c>UNSATISFIABLE</c>, or if core production is disabled.
/// </remarks>
public Z3_ast[] UnsatCore
=> ntvContext.ToArray(Native.Z3_solver_get_unsat_core(nCtx, z3solver));
/// <summary>
/// A brief justification of why the last call to <c>Check</c> returned <c>UNKNOWN</c>.
/// </summary>
public string ReasonUnknown
=> Native.Z3_solver_get_reason_unknown(nCtx, z3solver);
/// <summary>
/// Create a clone of the current solver with respect to <c>ctx</c>.
/// </summary>
public NativeSolver Translate(NativeContext ctx)
{
Debug.Assert(ctx != null);
return new NativeSolver(ctx, Native.Z3_solver_translate(nCtx, z3solver, ctx.nCtx));
}
/// <summary>
/// Import model converter from other solver.
/// </summary>
public void ImportModelConverter(NativeSolver src)
{
Debug.Assert(src != null);
Native.Z3_solver_import_model_converter(nCtx, src.z3solver, z3solver);
}
/// <summary>
/// Solver statistics.
/// </summary>
public Statistics.Entry[] Statistics
{
get
{
var stats = Native.Z3_solver_get_statistics(nCtx, z3solver);
return ntvContext.GetStatistics(stats);
}
}
/// <summary>
/// A string representation of the solver.
/// </summary>
public override string ToString()
{
return Native.Z3_solver_to_string(nCtx, z3solver);
}
#region Internal
readonly NativeContext ntvContext;
Z3_solver z3solver;
Z3_context nCtx => ntvContext.nCtx;
internal NativeSolver(NativeContext nativeCtx, Z3_solver z3solver)
{
Debug.Assert(nativeCtx != null);
Debug.Assert(z3solver != IntPtr.Zero);
this.ntvContext = nativeCtx;
this.z3solver = z3solver;
Native.Z3_solver_inc_ref(nCtx, z3solver);
}
/// <summary>
/// Finalizer.
/// </summary>
~NativeSolver()
{
Dispose();
}
/// <summary>
/// Disposes of the underlying native Z3 object.
/// </summary>
public void Dispose()
{
if (z3solver != IntPtr.Zero)
{
Native.Z3_solver_dec_ref(nCtx, z3solver);
z3solver = IntPtr.Zero;
}
GC.SuppressFinalize(this);
}
private Status lboolToStatus(Z3_lbool r)
{
switch (r)
{
case Z3_lbool.Z3_L_TRUE: return Status.SATISFIABLE;
case Z3_lbool.Z3_L_FALSE: return Status.UNSATISFIABLE;
default: return Status.UNKNOWN;
}
}
#endregion
}
}