3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-02 00:00:41 +00:00
z3/src/sat/smt/polysat_solver.cpp
2023-12-25 11:19:37 -08:00

355 lines
13 KiB
C++

/*---
Copyright (c 2022 Microsoft Corporation
Module Name:
polysat_solver.cpp
Abstract:
PolySAT interface to bit-vector
Author:
Nikolaj Bjorner (nbjorner) 2022-01-26
Notes:
The solver adds literals to polysat::core, calls propagation and check
The result of polysat::core::check is one of:
- is_sat: the model is complete
- is_unsat: there is a Boolean conflict. The SAT solver backtracks and resolves the conflict.
- new_eq: the solver adds a new equality literal to the SAT solver.
- new_lemma: there is a conflict, but it is resolved by backjumping and adding a lemma to the SAT solver.
- giveup: Polysat was unable to determine satisfiability.
--*/
#include "sat/smt/polysat_solver.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/polysat/ule_constraint.h"
#include "sat/smt/polysat/umul_ovfl_constraint.h"
namespace polysat {
solver::solver(euf::solver& ctx, theory_id id):
euf::th_euf_solver(ctx, symbol("bv"), id),
bv(ctx.get_manager()),
m_autil(ctx.get_manager()),
m_core(*this),
m_intblast(ctx),
m_lemma(ctx.get_manager())
{
// ctx.get_egraph().add_plugin(alloc(euf::bv_plugin, ctx.get_egraph()));
}
unsigned solver::get_bv_size(euf::enode* n) {
return bv.get_bv_size(n->get_expr());
}
unsigned solver::get_bv_size(theory_var v) {
return bv.get_bv_size(var2expr(v));
}
bool solver::unit_propagate() {
return m_core.propagate() || propagate_delayed_axioms();
}
sat::check_result solver::check() {
switch (m_core.check()) {
case sat::check_result::CR_DONE:
return sat::check_result::CR_DONE;
case sat::check_result::CR_CONTINUE:
return sat::check_result::CR_CONTINUE;
case sat::check_result::CR_GIVEUP:
return intblast();
}
UNREACHABLE();
return sat::check_result::CR_GIVEUP;
}
sat::check_result solver::intblast() {
if (!m.inc())
return sat::check_result::CR_GIVEUP;
switch (m_intblast.check_solver_state()) {
case l_true: {
pvar pv = m_core.next_var();
auto v = m_pddvar2var[pv];
auto n = var2expr(v);
auto val = m_intblast.get_value(n);
sat::literal lit = eq_internalize(n, bv.mk_numeral(val, get_bv_size(v)));
s().set_phase(lit);
return sat::check_result::CR_CONTINUE;
}
case l_false: {
IF_VERBOSE(2, verbose_stream() << "unsat core: " << m_intblast.unsat_core() << "\n");
auto core = m_intblast.unsat_core();
for (auto& lit : core)
lit.neg();
s().add_clause(core.size(), core.data(), sat::status::th(true, get_id(), nullptr));
return sat::check_result::CR_CONTINUE;
}
case l_undef:
return sat::check_result::CR_GIVEUP;
}
UNREACHABLE();
return sat::check_result::CR_GIVEUP;
}
void solver::asserted(literal l) {
TRACE("bv", tout << "asserted: " << l << "\n";);
atom* a = get_bv2a(l.var());
if (!a)
return;
force_push();
m_core.assign_eh(a->m_index, l.sign(), s().lvl(l));
}
void solver::set_conflict(dependency_vector const& deps) {
auto [lits, eqs] = explain_deps(deps);
auto ex = euf::th_explain::conflict(*this, lits, eqs, nullptr);
ctx.set_conflict(ex);
}
std::pair<sat::literal_vector, euf::enode_pair_vector> solver::explain_deps(dependency_vector const& deps) {
sat::literal_vector core;
euf::enode_pair_vector eqs;
for (auto d : deps) {
if (d.is_bool_var()) {
auto bv = d.bool_var();
auto lit = sat::literal(bv, s().value(bv) == l_false);
core.push_back(lit);
}
else {
auto const [v1, v2] = d.eq();
euf::enode* const n1 = var2enode(v1);
euf::enode* const n2 = var2enode(v2);
VERIFY(n1->get_root() == n2->get_root());
eqs.push_back(euf::enode_pair(n1, n2));
}
}
IF_VERBOSE(10,
for (auto lit : core)
verbose_stream() << " " << lit << ": " << mk_ismt2_pp(literal2expr(lit), m) << " " << s().value(lit) << "\n";
for (auto const& [n1, n2] : eqs)
verbose_stream() << " " << ctx.bpp(n1) << " == " << ctx.bpp(n2) << "\n";);
DEBUG_CODE({
for (auto lit : core)
SASSERT(s().value(lit) == l_true);
for (auto const& [n1, n2] : eqs)
SASSERT(n1->get_root() == n2->get_root());
});
return { core, eqs };
}
// Create an equality literal that represents the value assignment
// Prefer case split to true.
// The equality gets added in a callback using asserted().
void solver::add_eq_literal(pvar pvar, rational const& val) {
auto v = m_pddvar2var[pvar];
auto n = var2enode(v);
auto eq = eq_internalize(n->get_expr(), bv.mk_numeral(val, get_bv_size(v)));
s().set_phase(eq);
}
void solver::new_eq_eh(euf::th_eq const& eq) {
auto v1 = eq.v1(), v2 = eq.v2();
euf::enode* n = var2enode(v1);
if (!bv.is_bv(n->get_expr()))
return;
pdd p = var2pdd(v1);
pdd q = var2pdd(v2);
auto sc = m_core.eq(p, q);
m_var_eqs.setx(m_var_eqs_head, {v1, v2}, {v1, v2});
ctx.push(value_trail<unsigned>(m_var_eqs_head));
auto d = dependency(v1, v2);
constraint_id id = m_core.register_constraint(sc, d);
m_core.assign_eh(id, false, s().scope_lvl());
m_var_eqs_head++;
}
void solver::new_diseq_eh(euf::th_eq const& ne) {
euf::theory_var v1 = ne.v1(), v2 = ne.v2();
euf::enode* n = var2enode(v1);
if (!bv.is_bv(n->get_expr()))
return;
pdd p = var2pdd(v1);
pdd q = var2pdd(v2);
auto sc = m_core.eq(p, q);
sat::literal eq = expr2literal(ne.eq());
auto d = dependency(eq.var());
auto id = m_core.register_constraint(sc, d);
TRACE("bv", tout << eq << " := " << s().value(eq) << " @" << s().scope_lvl() << "\n");
m_core.assign_eh(id, false, s().lvl(eq));
}
// Core uses the propagate callback to add unit propagations to the trail.
// The polysat::solver takes care of translating signed constraints into expressions, which translate into literals.
// Everything goes over expressions/literals. polysat::core is not responsible for replaying expressions.
dependency solver::propagate(signed_constraint sc, dependency_vector const& deps) {
sat::literal lit = ctx.mk_literal(constraint2expr(sc));
if (s().value(lit) == l_true)
return dependency(lit.var());
auto [core, eqs] = explain_deps(deps);
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, nullptr);
ctx.propagate(lit, ex);
return dependency(lit.var());
}
unsigned solver::level(dependency const& d) {
if (d.is_bool_var())
return s().lvl(d.bool_var());
else if (d.is_eq()) {
auto [v1, v2] = d.eq();
sat::literal_vector lits;
ctx.get_eq_antecedents(var2enode(v1), var2enode(v2), lits);
unsigned level = 0;
for (auto lit : lits)
level = std::max(level, s().lvl(lit));
return level;
}
else if (d.is_offset_claim()) {
auto const& offs = d.offset();
sat::literal_vector lits;
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
ctx.get_eq_antecedents(a, b, lits);
};
explain_slice(offs.v, offs.w, offs.offset, consume);
unsigned level = 0;
for (auto lit : lits)
level = std::max(level, s().lvl(lit));
return level;
}
else if (d.is_fixed_claim()) {
auto const& f = d.fixed();
sat::literal_vector lits;
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
ctx.get_eq_antecedents(a, b, lits);
};
explain_fixed(f.v, f.lo, f.hi, f.value, consume);
unsigned level = 0;
for (auto lit : lits)
level = std::max(level, s().lvl(lit));
return level;
}
else {
SASSERT(d.is_axiom());
return 0;
}
}
void solver::propagate(dependency const& d, bool sign, dependency_vector const& deps) {
auto [core, eqs] = explain_deps(deps);
if (d.is_bool_var()) {
auto bv = d.bool_var();
auto lit = sat::literal(bv, sign);
if (s().value(lit) == l_true)
return;
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, nullptr);
ctx.propagate(lit, ex);
}
else if (sign) {
auto const [v1, v2] = d.eq();
// equalities are always asserted so a negative propagation is a conflict.
auto n1 = var2enode(v1);
auto n2 = var2enode(v2);
eqs.push_back({ n1, n2 });
auto ex = euf::th_explain::conflict(*this, core, eqs, nullptr);
ctx.set_conflict(ex);
}
}
bool solver::inconsistent() const {
return s().inconsistent();
}
trail_stack& solver::trail() {
return ctx.get_trail_stack();
}
bool solver::add_axiom(char const* name, constraint_or_dependency const* begin, constraint_or_dependency const* end, bool is_redundant) {
sat::literal_vector lits;
for (auto it = begin; it != end; ++it) {
auto const& e = *it;
if (std::holds_alternative<dependency>(e)) {
auto d = *std::get_if<dependency>(&e);
SASSERT(!d.is_null());
if (d.is_bool_var()) {
auto bv = d.bool_var();
auto lit = sat::literal(bv, s().value(bv) == l_false);
lits.push_back(~lit);
}
else if (d.is_eq()) {
auto [v1, v2] = d.eq();
lits.push_back(~eq_internalize(var2enode(v1), var2enode(v2)));
}
else if (d.is_offset_claim()) {
auto const& o = d.offset();
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
lits.push_back(~eq_internalize(a, b));
};
explain_slice(o.v, o.w, o.offset, consume);
}
else if (d.is_fixed_claim()) {
auto const& f = d.fixed();
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
lits.push_back(~eq_internalize(a, b));
};
explain_fixed(f.v, f.lo, f.hi, f.value, consume);
}
else {
SASSERT(d.is_axiom());
}
}
else if (std::holds_alternative<signed_constraint>(e))
lits.push_back(ctx.mk_literal(constraint2expr(*std::get_if<signed_constraint>(&e))));
}
for (auto lit : lits)
if (s().value(lit) == l_true)
return false;
s().add_clause(lits.size(), lits.data(), sat::status::th(is_redundant, get_id(), nullptr));
return true;
}
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
auto& jst = euf::th_explain::from_index(idx);
ctx.get_th_antecedents(l, jst, r, probing);
}
expr_ref solver::constraint2expr(signed_constraint const& sc) {
switch (sc.op()) {
case ckind_t::ule_t: {
auto l = pdd2expr(sc.to_ule().lhs());
auto h = pdd2expr(sc.to_ule().rhs());
return expr_ref(bv.mk_ule(l, h), m);
}
case ckind_t::umul_ovfl_t: {
auto l = pdd2expr(sc.to_umul_ovfl().p());
auto r = pdd2expr(sc.to_umul_ovfl().q());
return expr_ref(m.mk_not(bv.mk_bvumul_no_ovfl(l, r)), m);
}
case ckind_t::smul_fl_t:
case ckind_t::op_t:
NOT_IMPLEMENTED_YET();
break;
}
throw default_exception("constraint2expr nyi");
}
expr_ref solver::pdd2expr(pdd const& p) {
if (p.is_val()) {
expr* n = bv.mk_numeral(p.val(), p.power_of_2());
return expr_ref(n, m);
}
auto v = var2enode(m_pddvar2var[p.var()]);
expr* r = v->get_expr();
if (!p.hi().is_one())
r = bv.mk_bv_mul(r, pdd2expr(p.hi()));
if (!p.lo().is_zero())
r = bv.mk_bv_add(r, pdd2expr(p.lo()));
return expr_ref(r, m);
}
}