mirror of
https://github.com/Z3Prover/z3
synced 2025-09-02 00:00:41 +00:00
355 lines
13 KiB
C++
355 lines
13 KiB
C++
/*---
|
|
Copyright (c 2022 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
polysat_solver.cpp
|
|
|
|
Abstract:
|
|
|
|
PolySAT interface to bit-vector
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2022-01-26
|
|
|
|
Notes:
|
|
The solver adds literals to polysat::core, calls propagation and check
|
|
The result of polysat::core::check is one of:
|
|
- is_sat: the model is complete
|
|
- is_unsat: there is a Boolean conflict. The SAT solver backtracks and resolves the conflict.
|
|
- new_eq: the solver adds a new equality literal to the SAT solver.
|
|
- new_lemma: there is a conflict, but it is resolved by backjumping and adding a lemma to the SAT solver.
|
|
- giveup: Polysat was unable to determine satisfiability.
|
|
|
|
--*/
|
|
|
|
|
|
#include "sat/smt/polysat_solver.h"
|
|
#include "sat/smt/euf_solver.h"
|
|
#include "sat/smt/polysat/ule_constraint.h"
|
|
#include "sat/smt/polysat/umul_ovfl_constraint.h"
|
|
|
|
namespace polysat {
|
|
|
|
solver::solver(euf::solver& ctx, theory_id id):
|
|
euf::th_euf_solver(ctx, symbol("bv"), id),
|
|
bv(ctx.get_manager()),
|
|
m_autil(ctx.get_manager()),
|
|
m_core(*this),
|
|
m_intblast(ctx),
|
|
m_lemma(ctx.get_manager())
|
|
{
|
|
// ctx.get_egraph().add_plugin(alloc(euf::bv_plugin, ctx.get_egraph()));
|
|
}
|
|
|
|
unsigned solver::get_bv_size(euf::enode* n) {
|
|
return bv.get_bv_size(n->get_expr());
|
|
}
|
|
|
|
unsigned solver::get_bv_size(theory_var v) {
|
|
return bv.get_bv_size(var2expr(v));
|
|
}
|
|
|
|
bool solver::unit_propagate() {
|
|
return m_core.propagate() || propagate_delayed_axioms();
|
|
}
|
|
|
|
sat::check_result solver::check() {
|
|
switch (m_core.check()) {
|
|
case sat::check_result::CR_DONE:
|
|
return sat::check_result::CR_DONE;
|
|
case sat::check_result::CR_CONTINUE:
|
|
return sat::check_result::CR_CONTINUE;
|
|
case sat::check_result::CR_GIVEUP:
|
|
return intblast();
|
|
}
|
|
UNREACHABLE();
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
|
|
sat::check_result solver::intblast() {
|
|
if (!m.inc())
|
|
return sat::check_result::CR_GIVEUP;
|
|
switch (m_intblast.check_solver_state()) {
|
|
case l_true: {
|
|
pvar pv = m_core.next_var();
|
|
auto v = m_pddvar2var[pv];
|
|
auto n = var2expr(v);
|
|
auto val = m_intblast.get_value(n);
|
|
sat::literal lit = eq_internalize(n, bv.mk_numeral(val, get_bv_size(v)));
|
|
s().set_phase(lit);
|
|
return sat::check_result::CR_CONTINUE;
|
|
}
|
|
case l_false: {
|
|
IF_VERBOSE(2, verbose_stream() << "unsat core: " << m_intblast.unsat_core() << "\n");
|
|
auto core = m_intblast.unsat_core();
|
|
for (auto& lit : core)
|
|
lit.neg();
|
|
s().add_clause(core.size(), core.data(), sat::status::th(true, get_id(), nullptr));
|
|
return sat::check_result::CR_CONTINUE;
|
|
}
|
|
case l_undef:
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
UNREACHABLE();
|
|
return sat::check_result::CR_GIVEUP;
|
|
}
|
|
|
|
void solver::asserted(literal l) {
|
|
TRACE("bv", tout << "asserted: " << l << "\n";);
|
|
atom* a = get_bv2a(l.var());
|
|
if (!a)
|
|
return;
|
|
force_push();
|
|
m_core.assign_eh(a->m_index, l.sign(), s().lvl(l));
|
|
}
|
|
|
|
void solver::set_conflict(dependency_vector const& deps) {
|
|
auto [lits, eqs] = explain_deps(deps);
|
|
auto ex = euf::th_explain::conflict(*this, lits, eqs, nullptr);
|
|
ctx.set_conflict(ex);
|
|
}
|
|
|
|
std::pair<sat::literal_vector, euf::enode_pair_vector> solver::explain_deps(dependency_vector const& deps) {
|
|
sat::literal_vector core;
|
|
euf::enode_pair_vector eqs;
|
|
for (auto d : deps) {
|
|
if (d.is_bool_var()) {
|
|
auto bv = d.bool_var();
|
|
auto lit = sat::literal(bv, s().value(bv) == l_false);
|
|
core.push_back(lit);
|
|
}
|
|
else {
|
|
auto const [v1, v2] = d.eq();
|
|
euf::enode* const n1 = var2enode(v1);
|
|
euf::enode* const n2 = var2enode(v2);
|
|
VERIFY(n1->get_root() == n2->get_root());
|
|
eqs.push_back(euf::enode_pair(n1, n2));
|
|
}
|
|
}
|
|
IF_VERBOSE(10,
|
|
for (auto lit : core)
|
|
verbose_stream() << " " << lit << ": " << mk_ismt2_pp(literal2expr(lit), m) << " " << s().value(lit) << "\n";
|
|
for (auto const& [n1, n2] : eqs)
|
|
verbose_stream() << " " << ctx.bpp(n1) << " == " << ctx.bpp(n2) << "\n";);
|
|
DEBUG_CODE({
|
|
for (auto lit : core)
|
|
SASSERT(s().value(lit) == l_true);
|
|
for (auto const& [n1, n2] : eqs)
|
|
SASSERT(n1->get_root() == n2->get_root());
|
|
});
|
|
|
|
|
|
return { core, eqs };
|
|
}
|
|
|
|
// Create an equality literal that represents the value assignment
|
|
// Prefer case split to true.
|
|
// The equality gets added in a callback using asserted().
|
|
void solver::add_eq_literal(pvar pvar, rational const& val) {
|
|
auto v = m_pddvar2var[pvar];
|
|
auto n = var2enode(v);
|
|
auto eq = eq_internalize(n->get_expr(), bv.mk_numeral(val, get_bv_size(v)));
|
|
s().set_phase(eq);
|
|
}
|
|
|
|
void solver::new_eq_eh(euf::th_eq const& eq) {
|
|
auto v1 = eq.v1(), v2 = eq.v2();
|
|
euf::enode* n = var2enode(v1);
|
|
if (!bv.is_bv(n->get_expr()))
|
|
return;
|
|
pdd p = var2pdd(v1);
|
|
pdd q = var2pdd(v2);
|
|
auto sc = m_core.eq(p, q);
|
|
m_var_eqs.setx(m_var_eqs_head, {v1, v2}, {v1, v2});
|
|
ctx.push(value_trail<unsigned>(m_var_eqs_head));
|
|
auto d = dependency(v1, v2);
|
|
constraint_id id = m_core.register_constraint(sc, d);
|
|
m_core.assign_eh(id, false, s().scope_lvl());
|
|
m_var_eqs_head++;
|
|
}
|
|
|
|
void solver::new_diseq_eh(euf::th_eq const& ne) {
|
|
euf::theory_var v1 = ne.v1(), v2 = ne.v2();
|
|
euf::enode* n = var2enode(v1);
|
|
if (!bv.is_bv(n->get_expr()))
|
|
return;
|
|
pdd p = var2pdd(v1);
|
|
pdd q = var2pdd(v2);
|
|
auto sc = m_core.eq(p, q);
|
|
sat::literal eq = expr2literal(ne.eq());
|
|
auto d = dependency(eq.var());
|
|
auto id = m_core.register_constraint(sc, d);
|
|
TRACE("bv", tout << eq << " := " << s().value(eq) << " @" << s().scope_lvl() << "\n");
|
|
m_core.assign_eh(id, false, s().lvl(eq));
|
|
}
|
|
|
|
// Core uses the propagate callback to add unit propagations to the trail.
|
|
// The polysat::solver takes care of translating signed constraints into expressions, which translate into literals.
|
|
// Everything goes over expressions/literals. polysat::core is not responsible for replaying expressions.
|
|
|
|
dependency solver::propagate(signed_constraint sc, dependency_vector const& deps) {
|
|
sat::literal lit = ctx.mk_literal(constraint2expr(sc));
|
|
if (s().value(lit) == l_true)
|
|
return dependency(lit.var());
|
|
auto [core, eqs] = explain_deps(deps);
|
|
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, nullptr);
|
|
ctx.propagate(lit, ex);
|
|
return dependency(lit.var());
|
|
}
|
|
|
|
unsigned solver::level(dependency const& d) {
|
|
if (d.is_bool_var())
|
|
return s().lvl(d.bool_var());
|
|
else if (d.is_eq()) {
|
|
auto [v1, v2] = d.eq();
|
|
sat::literal_vector lits;
|
|
ctx.get_eq_antecedents(var2enode(v1), var2enode(v2), lits);
|
|
unsigned level = 0;
|
|
for (auto lit : lits)
|
|
level = std::max(level, s().lvl(lit));
|
|
return level;
|
|
}
|
|
else if (d.is_offset_claim()) {
|
|
auto const& offs = d.offset();
|
|
sat::literal_vector lits;
|
|
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
|
|
ctx.get_eq_antecedents(a, b, lits);
|
|
};
|
|
explain_slice(offs.v, offs.w, offs.offset, consume);
|
|
unsigned level = 0;
|
|
for (auto lit : lits)
|
|
level = std::max(level, s().lvl(lit));
|
|
return level;
|
|
}
|
|
else if (d.is_fixed_claim()) {
|
|
auto const& f = d.fixed();
|
|
sat::literal_vector lits;
|
|
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
|
|
ctx.get_eq_antecedents(a, b, lits);
|
|
};
|
|
explain_fixed(f.v, f.lo, f.hi, f.value, consume);
|
|
unsigned level = 0;
|
|
for (auto lit : lits)
|
|
level = std::max(level, s().lvl(lit));
|
|
return level;
|
|
}
|
|
else {
|
|
SASSERT(d.is_axiom());
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void solver::propagate(dependency const& d, bool sign, dependency_vector const& deps) {
|
|
auto [core, eqs] = explain_deps(deps);
|
|
if (d.is_bool_var()) {
|
|
auto bv = d.bool_var();
|
|
auto lit = sat::literal(bv, sign);
|
|
if (s().value(lit) == l_true)
|
|
return;
|
|
auto ex = euf::th_explain::propagate(*this, core, eqs, lit, nullptr);
|
|
ctx.propagate(lit, ex);
|
|
}
|
|
else if (sign) {
|
|
auto const [v1, v2] = d.eq();
|
|
// equalities are always asserted so a negative propagation is a conflict.
|
|
auto n1 = var2enode(v1);
|
|
auto n2 = var2enode(v2);
|
|
eqs.push_back({ n1, n2 });
|
|
auto ex = euf::th_explain::conflict(*this, core, eqs, nullptr);
|
|
ctx.set_conflict(ex);
|
|
}
|
|
}
|
|
|
|
bool solver::inconsistent() const {
|
|
return s().inconsistent();
|
|
}
|
|
|
|
trail_stack& solver::trail() {
|
|
return ctx.get_trail_stack();
|
|
}
|
|
|
|
bool solver::add_axiom(char const* name, constraint_or_dependency const* begin, constraint_or_dependency const* end, bool is_redundant) {
|
|
sat::literal_vector lits;
|
|
for (auto it = begin; it != end; ++it) {
|
|
auto const& e = *it;
|
|
if (std::holds_alternative<dependency>(e)) {
|
|
auto d = *std::get_if<dependency>(&e);
|
|
SASSERT(!d.is_null());
|
|
if (d.is_bool_var()) {
|
|
auto bv = d.bool_var();
|
|
auto lit = sat::literal(bv, s().value(bv) == l_false);
|
|
lits.push_back(~lit);
|
|
}
|
|
else if (d.is_eq()) {
|
|
auto [v1, v2] = d.eq();
|
|
lits.push_back(~eq_internalize(var2enode(v1), var2enode(v2)));
|
|
}
|
|
else if (d.is_offset_claim()) {
|
|
auto const& o = d.offset();
|
|
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
|
|
lits.push_back(~eq_internalize(a, b));
|
|
};
|
|
explain_slice(o.v, o.w, o.offset, consume);
|
|
}
|
|
else if (d.is_fixed_claim()) {
|
|
auto const& f = d.fixed();
|
|
std::function<void(euf::enode*, euf::enode*)> consume = [&](auto* a, auto* b) {
|
|
lits.push_back(~eq_internalize(a, b));
|
|
};
|
|
explain_fixed(f.v, f.lo, f.hi, f.value, consume);
|
|
}
|
|
else {
|
|
SASSERT(d.is_axiom());
|
|
}
|
|
}
|
|
else if (std::holds_alternative<signed_constraint>(e))
|
|
lits.push_back(ctx.mk_literal(constraint2expr(*std::get_if<signed_constraint>(&e))));
|
|
}
|
|
for (auto lit : lits)
|
|
if (s().value(lit) == l_true)
|
|
return false;
|
|
s().add_clause(lits.size(), lits.data(), sat::status::th(is_redundant, get_id(), nullptr));
|
|
return true;
|
|
}
|
|
|
|
void solver::get_antecedents(literal l, sat::ext_justification_idx idx, literal_vector& r, bool probing) {
|
|
auto& jst = euf::th_explain::from_index(idx);
|
|
ctx.get_th_antecedents(l, jst, r, probing);
|
|
}
|
|
|
|
expr_ref solver::constraint2expr(signed_constraint const& sc) {
|
|
switch (sc.op()) {
|
|
case ckind_t::ule_t: {
|
|
auto l = pdd2expr(sc.to_ule().lhs());
|
|
auto h = pdd2expr(sc.to_ule().rhs());
|
|
return expr_ref(bv.mk_ule(l, h), m);
|
|
}
|
|
case ckind_t::umul_ovfl_t: {
|
|
auto l = pdd2expr(sc.to_umul_ovfl().p());
|
|
auto r = pdd2expr(sc.to_umul_ovfl().q());
|
|
return expr_ref(m.mk_not(bv.mk_bvumul_no_ovfl(l, r)), m);
|
|
}
|
|
case ckind_t::smul_fl_t:
|
|
case ckind_t::op_t:
|
|
NOT_IMPLEMENTED_YET();
|
|
break;
|
|
}
|
|
throw default_exception("constraint2expr nyi");
|
|
}
|
|
|
|
expr_ref solver::pdd2expr(pdd const& p) {
|
|
if (p.is_val()) {
|
|
expr* n = bv.mk_numeral(p.val(), p.power_of_2());
|
|
return expr_ref(n, m);
|
|
}
|
|
auto v = var2enode(m_pddvar2var[p.var()]);
|
|
expr* r = v->get_expr();
|
|
if (!p.hi().is_one())
|
|
r = bv.mk_bv_mul(r, pdd2expr(p.hi()));
|
|
if (!p.lo().is_zero())
|
|
r = bv.mk_bv_add(r, pdd2expr(p.lo()));
|
|
return expr_ref(r, m);
|
|
}
|
|
}
|