3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 09:55:19 +00:00
z3/src/ast/sls/sls_valuation.cpp
Nikolaj Bjorner 63804c5296 na
2024-03-05 12:28:30 -08:00

490 lines
15 KiB
C++

/*++
Copyright (c) 2024 Microsoft Corporation
Module Name:
sls_valuation.cpp
Abstract:
A Stochastic Local Search (SLS) engine
Uses invertibility conditions,
interval annotations
don't care annotations
Author:
Nikolaj Bjorner (nbjorner) 2024-02-07
--*/
#include "ast/sls/sls_valuation.h"
namespace bv {
void bvect::set_bw(unsigned bw) {
this->bw = bw;
nw = (bw + sizeof(digit_t) * 8 - 1) / (8 * sizeof(digit_t));
mask = (1 << (bw % (8 * sizeof(digit_t)))) - 1;
if (mask == 0)
mask = ~(digit_t)0;
reserve(nw + 1);
}
bool operator==(bvect const& a, bvect const& b) {
SASSERT(a.nw > 0);
return 0 == mpn_manager().compare(a.data(), a.nw, b.data(), a.nw);
}
bool operator<(bvect const& a, bvect const& b) {
SASSERT(a.nw > 0);
return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) < 0;
}
bool operator>(bvect const& a, bvect const& b) {
SASSERT(a.nw > 0);
return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) > 0;
}
bool operator<=(bvect const& a, bvect const& b) {
SASSERT(a.nw > 0);
return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) <= 0;
}
bool operator>=(bvect const& a, bvect const& b) {
SASSERT(a.nw > 0);
return mpn_manager().compare(a.data(), a.nw, b.data(), a.nw) >= 0;
}
sls_valuation::sls_valuation(unsigned bw) {
set_bw(bw);
lo.set_bw(bw);
hi.set_bw(bw);
m_bits.set_bw(bw);
fixed.set_bw(bw);
// have lo, hi bits, fixed point to memory allocated within this of size num_bytes each allocated
for (unsigned i = 0; i < nw; ++i)
lo[i] = 0, hi[i] = 0, m_bits[i] = 0, fixed[i] = 0;
fixed[nw - 1] = ~mask;
}
void sls_valuation::set_bw(unsigned b) {
bw = b;
nw = (bw + sizeof(digit_t) * 8 - 1) / (8 * sizeof(digit_t));
mask = (1 << (bw % (8 * sizeof(digit_t)))) - 1;
if (mask == 0)
mask = ~(digit_t)0;
}
bool sls_valuation::in_range(bvect const& bits) const {
mpn_manager m;
auto c = m.compare(lo.data(), nw, hi.data(), nw);
SASSERT(!has_overflow(bits));
// full range
if (c == 0)
return true;
// lo < hi: then lo <= bits & bits < hi
if (c < 0)
return
m.compare(lo.data(), nw, bits.data(), nw) <= 0 &&
m.compare(bits.data(), nw, hi.data(), nw) < 0;
// hi < lo: bits < hi or lo <= bits
return
m.compare(lo.data(), nw, bits.data(), nw) <= 0 ||
m.compare(bits.data(), nw, hi.data(), nw) < 0;
}
//
// largest dst <= src and dst is feasible
// set dst := src & (~fixed | bits)
//
// increment dst if dst < src by setting bits below msb(src & ~dst) to 1
//
// if dst < lo < hi:
// return false
// if lo < hi <= dst:
// set dst := hi - 1
// if hi <= dst < lo
// set dst := hi - 1
//
bool sls_valuation::get_at_most(bvect const& src, bvect& dst) const {
SASSERT(!has_overflow(src));
for (unsigned i = 0; i < nw; ++i)
dst[i] = src[i] & (~fixed[i] | m_bits[i]);
//
// If dst < src, then find the most significant
// bit where src[idx] = 1, dst[idx] = 0
// set dst[j] = bits_j | ~fixed_j for j < idx
//
for (unsigned i = nw; i-- > 0; ) {
if (0 != (~dst[i] & src[i])) {
auto idx = log2(~dst[i] & src[i]);
auto mask = (1 << idx) - 1;
dst[i] = (~fixed[i] & mask) | dst[i];
for (unsigned j = i; j-- > 0; )
dst[j] = (~fixed[j] | m_bits[j]);
break;
}
}
SASSERT(!has_overflow(dst));
return round_down(dst);
}
//
// smallest dst >= src and dst is feasible with respect to this.
// set dst := (src & ~fixed) | (fixed & bits)
//
// decrement dst if dst > src by setting bits below msb to 0 unless fixed
//
// if lo < hi <= dst
// return false
// if dst < lo < hi:
// set dst := lo
// if hi <= dst < lo
// set dst := lo
//
bool sls_valuation::get_at_least(bvect const& src, bvect& dst) const {
SASSERT(!has_overflow(src));
for (unsigned i = 0; i < nw; ++i)
dst[i] = (~fixed[i] & src[i]) | (fixed[i] & m_bits[i]);
//
// If dst > src, then find the most significant
// bit where src[idx] = 0, dst[idx] = 1
// set dst[j] = dst[j] & fixed_j for j < idx
//
for (unsigned i = nw; i-- > 0; ) {
if (0 != (dst[i] & ~src[i])) {
auto idx = log2(dst[i] & ~src[i]);
auto mask = (1 << idx);
dst[i] = dst[i] & (fixed[i] | mask);
for (unsigned j = i; j-- > 0; )
dst[j] = dst[j] & fixed[j];
break;
}
}
SASSERT(!has_overflow(dst));
return round_up(dst);
}
bool sls_valuation::round_up(bvect& dst) const {
if (lo < hi) {
if (hi <= dst)
return false;
if (lo > dst)
set(dst, lo);
}
else if (hi <= dst && lo > dst)
set(dst, lo);
SASSERT(!has_overflow(dst));
return true;
}
bool sls_valuation::round_down(bvect& dst) const {
if (lo < hi) {
if (lo > dst)
return false;
if (hi <= dst) {
set(dst, hi);
sub1(dst);
}
}
else if (hi <= dst && lo > dst) {
set(dst, hi);
sub1(dst);
}
SASSERT(well_formed());
return true;
}
bool sls_valuation::set_repair(bool try_down, bvect& dst) {
for (unsigned i = 0; i < nw; ++i)
dst[i] = (~fixed[i] & dst[i]) | (fixed[i] & m_bits[i]);
bool ok = try_down ? round_down(dst) : round_up(dst);
if (!ok)
VERIFY(try_down ? round_up(dst) : round_down(dst));
DEBUG_CODE(SASSERT(0 == (mask & (fixed[nw-1] & (m_bits[nw-1] ^ dst[nw-1])))); for (unsigned i = 0; i + 1 < nw; ++i) SASSERT(0 == (fixed[i] & (m_bits[i] ^ dst[i]))););
if (m_bits == dst)
return false;
set(m_bits, dst);
SASSERT(well_formed());
return true;
}
void sls_valuation::min_feasible(bvect& out) const {
if (lo < hi) {
for (unsigned i = 0; i < nw; ++i)
out[i] = lo[i];
}
else {
for (unsigned i = 0; i < nw; ++i)
out[i] = fixed[i] & m_bits[i];
}
SASSERT(!has_overflow(out));
}
void sls_valuation::max_feasible(bvect& out) const {
if (lo < hi) {
for (unsigned i = 0; i < nw; ++i)
out[i] = hi[i];
sub1(out);
}
else {
for (unsigned i = 0; i < nw; ++i)
out[i] = ~fixed[i] | m_bits[i];
}
SASSERT(!has_overflow(out));
}
unsigned sls_valuation::msb(bvect const& src) const {
SASSERT(!has_overflow(src));
for (unsigned i = nw; i-- > 0; )
if (src[i] != 0)
return i * 8 * sizeof(digit_t) + log2(src[i]);
return bw;
}
void sls_valuation::set_value(bvect& bits, rational const& n) {
for (unsigned i = 0; i < bw; ++i)
bits.set(i, n.get_bit(i));
clear_overflow_bits(bits);
}
rational sls_valuation::get_value(bvect const& bits) const {
rational p(1), r(0);
for (unsigned i = 0; i < nw; ++i) {
r += p * rational(bits[i]);
p *= rational::power_of_two(8 * sizeof(digit_t));
}
return r;
}
void sls_valuation::get(bvect& dst) const {
for (unsigned i = 0; i < nw; ++i)
dst[i] = m_bits[i];
}
//
// new_bits != bits => ~fixed
// 0 = (new_bits ^ bits) & fixed
// also check that new_bits are in range
//
bool sls_valuation::can_set(bvect const& new_bits) const {
SASSERT(!has_overflow(new_bits));
for (unsigned i = 0; i < nw; ++i)
if (0 != ((new_bits[i] ^ m_bits[i]) & fixed[i]))
return false;
return in_range(new_bits);
}
unsigned sls_valuation::to_nat(unsigned max_n) {
bvect const& d = m_bits;
SASSERT(!has_overflow(d));
SASSERT(max_n < UINT_MAX / 2);
unsigned p = 1;
unsigned value = 0;
for (unsigned i = 0; i < bw; ++i) {
if (p >= max_n) {
for (unsigned j = i; j < bw; ++j)
if (d.get(j))
return max_n;
return value;
}
if (d.get(i))
value += p;
p <<= 1;
}
return value;
}
void sls_valuation::shift_right(bvect& out, unsigned shift) const {
SASSERT(shift < bw);
for (unsigned i = 0; i < bw; ++i)
out.set(i, i + shift < bw ? m_bits.get(i + shift) : false);
SASSERT(well_formed());
}
void sls_valuation::add_range(rational l, rational h) {
l = mod(l, rational::power_of_two(bw));
h = mod(h, rational::power_of_two(bw));
if (h == l)
return;
SASSERT(is_zero(fixed)); // ranges can only be added before fixed bits are set.
if (lo == hi) {
set_value(lo, l);
set_value(hi, h);
}
else {
auto old_lo = get_value(lo);
auto old_hi = get_value(hi);
if (old_lo < old_hi) {
if (old_lo < l && l < old_hi)
set_value(lo, l),
old_lo = l;
if (old_hi < h && h < old_hi)
set_value(hi, h);
}
else {
SASSERT(old_hi < old_lo);
if (old_lo < l || l < old_hi)
set_value(lo, l),
old_lo = l;
if (old_lo < h && h < old_hi)
set_value(hi, h);
else if (old_hi < old_lo && (h < old_hi || old_lo < h))
set_value(hi, h);
}
}
SASSERT(!has_overflow(lo));
SASSERT(!has_overflow(hi));
if (!in_range(m_bits))
set(m_bits, lo);
SASSERT(well_formed());
}
//
// tighten lo/hi based on fixed bits.
// lo[bit_i] != fixedbit[bit_i]
// let bit_i be most significant bit position of disagreement.
// if fixedbit = 1, lo = 0, increment lo
// if fixedbit = 0, lo = 1, lo := fixed & bits
// (hi-1)[bit_i] != fixedbit[bit_i]
// if fixedbit = 0, hi-1 = 1, set hi-1 := 0, maximize below bit_i
// if fixedbit = 1, hi-1 = 0, hi := fixed & bits
// tighten fixed bits based on lo/hi
// lo + 1 = hi -> set bits = lo
// lo < hi, set most significant bits based on hi
//
void sls_valuation::init_fixed() {
if (lo == hi)
return;
for (unsigned i = bw; i-- > 0; ) {
if (!fixed.get(i))
continue;
if (m_bits.get(i) == lo.get(i))
continue;
if (m_bits.get(i)) {
lo.set(i, true);
for (unsigned j = i; j-- > 0; )
lo.set(j, fixed.get(j) && m_bits.get(j));
}
else {
for (unsigned j = bw; j-- > 0; )
lo.set(j, fixed.get(j) && m_bits.get(j));
}
break;
}
bvect hi1(nw + 1);
bvect one(nw + 1);
one[0] = 1;
digit_t c;
mpn_manager().sub(hi.data(), nw, one.data(), nw, hi1.data(), &c);
clear_overflow_bits(hi1);
for (unsigned i = bw; i-- > 0; ) {
if (!fixed.get(i))
continue;
if (m_bits.get(i) == hi1.get(i))
continue;
if (hi1.get(i)) {
hi1.set(i, false);
for (unsigned j = i; j-- > 0; )
hi1.set(j, !fixed.get(j) || m_bits.get(j));
}
else {
for (unsigned j = bw; j-- > 0; )
hi1.set(j, fixed.get(j) && m_bits.get(j));
}
mpn_manager().add(hi1.data(), nw, one.data(), nw, hi.data(), nw + 1, &c);
clear_overflow_bits(hi);
break;
}
// set fixed bits based on bounds
auto set_fixed_bit = [&](unsigned i, bool b) {
if (!fixed.get(i)) {
fixed.set(i, true);
m_bits.set(i, b);
}
};
// set most significant bits
if (lo < hi) {
unsigned i = bw;
for (; i-- > 0 && !hi.get(i); )
set_fixed_bit(i, false);
if (is_power_of2(hi))
set_fixed_bit(i, false);
}
// lo + 1 = hi: then bits = lo
mpn_manager().add(lo.data(), nw, one.data(), nw, hi1.data(), nw + 1, &c);
clear_overflow_bits(hi1);
if (hi == hi1) {
for (unsigned i = 0; i < bw; ++i)
set_fixed_bit(i, lo.get(i));
}
SASSERT(well_formed());
}
void sls_valuation::set_sub(bvect& out, bvect const& a, bvect const& b) const {
digit_t c;
mpn_manager().sub(a.data(), nw, b.data(), nw, out.data(), &c);
clear_overflow_bits(out);
out.set_bw(bw);
}
bool sls_valuation::set_add(bvect& out, bvect const& a, bvect const& b) const {
digit_t c;
mpn_manager().add(a.data(), nw, b.data(), nw, out.data(), nw + 1, &c);
bool ovfl = out[nw] != 0 || has_overflow(out);
clear_overflow_bits(out);
out.set_bw(bw);
return ovfl;
}
bool sls_valuation::set_mul(bvect& out, bvect const& a, bvect const& b, bool check_overflow) const {
mpn_manager().mul(a.data(), nw, b.data(), nw, out.data());
bool ovfl = false;
if (check_overflow) {
ovfl = has_overflow(out);
for (unsigned i = nw; i < 2 * nw; ++i)
ovfl |= out[i] != 0;
}
clear_overflow_bits(out);
out.set_bw(bw);
return ovfl;
}
bool sls_valuation::is_power_of2(bvect const& src) const {
unsigned c = 0;
for (unsigned i = 0; i < nw; ++i)
c += get_num_1bits(src[i]);
return c == 1;
}
std::ostream& sls_valuation::print_bits(std::ostream& out, bvect const& v) const {
bool nz = false;
for (unsigned i = nw; i-- > 0;) {
auto w = v[i];
if (i + 1 == nw)
w &= mask;
if (nz)
out << std::setw(8) << std::setfill('0') << w;
else if (w != 0)
out << w, nz = true;
}
if (!nz)
out << "0";
return out;
}
}