mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 20:38:43 +00:00
228 lines
7.1 KiB
C++
228 lines
7.1 KiB
C++
/*++
|
|
Copyright (c) 2019 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
sat_ddfw.h
|
|
|
|
Abstract:
|
|
|
|
DDFW Local search module for clauses
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner, Marijn Heule 2019-4-23
|
|
|
|
Notes:
|
|
|
|
http://www.ict.griffith.edu.au/~johnt/publications/CP2006raouf.pdf
|
|
|
|
--*/
|
|
#ifndef _SAT_DDFW_
|
|
#define _SAT_DDFW_
|
|
|
|
#include "util/uint_set.h"
|
|
#include "util/rlimit.h"
|
|
#include "util/params.h"
|
|
#include "util/ema.h"
|
|
#include "sat/sat_clause.h"
|
|
#include "sat/sat_types.h"
|
|
|
|
namespace sat {
|
|
class solver;
|
|
class parallel;
|
|
|
|
class ddfw : public i_local_search {
|
|
|
|
struct clause_info {
|
|
clause_info(clause* cl, unsigned init_weight): m_weight(init_weight), m_trues(0), m_num_trues(0), m_clause(cl) {}
|
|
unsigned m_weight; // weight of clause
|
|
unsigned m_trues; // set of literals that are true
|
|
unsigned m_num_trues; // size of true set
|
|
clause* m_clause;
|
|
bool is_true() const { return m_num_trues > 0; }
|
|
void add(literal lit) { ++m_num_trues; m_trues += lit.index(); }
|
|
void del(literal lit) { SASSERT(m_num_trues > 0); --m_num_trues; m_trues -= lit.index(); }
|
|
};
|
|
|
|
struct config {
|
|
config() { reset(); }
|
|
unsigned m_use_reward_zero_pct;
|
|
unsigned m_init_clause_weight;
|
|
unsigned m_max_num_models;
|
|
unsigned m_restart_base;
|
|
unsigned m_reinit_base;
|
|
unsigned m_parsync_base;
|
|
double m_itau;
|
|
void reset() {
|
|
m_init_clause_weight = 8;
|
|
m_use_reward_zero_pct = 15;
|
|
m_max_num_models = (1 << 10);
|
|
m_restart_base = 100333;
|
|
m_reinit_base = 10000;
|
|
m_parsync_base = 333333;
|
|
m_itau = 0.5;
|
|
}
|
|
};
|
|
|
|
struct var_info {
|
|
var_info(): m_value(false), m_reward(0), m_make_count(0), m_bias(0), m_reward_avg(1e-5) {}
|
|
bool m_value;
|
|
int m_reward;
|
|
unsigned m_make_count;
|
|
int m_bias;
|
|
ema m_reward_avg;
|
|
};
|
|
|
|
config m_config;
|
|
reslimit m_limit;
|
|
clause_allocator m_alloc;
|
|
svector<clause_info> m_clauses;
|
|
literal_vector m_assumptions;
|
|
svector<var_info> m_vars; // var -> info
|
|
svector<double> m_probs; // var -> probability of flipping
|
|
svector<double> m_scores; // reward -> score
|
|
model m_model; // var -> best assignment
|
|
|
|
vector<unsigned_vector> m_use_list;
|
|
unsigned_vector m_flat_use_list;
|
|
unsigned_vector m_use_list_index;
|
|
|
|
indexed_uint_set m_unsat;
|
|
indexed_uint_set m_unsat_vars; // set of variables that are in unsat clauses
|
|
random_gen m_rand;
|
|
unsigned m_num_non_binary_clauses;
|
|
unsigned m_restart_count, m_reinit_count, m_parsync_count;
|
|
uint64_t m_restart_next, m_reinit_next, m_parsync_next;
|
|
uint64_t m_flips, m_last_flips, m_shifts;
|
|
unsigned m_min_sz;
|
|
hashtable<unsigned, unsigned_hash, default_eq<unsigned>> m_models;
|
|
stopwatch m_stopwatch;
|
|
|
|
parallel* m_par;
|
|
|
|
class use_list {
|
|
ddfw& p;
|
|
unsigned i;
|
|
public:
|
|
use_list(ddfw& p, literal lit):
|
|
p(p), i(lit.index()) {}
|
|
unsigned const* begin() { return p.m_flat_use_list.c_ptr() + p.m_use_list_index[i]; }
|
|
unsigned const* end() { return p.m_flat_use_list.c_ptr() + p.m_use_list_index[i+1]; }
|
|
};
|
|
|
|
void flatten_use_list();
|
|
|
|
double mk_score(unsigned r);
|
|
|
|
inline double score(unsigned r) { return r; } // TBD: { for (unsigned sz = m_scores.size(); sz <= r; ++sz) m_scores.push_back(mk_score(sz)); return m_scores[r]; }
|
|
|
|
inline unsigned num_vars() const { return m_vars.size(); }
|
|
|
|
inline unsigned& make_count(bool_var v) { return m_vars[v].m_make_count; }
|
|
|
|
inline bool& value(bool_var v) { return m_vars[v].m_value; }
|
|
|
|
inline bool value(bool_var v) const { return m_vars[v].m_value; }
|
|
|
|
inline int& reward(bool_var v) { return m_vars[v].m_reward; }
|
|
|
|
inline int reward(bool_var v) const { return m_vars[v].m_reward; }
|
|
|
|
inline int& bias(bool_var v) { return m_vars[v].m_bias; }
|
|
|
|
unsigned value_hash() const;
|
|
|
|
inline bool is_true(literal lit) const { return value(lit.var()) != lit.sign(); }
|
|
|
|
inline clause const& get_clause(unsigned idx) const { return *m_clauses[idx].m_clause; }
|
|
|
|
inline unsigned get_weight(unsigned idx) const { return m_clauses[idx].m_weight; }
|
|
|
|
inline bool is_true(unsigned idx) const { return m_clauses[idx].is_true(); }
|
|
|
|
void update_reward_avg(bool_var v) { m_vars[v].m_reward_avg.update(reward(v)); }
|
|
|
|
unsigned select_max_same_sign(unsigned cf_idx);
|
|
|
|
inline void inc_make(literal lit) {
|
|
bool_var v = lit.var();
|
|
if (make_count(v)++ == 0) m_unsat_vars.insert(v);
|
|
}
|
|
|
|
inline void dec_make(literal lit) {
|
|
bool_var v = lit.var();
|
|
if (--make_count(v) == 0) m_unsat_vars.remove(v);
|
|
}
|
|
|
|
inline void inc_reward(literal lit, int inc) { reward(lit.var()) += inc; }
|
|
|
|
inline void dec_reward(literal lit, int inc) { reward(lit.var()) -= inc; }
|
|
|
|
// flip activity
|
|
bool do_flip();
|
|
bool_var pick_var();
|
|
void flip(bool_var v);
|
|
void save_best_values();
|
|
|
|
// shift activity
|
|
void shift_weights();
|
|
|
|
// reinitialize weights activity
|
|
bool should_reinit_weights();
|
|
void do_reinit_weights();
|
|
inline bool select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n);
|
|
|
|
// restart activity
|
|
bool should_restart();
|
|
void do_restart();
|
|
void reinit_values();
|
|
|
|
// parallel integration
|
|
bool should_parallel_sync();
|
|
void do_parallel_sync();
|
|
|
|
void log();
|
|
|
|
void init(unsigned sz, literal const* assumptions);
|
|
|
|
void init_clause_data();
|
|
|
|
void invariant();
|
|
|
|
void add(unsigned sz, literal const* c);
|
|
|
|
void add_assumptions();
|
|
|
|
public:
|
|
|
|
ddfw(): m_par(nullptr) {}
|
|
|
|
~ddfw() override;
|
|
|
|
lbool check(unsigned sz, literal const* assumptions, parallel* p) override;
|
|
|
|
void updt_params(params_ref const& p) override;
|
|
|
|
model const& get_model() const override { return m_model; }
|
|
|
|
reslimit& rlimit() override { return m_limit; }
|
|
|
|
void set_seed(unsigned n) override { m_rand.set_seed(n); }
|
|
|
|
void add(solver const& s) override;
|
|
|
|
std::ostream& display(std::ostream& out) const;
|
|
|
|
// for parallel integration
|
|
unsigned num_non_binary_clauses() const override { return m_num_non_binary_clauses; }
|
|
void reinit(solver& s) override;
|
|
|
|
void collect_statistics(statistics& st) const override {}
|
|
|
|
double get_priority(bool_var v) const override { return m_probs[v]; }
|
|
};
|
|
}
|
|
|
|
#endif
|