mirror of
https://github.com/Z3Prover/z3
synced 2025-05-02 21:37:02 +00:00
711 lines
23 KiB
C++
711 lines
23 KiB
C++
/*++
|
|
Copyright (c) 2017 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
nla_grobner.cpp
|
|
|
|
Author:
|
|
Lev Nachmanson (levnach)
|
|
Nikolaj Bjorner (nbjorner)
|
|
|
|
--*/
|
|
#include "util/uint_set.h"
|
|
#include "math/lp/nla_core.h"
|
|
#include "math/lp/factorization_factory_imp.h"
|
|
#include "math/grobner/pdd_solver.h"
|
|
#include "math/dd/pdd_interval.h"
|
|
#include "math/dd/pdd_eval.h"
|
|
|
|
namespace nla {
|
|
|
|
grobner::grobner(core* c):
|
|
common(c),
|
|
m_pdd_manager(m_core.lra.number_of_vars()),
|
|
m_solver(m_core.m_reslim, m_core.lra.dep_manager(), m_pdd_manager),
|
|
lra(m_core.lra),
|
|
m_quota(m_core.params().arith_nl_gr_q())
|
|
{}
|
|
|
|
lp::lp_settings& grobner::lp_settings() {
|
|
return c().lp_settings();
|
|
}
|
|
|
|
void grobner::operator()() {
|
|
|
|
if (lra.column_count() > 5000)
|
|
return;
|
|
|
|
if (m_quota == 0)
|
|
m_quota = c().params().arith_nl_gr_q();
|
|
|
|
if (m_quota == 1) {
|
|
m_delay_base++;
|
|
m_delay = m_delay_base;
|
|
m_quota = c().params().arith_nl_gr_q();
|
|
}
|
|
|
|
if (m_delay > 0) {
|
|
--m_delay;
|
|
return;
|
|
}
|
|
|
|
lp_settings().stats().m_grobner_calls++;
|
|
find_nl_cluster();
|
|
if (!configure())
|
|
return;
|
|
m_solver.saturate();
|
|
|
|
if (m_delay_base > 0)
|
|
--m_delay_base;
|
|
|
|
try {
|
|
|
|
if (is_conflicting())
|
|
return;
|
|
|
|
if (propagate_eqs())
|
|
return;
|
|
|
|
if (propagate_factorization())
|
|
return;
|
|
|
|
if (propagate_linear_equations())
|
|
return;
|
|
|
|
}
|
|
catch (...) {
|
|
|
|
}
|
|
|
|
// DEBUG_CODE(for (auto e : m_solver.equations()) check_missing_propagation(*e););
|
|
|
|
// for (auto e : m_solver.equations()) check_missing_propagation(*e);
|
|
|
|
++m_delay_base;
|
|
if (m_quota > 0)
|
|
--m_quota;
|
|
|
|
IF_VERBOSE(3, verbose_stream() << "grobner miss, quota " << m_quota << "\n");
|
|
IF_VERBOSE(4, diagnose_pdd_miss(verbose_stream()));
|
|
}
|
|
|
|
dd::solver::equation_vector const& grobner::core_equations(bool all_eqs) {
|
|
flet<bool> _add_all(m_add_all_eqs, all_eqs);
|
|
find_nl_cluster();
|
|
if (!configure())
|
|
throw dd::pdd_manager::mem_out();
|
|
return m_solver.equations();
|
|
}
|
|
|
|
bool grobner::is_conflicting() {
|
|
for (auto eq : m_solver.equations()) {
|
|
if (is_conflicting(*eq)) {
|
|
lp_settings().stats().m_grobner_conflicts++;
|
|
TRACE("grobner", m_solver.display(tout));
|
|
IF_VERBOSE(3, verbose_stream() << "grobner conflict\n");
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool grobner::propagate_eqs() {
|
|
unsigned changed = 0;
|
|
for (auto eq : m_solver.equations())
|
|
if (propagate_fixed(*eq) && ++changed >= m_solver.number_of_conflicts_to_report())
|
|
return true;
|
|
return changed > 0;
|
|
}
|
|
|
|
bool grobner::propagate_factorization() {
|
|
unsigned changed = 0;
|
|
for (auto eq : m_solver.equations())
|
|
if (propagate_factorization(*eq) && ++changed >= m_solver.number_of_conflicts_to_report())
|
|
return true;
|
|
return changed > 0;
|
|
}
|
|
|
|
/**
|
|
\brief detect equalities
|
|
- k*x = 0, that is x = 0
|
|
- ax + b = 0
|
|
*/
|
|
typedef lp::lar_term term;
|
|
bool grobner::propagate_fixed(const dd::solver::equation& eq) {
|
|
dd::pdd const& p = eq.poly();
|
|
if (p.is_unary()) {
|
|
unsigned v = p.var();
|
|
if (c().var_is_fixed(v))
|
|
return false;
|
|
|
|
ineq new_eq(v, llc::EQ, rational::zero());
|
|
if (c().ineq_holds(new_eq))
|
|
return false;
|
|
new_lemma lemma(c(), "pdd-eq");
|
|
add_dependencies(lemma, eq);
|
|
lemma |= new_eq;
|
|
return true;
|
|
}
|
|
if (p.is_offset()) {
|
|
unsigned v = p.var();
|
|
if (c().var_is_fixed(v))
|
|
return false;
|
|
rational a = p.hi().val();
|
|
rational b = -p.lo().val();
|
|
rational d = lcm(denominator(a), denominator(b));
|
|
a *= d;
|
|
b *= d;
|
|
ineq new_eq(term(a, v), llc::EQ, b);
|
|
if (c().ineq_holds(new_eq))
|
|
return false;
|
|
new_lemma lemma(c(), "pdd-eq");
|
|
add_dependencies(lemma, eq);
|
|
lemma |= new_eq;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
\brief detect simple factors
|
|
x*q = 0 => x = 0 or q = 0
|
|
*/
|
|
|
|
bool grobner::propagate_factorization(const dd::solver::equation& eq) {
|
|
dd::pdd const& p = eq.poly();
|
|
auto [vars, q] = p.var_factors();
|
|
if (vars.empty() || !q.is_linear())
|
|
return false;
|
|
|
|
// IF_VERBOSE(0, verbose_stream() << "factored " << q << " : " << vars << "\n");
|
|
|
|
term t;
|
|
rational lc(1);
|
|
auto ql = q;
|
|
while (!ql.is_val()) {
|
|
lc = lcm(lc, denominator(ql.hi().val()));
|
|
ql = ql.lo();
|
|
}
|
|
lc = lcm(denominator(ql.val()), lc);
|
|
|
|
while (!q.is_val()) {
|
|
t.add_monomial(lc*q.hi().val(), q.var());
|
|
q = q.lo();
|
|
}
|
|
vector<ineq> ineqs;
|
|
for (auto v : vars)
|
|
ineqs.push_back(ineq(v, llc::EQ, rational::zero()));
|
|
ineqs.push_back(ineq(t, llc::EQ, -lc*q.val()));
|
|
for (auto const& i : ineqs)
|
|
if (c().ineq_holds(i))
|
|
return false;
|
|
|
|
new_lemma lemma(c(), "pdd-factored");
|
|
add_dependencies(lemma, eq);
|
|
for (auto const& i : ineqs)
|
|
lemma |= i;
|
|
//lemma.display(verbose_stream());
|
|
return true;
|
|
}
|
|
|
|
void grobner::explain(dd::solver::equation const& eq, lp::explanation& exp) {
|
|
u_dependency_manager dm;
|
|
vector<unsigned, false> lv;
|
|
dm.linearize(eq.dep(), lv);
|
|
for (unsigned ci : lv)
|
|
exp.push_back(ci);
|
|
}
|
|
|
|
|
|
void grobner::add_dependencies(new_lemma& lemma, const dd::solver::equation& eq) {
|
|
lp::explanation exp;
|
|
explain(eq, exp);
|
|
lemma &= exp;
|
|
}
|
|
|
|
bool grobner::configure() {
|
|
m_solver.reset();
|
|
try {
|
|
set_level2var();
|
|
TRACE("grobner",
|
|
tout << "base vars: ";
|
|
for (lpvar j : c().active_var_set())
|
|
if (lra.is_base(j))
|
|
tout << "j" << j << " ";
|
|
tout << "\n");
|
|
for (lpvar j : c().active_var_set()) {
|
|
if (lra.is_base(j))
|
|
add_row(lra.basic2row(j));
|
|
|
|
if (c().is_monic_var(j) && c().var_is_fixed(j))
|
|
add_fixed_monic(j);
|
|
}
|
|
}
|
|
catch (dd::pdd_manager::mem_out) {
|
|
IF_VERBOSE(2, verbose_stream() << "pdd throw\n");
|
|
return false;
|
|
}
|
|
TRACE("grobner", m_solver.display(tout));
|
|
|
|
#if 0
|
|
IF_VERBOSE(2, m_pdd_grobner.display(verbose_stream()));
|
|
dd::pdd_eval eval(m_pdd_manager);
|
|
eval.var2val() = [&](unsigned j){ return val(j); };
|
|
for (auto* e : m_pdd_grobner.equations()) {
|
|
dd::pdd p = e->poly();
|
|
rational v = eval(p);
|
|
if (p.is_linear() && !eval(p).is_zero()) {
|
|
IF_VERBOSE(0, verbose_stream() << "violated linear constraint " << p << "\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
struct dd::solver::config cfg;
|
|
cfg.m_max_steps = m_solver.equations().size();
|
|
cfg.m_max_simplified = c().params().arith_nl_grobner_max_simplified();
|
|
cfg.m_eqs_growth = c().params().arith_nl_grobner_eqs_growth();
|
|
cfg.m_expr_size_growth = c().params().arith_nl_grobner_expr_size_growth();
|
|
cfg.m_expr_degree_growth = c().params().arith_nl_grobner_expr_degree_growth();
|
|
cfg.m_number_of_conflicts_to_report = c().params().arith_nl_grobner_cnfl_to_report();
|
|
m_solver.set(cfg);
|
|
m_solver.adjust_cfg();
|
|
m_pdd_manager.set_max_num_nodes(10000); // or something proportional to the number of initial nodes.
|
|
|
|
return true;
|
|
}
|
|
|
|
std::ostream& grobner::diagnose_pdd_miss(std::ostream& out) {
|
|
|
|
// m_pdd_grobner.display(out);
|
|
|
|
dd::pdd_eval eval;
|
|
eval.var2val() = [&](unsigned j){ return val(j); };
|
|
for (auto* e : m_solver.equations()) {
|
|
dd::pdd p = e->poly();
|
|
rational v = eval(p);
|
|
if (!v.is_zero()) {
|
|
out << p << " := " << v << "\n";
|
|
}
|
|
}
|
|
|
|
for (unsigned j = 0; j < lra.number_of_vars(); ++j) {
|
|
if (lra.column_has_lower_bound(j) || lra.column_has_upper_bound(j)) {
|
|
out << j << ": [";
|
|
if (lra.column_has_lower_bound(j)) out << lra.get_lower_bound(j);
|
|
out << "..";
|
|
if (lra.column_has_upper_bound(j)) out << lra.get_upper_bound(j);
|
|
out << "]\n";
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool grobner::equation_is_true(dd::solver::equation const& eq) {
|
|
if (any_of(eq.poly().free_vars(), [&](unsigned j) { return lra.column_is_free(j); }))
|
|
return true;
|
|
dd::pdd_eval eval;
|
|
eval.var2val() = [&](unsigned j){ return val(j); };
|
|
return eval(eq.poly()) == 0;
|
|
}
|
|
|
|
|
|
bool grobner::is_conflicting(const dd::solver::equation& e) {
|
|
if (equation_is_true(e))
|
|
return false;
|
|
auto& di = c().m_intervals.get_dep_intervals();
|
|
dd::pdd_interval evali(di);
|
|
evali.var2interval() = [this](lpvar j, bool deps, scoped_dep_interval& a) {
|
|
if (deps) c().m_intervals.set_var_interval<dd::w_dep::with_deps>(j, a);
|
|
else c().m_intervals.set_var_interval<dd::w_dep::without_deps>(j, a);
|
|
};
|
|
scoped_dep_interval i(di), i_wd(di);
|
|
evali.get_interval<dd::w_dep::without_deps>(e.poly(), i);
|
|
if (!di.separated_from_zero(i)) {
|
|
TRACE("grobner", m_solver.display(tout << "not separated from 0 ", e) << "\n";
|
|
evali.get_interval_distributed<dd::w_dep::without_deps>(e.poly(), i);
|
|
tout << "separated from 0: " << di.separated_from_zero(i) << "\n";
|
|
for (auto j : e.poly().free_vars()) {
|
|
scoped_dep_interval a(di);
|
|
c().m_intervals.set_var_interval<dd::w_dep::without_deps>(j, a);
|
|
c().m_intervals.display(tout << "j" << j << " ", a); tout << " ";
|
|
}
|
|
tout << "\n");
|
|
|
|
|
|
if (add_horner_conflict(e))
|
|
return true;
|
|
#if 0
|
|
if (add_nla_conflict(e))
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
evali.get_interval<dd::w_dep::with_deps>(e.poly(), i_wd);
|
|
std::function<void (const lp::explanation&)> f = [this](const lp::explanation& e) {
|
|
new_lemma lemma(m_core, "pdd");
|
|
lemma &= e;
|
|
};
|
|
if (di.check_interval_for_conflict_on_zero(i_wd, e.dep(), f)) {
|
|
TRACE("grobner", m_solver.display(tout << "conflict ", e) << "\n");
|
|
return true;
|
|
}
|
|
else {
|
|
#if 0
|
|
if (add_nla_conflict(e))
|
|
return true;
|
|
#endif
|
|
TRACE("grobner", m_solver.display(tout << "no conflict ", e) << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool grobner::propagate_linear_equations() {
|
|
unsigned changed = 0;
|
|
m_mon2var.clear();
|
|
for (auto const& m : c().emons())
|
|
m_mon2var[m.vars()] = m.var();
|
|
|
|
for (auto eq : m_solver.equations())
|
|
if (propagate_linear_equations(*eq))
|
|
++changed;
|
|
return changed > 0;
|
|
}
|
|
|
|
bool grobner::propagate_linear_equations(dd::solver::equation const& e) {
|
|
if (equation_is_true(e))
|
|
return false;
|
|
rational value(0);
|
|
for (auto const& [coeff, vars] : e.poly()) {
|
|
if (vars.empty())
|
|
value += coeff;
|
|
else if (vars.size() == 1)
|
|
value += coeff*val(vars[0]);
|
|
else if (m_mon2var.find(vars) == m_mon2var.end())
|
|
return false;
|
|
else
|
|
value += coeff*val(m_mon2var.find(vars)->second);
|
|
}
|
|
if (value == 0)
|
|
return false;
|
|
|
|
rational lc(1);
|
|
for (auto const& [coeff, vars] : e.poly())
|
|
lc = lcm(denominator(coeff), lc);
|
|
|
|
vector<std::pair<lp::mpq, unsigned>> coeffs;
|
|
rational offset(0);
|
|
|
|
for (auto const& [coeff, vars] : e.poly()) {
|
|
if (vars.size() == 0)
|
|
offset -= lc*coeff;
|
|
else if (vars.size() == 1)
|
|
coeffs.push_back({lc*coeff, vars[0]});
|
|
else
|
|
coeffs.push_back({lc*coeff, m_mon2var.find(vars)->second});
|
|
}
|
|
|
|
lp::lpvar j = c().lra.add_term(coeffs, UINT_MAX);
|
|
c().lra.update_column_type_and_bound(j, lp::lconstraint_kind::EQ, offset, e.dep());
|
|
c().m_check_feasible = true;
|
|
return true;
|
|
}
|
|
|
|
|
|
void grobner::add_var_and_its_factors_to_q_and_collect_new_rows(lpvar j, svector<lpvar> & q) {
|
|
if (c().active_var_set_contains(j))
|
|
return;
|
|
c().insert_to_active_var_set(j);
|
|
if (c().is_monic_var(j)) {
|
|
const monic& m = c().emons()[j];
|
|
for (auto fcn : factorization_factory_imp(m, m_core))
|
|
for (const factor& fc: fcn)
|
|
q.push_back(var(fc));
|
|
}
|
|
|
|
if (c().var_is_fixed(j))
|
|
return;
|
|
const auto& matrix = lra.A_r();
|
|
for (auto & s : matrix.m_columns[j]) {
|
|
unsigned row = s.var();
|
|
if (m_rows.contains(row))
|
|
continue;
|
|
m_rows.insert(row);
|
|
unsigned k = lra.get_base_column_in_row(row);
|
|
// grobner bassis does not know about integer constraints
|
|
if (lra.column_is_free(k) && !m_add_all_eqs && k != j)
|
|
continue;
|
|
// a free column over the reals can be assigned
|
|
if (lra.column_is_free(k) && k != j && !lra.var_is_int(k))
|
|
continue;
|
|
CTRACE("grobner", matrix.m_rows[row].size() > c().params().arith_nl_grobner_row_length_limit(),
|
|
tout << "ignore the row " << row << " with the size " << matrix.m_rows[row].size() << "\n";);
|
|
// limits overhead of grobner equations, unless this is for extracting a complete COI of the non-satisfied subset.
|
|
if (!m_add_all_eqs && matrix.m_rows[row].size() > c().params().arith_nl_horner_row_length_limit())
|
|
continue;
|
|
for (auto& rc : matrix.m_rows[row])
|
|
add_var_and_its_factors_to_q_and_collect_new_rows(rc.var(), q);
|
|
}
|
|
}
|
|
|
|
const rational& grobner::val_of_fixed_var_with_deps(lpvar j, u_dependency*& dep) {
|
|
auto* d = lra.get_bound_constraint_witnesses_for_column(j);
|
|
if (d)
|
|
dep = c().m_intervals.mk_join(dep, d);
|
|
return lra.column_lower_bound(j).x;
|
|
}
|
|
|
|
dd::pdd grobner::pdd_expr(const rational& coeff, lpvar j, u_dependency*& dep) {
|
|
dd::pdd r = m_pdd_manager.mk_val(coeff);
|
|
sbuffer<lpvar> vars;
|
|
vars.push_back(j);
|
|
u_dependency* zero_dep = dep;
|
|
while (!vars.empty()) {
|
|
j = vars.back();
|
|
vars.pop_back();
|
|
if (c().params().arith_nl_grobner_subs_fixed() > 0 && c().var_is_fixed_to_zero(j)) {
|
|
r = m_pdd_manager.mk_val(val_of_fixed_var_with_deps(j, zero_dep));
|
|
dep = zero_dep;
|
|
return r;
|
|
}
|
|
if (c().params().arith_nl_grobner_subs_fixed() == 1 && c().var_is_fixed(j))
|
|
r *= val_of_fixed_var_with_deps(j, dep);
|
|
else if (!c().is_monic_var(j))
|
|
r *= m_pdd_manager.mk_var(j);
|
|
else
|
|
for (lpvar k : c().emons()[j].vars())
|
|
vars.push_back(k);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
\brief convert p == 0 into a solved form v == r, such that
|
|
v has bounds [lo, oo) iff r has bounds [lo', oo)
|
|
v has bounds (oo,hi] iff r has bounds (oo,hi']
|
|
|
|
The solved form allows the Grobner solver identify more bounds conflicts.
|
|
A bad leading term can miss bounds conflicts.
|
|
For example for x + y + z == 0 where x, y : [0, oo) and z : (oo,0]
|
|
we prefer to solve z == -x - y instead of x == -z - y
|
|
because the solution -z - y has neither an upper, nor a lower bound.
|
|
*/
|
|
bool grobner::is_solved(dd::pdd const& p, unsigned& v, dd::pdd& r) {
|
|
if (!p.is_linear())
|
|
return false;
|
|
r = p;
|
|
unsigned num_lo = 0, num_hi = 0;
|
|
unsigned lo = 0, hi = 0;
|
|
rational lc, hc, c;
|
|
while (!r.is_val()) {
|
|
SASSERT(r.hi().is_val());
|
|
v = r.var();
|
|
rational val = r.hi().val();
|
|
switch (lra.get_column_type(v)) {
|
|
case lp::column_type::lower_bound:
|
|
if (val > 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val;
|
|
break;
|
|
case lp::column_type::upper_bound:
|
|
if (val < 0) num_lo++, lo = v, lc = val; else num_hi++, hi = v, hc = val;
|
|
break;
|
|
case lp::column_type::fixed:
|
|
case lp::column_type::boxed:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (num_lo > 1 && num_hi > 1)
|
|
return false;
|
|
r = r.lo();
|
|
}
|
|
if (num_lo == 1 && num_hi > 1) {
|
|
v = lo;
|
|
c = lc;
|
|
}
|
|
else if (num_hi == 1 && num_lo > 1) {
|
|
v = hi;
|
|
c = hc;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
r = c*m_pdd_manager.mk_var(v) - p;
|
|
if (c != 1)
|
|
r = r * (1/c);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
\brief add an equality to grobner solver, convert it to solved form if available.
|
|
*/
|
|
void grobner::add_eq(dd::pdd& p, u_dependency* dep) {
|
|
unsigned v;
|
|
dd::pdd q(m_pdd_manager);
|
|
m_solver.simplify(p, dep);
|
|
if (is_solved(p, v, q))
|
|
m_solver.add_subst(v, q, dep);
|
|
else
|
|
m_solver.add(p, dep);
|
|
}
|
|
|
|
void grobner::add_fixed_monic(unsigned j) {
|
|
u_dependency* dep = nullptr;
|
|
dd::pdd r = m_pdd_manager.mk_val(rational(1));
|
|
for (lpvar k : c().emons()[j].vars())
|
|
r *= pdd_expr(rational::one(), k, dep);
|
|
r -= val_of_fixed_var_with_deps(j, dep);
|
|
add_eq(r, dep);
|
|
}
|
|
|
|
void grobner::add_row(const std_vector<lp::row_cell<rational>> & row) {
|
|
u_dependency *dep = nullptr;
|
|
rational val;
|
|
dd::pdd sum = m_pdd_manager.mk_val(rational(0));
|
|
for (const auto &p : row)
|
|
sum += pdd_expr(p.coeff(), p.var(), dep);
|
|
TRACE("grobner", c().print_row(row, tout) << " " << sum << "\n");
|
|
add_eq(sum, dep);
|
|
}
|
|
|
|
void grobner::find_nl_cluster() {
|
|
prepare_rows_and_active_vars();
|
|
svector<lpvar> q;
|
|
TRACE("grobner", for (lpvar j : c().m_to_refine) print_monic(c().emons()[j], tout) << "\n";);
|
|
|
|
for (lpvar j : c().m_to_refine)
|
|
q.push_back(j);
|
|
|
|
while (!q.empty()) {
|
|
lpvar j = q.back();
|
|
q.pop_back();
|
|
add_var_and_its_factors_to_q_and_collect_new_rows(j, q);
|
|
}
|
|
TRACE("grobner", tout << "vars in cluster: ";
|
|
for (lpvar j : c().active_var_set()) tout << "j" << j << " "; tout << "\n";
|
|
display_matrix_of_m_rows(tout);
|
|
);
|
|
}
|
|
|
|
void grobner::prepare_rows_and_active_vars() {
|
|
m_rows.reset();
|
|
c().clear_active_var_set();
|
|
}
|
|
|
|
|
|
void grobner::display_matrix_of_m_rows(std::ostream & out) const {
|
|
const auto& matrix = lra.A_r();
|
|
out << m_rows.size() << " rows" << "\n";
|
|
out << "the matrix\n";
|
|
for (const auto & r : matrix.m_rows)
|
|
c().print_row(r, out) << std::endl;
|
|
}
|
|
|
|
void grobner::set_level2var() {
|
|
unsigned n = lra.column_count();
|
|
unsigned_vector sorted_vars(n), weighted_vars(n);
|
|
for (unsigned j = 0; j < n; j++) {
|
|
sorted_vars[j] = j;
|
|
weighted_vars[j] = c().get_var_weight(j);
|
|
}
|
|
#if 1
|
|
// potential update to weights
|
|
for (unsigned j = 0; j < n; j++) {
|
|
if (c().is_monic_var(j) && c().m_to_refine.contains(j)) {
|
|
for (lpvar k : c().m_emons[j].vars()) {
|
|
weighted_vars[k] += 6;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
std::sort(sorted_vars.begin(), sorted_vars.end(), [&](unsigned a, unsigned b) {
|
|
unsigned wa = weighted_vars[a];
|
|
unsigned wb = weighted_vars[b];
|
|
return wa < wb || (wa == wb && a < b); });
|
|
|
|
unsigned_vector l2v(n);
|
|
for (unsigned j = 0; j < n; j++)
|
|
l2v[j] = sorted_vars[j];
|
|
|
|
m_pdd_manager.reset(l2v);
|
|
|
|
TRACE("grobner",
|
|
for (auto v : sorted_vars)
|
|
tout << "j" << v << " w:" << weighted_vars[v] << " ";
|
|
tout << "\n");
|
|
}
|
|
|
|
bool grobner::is_nla_conflict(const dd::solver::equation& eq) {
|
|
vector<dd::pdd> eqs;
|
|
eqs.push_back(eq.poly());
|
|
return l_false == c().m_nra.check(eqs);
|
|
}
|
|
|
|
bool grobner::add_horner_conflict(const dd::solver::equation& eq) {
|
|
nex_creator& nc = m_nex_creator;
|
|
nc.pop(0);
|
|
nex_creator::sum_factory sum(nc);
|
|
u_map<nex_var*> var2nex;
|
|
for (auto v : eq.poly().free_vars())
|
|
var2nex.insert(v, nc.mk_var(v));
|
|
unsigned mx = 0;
|
|
for (auto v : eq.poly().free_vars())
|
|
mx = std::max(v, mx);
|
|
nc.set_number_of_vars(mx + 1);
|
|
for (auto const& [coeff, vars] : eq.poly()) {
|
|
switch (vars.size()) {
|
|
case 0:
|
|
sum += nc.mk_scalar(coeff);
|
|
break;
|
|
case 1:
|
|
sum += nc.mk_mul(coeff, var2nex[vars[0]]);
|
|
break;
|
|
default:
|
|
nc.m_mk_mul.reset();
|
|
nc.m_mk_mul *= coeff;
|
|
for (auto v : vars)
|
|
nc.m_mk_mul *= var2nex[v];
|
|
sum += nc.m_mk_mul.mk();
|
|
break;
|
|
}
|
|
}
|
|
nex* e = nc.simplify(sum.mk());
|
|
if (e->get_degree() < 2 || !e->is_sum())
|
|
return false;
|
|
|
|
auto dep = eq.dep();
|
|
cross_nested cn(
|
|
[this, dep](const nex* n) { return c().m_intervals.check_nex(n, dep); },
|
|
[this](unsigned j) { return c().var_is_fixed(j); },
|
|
[this]() { return c().random(); }, nc);
|
|
cn.run(to_sum(e));
|
|
bool ret = cn.done();
|
|
return ret;
|
|
}
|
|
|
|
bool grobner::add_nla_conflict(const dd::solver::equation& eq) {
|
|
if (is_nla_conflict(eq)) {
|
|
new_lemma lemma(m_core,"nla-conflict");
|
|
lp::explanation exp;
|
|
explain(eq, exp);
|
|
lemma &= exp;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void grobner::check_missing_propagation(const dd::solver::equation& e) {
|
|
bool is_confl = is_nla_conflict(e);
|
|
CTRACE("grobner", is_confl, m_solver.display(tout << "missed conflict ", e););
|
|
if (is_confl) {
|
|
IF_VERBOSE(2, verbose_stream() << "missed conflict\n");
|
|
return;
|
|
}
|
|
//lbool r = c().m_nra.check_tight(e.poly());
|
|
//CTRACE("grobner", r == l_false, m_solver.display(tout << "tight equality ", e););
|
|
}
|
|
|
|
|
|
}
|