3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-22 05:36:41 +00:00
z3/src/math/lp/nla_stellensatz.cpp
Nikolaj Bjorner 5de01e5d1d add stubs for bounds refinement
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
2025-11-19 10:42:28 -08:00

1242 lines
47 KiB
C++

/*++
Copyright (c) 2025 Microsoft Corporation
*/
#include "util/heap.h"
#include "math/dd/pdd_eval.h"
#include "math/lp/nla_core.h"
#include "math/lp/nla_coi.h"
#include "math/lp/nla_stellensatz.h"
namespace nla {
lp::lconstraint_kind join(lp::lconstraint_kind k1, lp::lconstraint_kind k2) {
if (k1 == k2)
return k1;
if (k1 == lp::lconstraint_kind::EQ)
return k2;
if (k2 == lp::lconstraint_kind::EQ)
return k1;
if ((k1 == lp::lconstraint_kind::LE && k2 == lp::lconstraint_kind::LT) ||
(k1 == lp::lconstraint_kind::LT && k2 == lp::lconstraint_kind::LE))
return lp::lconstraint_kind::LT;
if ((k1 == lp::lconstraint_kind::GE && k2 == lp::lconstraint_kind::GT) ||
(k1 == lp::lconstraint_kind::GT && k2 == lp::lconstraint_kind::GE))
return lp::lconstraint_kind::GT;
UNREACHABLE();
return k1;
}
lp::lconstraint_kind meet(lp::lconstraint_kind k1, lp::lconstraint_kind k2) {
if (k1 == k2)
return k1;
if (k1 == lp::lconstraint_kind::EQ)
return k1;
if (k2 == lp::lconstraint_kind::EQ)
return k2;
if ((k1 == lp::lconstraint_kind::LE && k2 == lp::lconstraint_kind::LT) ||
(k1 == lp::lconstraint_kind::LT && k2 == lp::lconstraint_kind::LE))
return lp::lconstraint_kind::LE;
if ((k1 == lp::lconstraint_kind::GE && k2 == lp::lconstraint_kind::GT) ||
(k1 == lp::lconstraint_kind::GT && k2 == lp::lconstraint_kind::GE))
return lp::lconstraint_kind::GE;
UNREACHABLE();
return k1;
}
lpvar stellensatz::monomial_factory::mk_monomial(lp::lar_solver &lra, svector<lpvar> const &vars) {
lpvar v = lp::null_lpvar;
if (vars.empty())
return v;
if (vars.size() == 1)
return vars[0];
svector<lpvar> _vars(vars);
std::sort(_vars.begin(), _vars.end());
if (m_vars2mon.find(_vars, v))
return v;
auto is_int = all_of(vars, [&](lpvar v) { return lra.var_is_int(v); });
auto nv = lra.number_of_vars();
v = lra.add_var(nv, is_int);
m_vars2mon.insert(_vars, v);
m_mon2vars.insert(v, _vars);
return v;
}
lpvar stellensatz::monomial_factory::get_monomial(svector<lpvar> const &vars) {
lpvar v = lp::null_lpvar;
if (vars.empty())
return v;
if (vars.size() == 1)
return vars[0];
svector<lpvar> _vars(vars);
std::sort(_vars.begin(), _vars.end());
if (m_vars2mon.find(_vars, v))
return v;
return lp::null_lpvar;
}
void stellensatz::monomial_factory::init(lpvar v, svector<lpvar> const &_vars) {
svector<lpvar> vars(_vars);
std::sort(vars.begin(), vars.end());
m_vars2mon.insert(vars, v);
m_mon2vars.insert(v, vars);
}
stellensatz::stellensatz(core* core) :
common(core),
m_solver(*this),
m_coi(*core),
pddm(core->lra_solver().number_of_vars())
{}
lbool stellensatz::saturate() {
init_solver();
TRACE(arith, display(tout << "stellensatz before saturation\n"));
start_saturate:
lbool r;
#if 1
r = conflict_saturation();
#else
r = model_repair();
#endif
if (r != l_false)
r = m_solver.solve(m_core);
TRACE(arith, display(tout << "stellensatz after saturation " << r << "\n"));
if (r == l_false) {
while (backtrack(m_core)) {
lbool rb = m_solver.solve(m_core);
if (rb == l_false)
continue;
if (rb == l_undef) // TODO: if there is a core that doesn't depend on new monomials we could use this for conflicts
return rb;
m_solver.update_values(m_values);
goto start_saturate;
}
conflict(m_core);
}
if (r == l_true)
r = l_undef;
return r;
}
void stellensatz::init_solver() {
m_constraints.reset();
m_monomial_factory.reset();
m_coi.init();
m_constraint_index.reset();
m_values.reset();
init_vars();
init_occurs();
}
void stellensatz::init_vars() {
auto const& src = c().lra_solver();
auto sz = src.number_of_vars();
for (unsigned v = 0; v < sz; ++v) {
m_values.push_back(c().val(v));
if (!m_coi.vars().contains(v))
continue;
if (c().is_monic_var(v))
init_monomial(v);
// assert bounds on v in the new solver.
if (src.column_has_lower_bound(v)) {
auto lo_bound = src.get_lower_bound(v);
SASSERT(lo_bound.y >= 0);
auto k = lo_bound.y > 0 ? lp::lconstraint_kind::GT : lp::lconstraint_kind::GE;
auto rhs = lo_bound.x;
auto dep = src.get_column_lower_bound_witness(v);
add_var_bound(v, k, rhs, external_justification(dep));
}
if (src.column_has_upper_bound(v)) {
auto hi_bound = src.get_upper_bound(v);
SASSERT(hi_bound.y <= 0);
auto k = hi_bound.y < 0 ? lp::lconstraint_kind::LT : lp::lconstraint_kind::LE;
auto rhs = hi_bound.x;
auto dep = src.get_column_upper_bound_witness(v);
add_var_bound(v, k, rhs, external_justification(dep));
}
}
m_occurs.reserve(sz);
}
dd::pdd stellensatz::to_pdd(lpvar v) {
if (m_coi.mons().contains(v)) {
auto& mon = c().emons()[v];
dd::pdd prod(pddm);
prod = 1;
for (auto w : mon.vars())
prod *= to_pdd(w);
return prod;
}
if (m_coi.terms().contains(v)) {
auto const& t = c().lra_solver().get_term(v);
dd::pdd sum(pddm);
sum = 0;
for (auto cv : t)
sum += to_pdd(cv.j())*cv.coeff();
return sum;
}
return pddm.mk_var(v);
}
stellensatz::term_offset stellensatz::to_term_offset(dd::pdd const &p) {
term_offset to;
for (auto const &[coeff, vars] : p) {
if (vars.empty())
to.second += coeff;
else
to.first.add_monomial(coeff, m_monomial_factory.get_monomial(vars));
}
return to;
}
bool stellensatz::has_term_offset(dd::pdd const &p) {
for (auto const &[coeff, vars] : p)
if (!vars.empty() && lp::null_lpvar == m_monomial_factory.get_monomial(vars))
return false;
return true;
}
void stellensatz::init_monomial(unsigned mon_var) {
auto &mon = c().emons()[mon_var];
m_monomial_factory.init(mon_var, mon.vars());
}
lp::constraint_index stellensatz::add_var_bound(lp::lpvar v, lp::lconstraint_kind k, rational const& rhs, justification j) {
auto p = to_pdd(v) - rhs;
rational d(1);
for (auto const& [c, is_constant] : p.coefficients())
d = lcm(d, denominator(c));
if (d != 1)
p *= d;
return gcd_normalize(add_constraint(p, k, j));
}
lp::constraint_index stellensatz::add_constraint(dd::pdd p, lp::lconstraint_kind k, justification j) {
if (k == lp::lconstraint_kind::LE) {
k = lp::lconstraint_kind::GE;
p = -p;
}
if (k == lp::lconstraint_kind::LT) {
k = lp::lconstraint_kind::GT;
p = -p;
}
if (k == lp::lconstraint_kind::GT && is_int(p)) {
k = lp::lconstraint_kind::GE;
p -= rational(1);
}
lp::constraint_index ci = lp::null_ci;
if (m_constraint_index.find({p.index(), k}, ci))
return ci;
ci = m_constraints.size();
m_constraints.push_back({p, k, j });
m_constraint_index.insert({p.index(), k}, ci);
m_tabu.reserve(ci + 1);
return ci;
}
void stellensatz::add_active(lp::constraint_index ci, uint_set const &tabu) {
if (m_active.contains(ci))
return;
m_active.insert(ci);
m_tabu.reserve(ci + 1);
m_tabu[ci] = tabu;
}
// initialize active set of constraints that evaluate to false in the current model
// loop over active set to eliminate variables.
lbool stellensatz::conflict_saturation() {
m_active.reset();
m_tabu.reset();
for (unsigned ci = 0; ci < m_constraints.size(); ++ci) {
if (!constraint_is_true(ci))
add_active(ci, uint_set());
}
while (!m_active.empty() && c().reslim().inc()) {
// factor ci into x*p + q <= rhs, where degree(x, q) < degree(x, p) + 1
// if p is vanishing (evaluates to 0), then add p = 0 as assumption and reduce to q.
// otherwise
// find complementary constraints that contain x^k for k = 0 .. degree -1
// eliminate x (and other variables) by combining ci with complementary constraints.
auto ci = m_active.elem_at(0);
m_active.remove(ci);
if (constraint_is_true(ci))
continue;
TRACE(arith, display_constraint(tout << "process (" << ci << ") ", ci) << " " << m_tabu[ci] << "\n");
switch (factor(ci)) {
case l_undef: break;
case l_false: return l_false;
case l_true: continue;
}
auto x = select_variable_to_eliminate(ci);
if (x == lp::null_lpvar)
continue;
if (!resolve_variable(x, ci))
return l_false;
}
return l_undef;
}
bool stellensatz::resolve_variable(lpvar x, lp::constraint_index ci) {
auto f = factor(x, ci);
TRACE(arith, tout << "factor " << m_constraints[ci].p << " -> j" << x << "^" << f.degree << " * " << f.p
<< " + " << f.q << "\n");
auto p_value = value(f.p);
if (vanishing(x, f, ci))
return true;
if (p_value == 0)
return true;
if (m_tabu[ci].contains(x))
return true;
unsigned num_x = m_occurs[x].size();
for (unsigned i = 0; i < f.degree; ++i)
f.p *= to_pdd(x);
auto [_m1, _f_p] = f.p.var_factors();
for (unsigned cx = 0; cx < num_x; ++cx) {
auto other_ci = m_occurs[x][cx];
if (m_tabu[other_ci].contains(x))
continue;
if (!resolve_variable(x, ci, other_ci, p_value, f, _m1, _f_p))
return false;
}
return true;
}
bool stellensatz::resolve_variable(lpvar x, lp::constraint_index ci, lp::constraint_index other_ci,
rational const &p_value, factorization const &f, unsigned_vector const &_m1,
dd::pdd _f_p) {
if (ci == other_ci)
return true;
auto const &[other_p, other_k, other_j] = m_constraints[other_ci];
auto const &[p, k, j] = m_constraints[ci];
auto g = factor(x, other_ci);
auto p_value2 = value(g.p);
// check that p_value and p_value2 have different signs
// check that other_p is disjoint from tabu
// compute overlaps extending x
//
TRACE(arith, display_constraint(tout << "resolve with " << p_value << " " << p_value2 << " ", other_ci)
<< "\n");
SASSERT(g.degree > 0);
SASSERT(p_value != 0);
if (g.degree > f.degree) // future: could handle this too by considering tabu to be a map into degrees.
return true;
if (p_value > 0 && p_value2 > 0)
return true;
if (p_value < 0 && p_value2 < 0)
return true;
if (any_of(other_p.free_vars(), [&](unsigned j) { return m_tabu[ci].contains(j); }))
return true;
TRACE(arith, tout << "factor (" << other_ci << ") " << other_p << " -> j" << x << "^" << g.degree << " * "
<< g.p << " + " << g.q << "\n");
for (unsigned i = 0; i < g.degree; ++i)
g.p *= to_pdd(x);
auto [m2, g_p] = g.p.var_factors();
unsigned_vector m1m2;
auto m1(_m1);
auto f_p(_f_p);
dd::pdd::merge(m1, m2, m1m2);
SASSERT(m1m2.contains(x));
f_p = f_p.mul(m1);
g_p = g_p.mul(m2);
#if 0
if (!has_term_offset(f_p))
return true;
if (!has_term_offset(g_p))
return true;
#endif
TRACE(arith, tout << "m1 " << m1 << " m2 " << m2 << " m1m2: " << m1m2 << "\n");
auto sign_f = value(f_p) < 0;
SASSERT(value(f_p) != 0);
// m1m2 * f_p + f.q >= 0
// m1m2 * g_p + g.q >= 0
//
lp::constraint_index ci_a, ci_b;
auto aj = assumption_justification();
bool g_strict = other_k == lp::lconstraint_kind::GT;
bool f_strict = k == lp::lconstraint_kind::LT;
if (g_p.is_val())
ci_a = multiply(ci, pddm.mk_val(g_p.val()));
else if (!sign_f)
ci_a =
multiply(ci, add_constraint(g_p, f_strict ? lp::lconstraint_kind::LT : lp::lconstraint_kind::LE, aj));
else
ci_a =
multiply(ci, add_constraint(g_p, f_strict ? lp::lconstraint_kind::GT : lp::lconstraint_kind::GE, aj));
if (f_p.is_val())
ci_b = multiply(other_ci, pddm.mk_val(f_p.val()));
else if (sign_f)
ci_b = multiply(other_ci,
add_constraint(f_p, g_strict ? lp::lconstraint_kind::LT : lp::lconstraint_kind::LE, aj));
else
ci_b = multiply(other_ci,
add_constraint(f_p, g_strict ? lp::lconstraint_kind::GT : lp::lconstraint_kind::GE, aj));
auto new_ci = add(ci_a, ci_b);
CTRACE(arith, !is_new_constraint(new_ci), display_constraint(tout << "not new ", new_ci) << "\n");
if (!is_new_constraint(new_ci))
return true;
if (m_constraints[new_ci].p.degree() <= 3)
init_occurs(new_ci);
TRACE(arith, tout << "eliminate j" << x << ":\n";
display_constraint(tout << "ci: ", ci) << "\n";
display_constraint(tout << "other_ci: ", other_ci) << "\n";
display_constraint(tout << "ci_a: ", ci_a) << "\n";
display_constraint(tout << "ci_b: ", ci_b) << "\n";
display_constraint(tout << "new_ci: ", new_ci) << "\n");
if (conflict(new_ci))
return false;
uint_set new_tabu(m_tabu[ci]);
new_tabu.insert(x);
add_active(new_ci, new_tabu);
return factor(new_ci) != l_false;
}
bool stellensatz::conflict(lp::constraint_index ci) {
auto const &[new_p, new_k, new_j] = m_constraints[ci];
if (new_p.is_val() && ((new_p.val() < 0 && new_k == lp::lconstraint_kind::GE) || (new_p.val() <= 0 && new_k == lp::lconstraint_kind::GT))) {
m_core.reset();
m_core.push_back(ci);
return true;
}
return false;
}
void stellensatz::conflict(svector<lp::constraint_index> const& core) {
lp::explanation ex;
lemma_builder new_lemma(c(), "stellensatz");
m_constraints_in_conflict.reset();
for (auto ci : core)
explain_constraint(new_lemma, ci, ex);
new_lemma &= ex;
IF_VERBOSE(2, verbose_stream() << "stellensatz unsat \n" << new_lemma << "\n");
TRACE(arith, tout << "unsat\n" << new_lemma << "\n");
c().lra_solver().settings().stats().m_nla_stellensatz++;
}
lbool stellensatz::model_repair() {
for (lp::constraint_index ci = 0; ci < m_constraints.size(); ++ci)
m_active.insert(ci);
svector<lpvar> vars;
for (unsigned v = 0; v < m_values.size(); ++v)
vars.push_back(v);
random_gen rand(c().random());
shuffle(vars.size(), vars.begin(), rand);
for (auto v : vars)
if (!model_repair(v))
return l_false;
return l_undef;
}
bool stellensatz::model_repair(lp::lpvar v) {
auto bounds = find_bounds(v);
auto const &[lo, inf, infs] = bounds.first;
auto const &[hi, sup, sups] = bounds.second;
auto has_false = any_of(infs, [&](lp::constraint_index ci) { return !constraint_is_true(ci); }) ||
any_of(sups, [&](lp::constraint_index ci) { return !constraint_is_true(ci); });
TRACE(arith, tout << "j" << v << " " << infs.size() << " " << sups.size() << "\n");
if (!has_false)
return true;
SASSERT(!infs.empty() || !sups.empty());
if (infs.empty()) {
SASSERT(!sups.empty());
// repair v by setting it below sup
auto f = factor(v, sup);
m_values[v] = floor(-value(f.q) / value(f.p));
return true;
}
if (sups.empty()) {
SASSERT(!infs.empty());
// repair v by setting it above inf
auto f = factor(v, inf);
m_values[v] = ceil(-value(f.q) / value(f.p));
return true;
}
if (lo <= hi && (!is_int(v) || ceil(lo) <= floor(hi))) {
// repair v by setting it between lo and hi assuming it is integral when v is integer
m_values[v] = is_int(v) ? ceil(lo) : lo;
return true;
}
// lo > hi - pick a side and assume inf or sup and enforce order between sup and inf.
// maybe just add constraints that are false and skip the rest?
// remove sups and infs from active because we computed resolvents
if (infs.size() < sups.size()) {
auto f = factor(v, inf);
SASSERT(f.degree == 1);
auto p_value = value(f.p);
f.p *= pddm.mk_var(v);
auto [m, f_p] = f.p.var_factors();
for (auto s : sups)
if (!resolve_variable(v, inf, s, p_value, f, m, f_p))
return false;
for (auto i : infs)
if (!assume_ge(v, i, inf))
return false;
}
else {
auto f = factor(v, sup);
SASSERT(f.degree == 1);
auto p_value = value(f.p);
f.p *= pddm.mk_var(v);
auto [m, f_p] = f.p.var_factors();
for (auto i : infs)
if (!resolve_variable(v, sup, i, p_value, f, m, f_p))
return false;
for (auto s : sups)
if (!assume_ge(v, sup, s))
return false;
}
for (auto ci : infs)
if (m_active.contains(ci))
m_active.remove(ci);
for (auto ci : sups)
if (m_active.contains(ci))
m_active.remove(ci);
return true;
}
// lo <= hi
bool stellensatz::assume_ge(lpvar v, lp::constraint_index lo, lp::constraint_index hi) {
if (lo == hi)
return true;
auto const &[plo, klo, jlo] = m_constraints[lo];
auto const &[phi, khi, jhi] = m_constraints[hi];
auto f = factor(v, lo);
auto g = factor(v, hi);
SASSERT(f.degree == 1);
SASSERT(g.degree == 1);
auto fp_value = value(f.p);
auto gp_value = value(g.p);
SASSERT(fp_value != 0);
SASSERT(gp_value != 0);
SASSERT((fp_value > 0) == (gp_value > 0));
//
// f.p x + f.q >= 0 <=> f.p x >= - f.q <=> x <= - f.q / f.p
// - f.q / f.p <= - g.q / g.p
// f.p x + f.q >= 0
// <=>
// x >= - f.q / f.p
//
// - f.q / f.p <= - g.q / g.p
// <=>
// f.q / f.p >= g.q / g.p
// <=>
// f.q * g.p >= g.q * f.p
//
auto r = (f.q * g.p) - (g.q * f.p);
SASSERT(value(r) >= 0);
auto new_ci = assume(r, join(klo, khi));
m_active.insert(new_ci);
return factor(new_ci) != l_false;
}
std::pair<stellensatz::bound_info, stellensatz::bound_info> stellensatz::find_bounds(lpvar v) {
std::pair<bound_info, bound_info> result;
auto &[lo, inf, infs] = result.first;
auto &[hi, sup, sups] = result.second;
for (auto ci : m_occurs[v]) {
if (!m_active.contains(ci))
continue;
auto f = factor(v, ci);
auto p_value = value(f.p);
auto q_value = value(f.q);
if (p_value == 0) // it is vanishing
continue;
if (f.degree > 1)
continue;
SASSERT(f.degree == 1);
auto quot = -q_value / p_value;
// TODO: ignore strict inequalities for now.
if (p_value < 0) {
// p*x + q >= 0 => x <= -q / p if p < 0
if (sups.empty() || hi > quot) {
hi = quot;
sup = ci;
}
sups.push_back(ci);
}
else {
// p*x + q >= 0 => x >= -q / p if p > 0
if (infs.empty() || lo < quot) {
lo = quot;
inf = ci;
}
infs.push_back(ci);
}
}
return result;
}
bool stellensatz::vanishing(lpvar x, factorization const &f, lp::constraint_index ci) {
if (f.p.is_zero())
return false;
auto p_value = value(f.p);
if (p_value != 0)
return false;
// add p = 0 as assumption and reduce to q.
auto p_is_0 = assume(f.p, lp::lconstraint_kind::EQ);
// ci & -p_is_0*x^f.degree => new_ci
dd::pdd r = pddm.mk_val(rational(-1));
for (unsigned i = 0; i < f.degree; ++i)
r = r * pddm.mk_var(x);
p_is_0 = multiply(p_is_0, r);
auto new_ci = add(ci, p_is_0);
TRACE(arith, display_constraint(tout << "reduced", new_ci) << "\n");
if (!is_new_constraint(new_ci))
return false;
init_occurs(new_ci);
uint_set new_tabu(m_tabu[ci]);
new_tabu.insert(x);
add_active(new_ci, new_tabu);
return true;
}
lbool stellensatz::factor(lp::constraint_index ci) {
auto const &[p, k, j] = m_constraints[ci];
auto [vars, q] = p.var_factors(); // p = vars * q
auto add_new = [&](lp::constraint_index new_ci) {
TRACE(arith, display_constraint(tout << "factor ", new_ci) << "\n");
if (conflict(new_ci))
return l_false;
init_occurs(new_ci);
auto new_tabu(m_tabu[ci]);
add_active(new_ci, new_tabu);
return l_true;
};
TRACE(arith, tout << "factor (" << ci << ") " << p << " q: " << q << " vars: " << vars << "\n");
if (vars.empty())
return l_undef;
for (auto v : vars) {
if (value(v) == 0)
return l_undef;
}
vector<dd::pdd> muls;
muls.push_back(q);
for (auto v : vars)
muls.push_back(muls.back() * pddm.mk_var(v));
auto new_ci = ci;
SASSERT(muls.back() == p);
for (unsigned i = vars.size(); i-- > 0;) {
auto pv = pddm.mk_var(vars[i]);
auto k = value(vars[i]) > 0 ? lp::lconstraint_kind::GT : lp::lconstraint_kind::LT;
new_ci = divide(new_ci, assume(pv, k), muls[i]);
}
if (m_active.contains(ci))
m_active.remove(ci);
return add_new(new_ci);
}
bool stellensatz::is_new_constraint(lp::constraint_index ci) const {
return ci == m_constraints.size() - 1;
}
lp::lpvar stellensatz::select_variable_to_eliminate(lp::constraint_index ci) {
auto const& [p, k, j] = m_constraints[ci];
lpvar best_var = lp::null_lpvar;
for (auto v : p.free_vars())
if (best_var > v)
best_var = v;
return best_var;
}
unsigned stellensatz::degree_of_var_in_constraint(lpvar var, lp::constraint_index ci) const {
return m_constraints[ci].p.degree(var);
}
stellensatz::factorization stellensatz::factor(lpvar v, lp::constraint_index ci) {
auto const& [p, k, j] = m_constraints[ci];
auto degree = degree_of_var_in_constraint(v, ci);
dd::pdd lc(pddm), rest(pddm);
p.factor(v, degree, lc, rest);
return {degree, lc, rest};
}
//
// check if core depends on an assumption
// identify the maximal assumption
// undo m_constraints down to max_ci.
// negate max_ci
// propagate it using remaining external and assumptions.
// find a new satisfying assignment (if any) before continuing.
//
bool stellensatz::backtrack(svector<lp::constraint_index> const &core) {
m_constraints_in_conflict.reset();
svector<lp::constraint_index> external, assumptions;
for (auto ci : core)
explain_constraint(ci, external, assumptions);
if (assumptions.empty())
return false;
lp::constraint_index max_ci = 0;
for (auto ci : assumptions)
max_ci = std::max(ci, max_ci);
TRACE(arith, tout << "max " << max_ci << " external " << external << " assumptions " << assumptions << "\n";
display_constraint(tout, max_ci););
// TODO, we can in reality replay all constraints that don't depend on max_ci
vector<constraint> replay;
unsigned i = 0;
for (auto ci : external) {
if (ci > max_ci)
replay.push_back(m_constraints[ci]);
else
external[i++] = ci;
}
external.shrink(i);
auto [p, k, j] = m_constraints[max_ci];
while (m_constraints.size() > max_ci) {
auto const& [_p, _k, _j] = m_constraints.back();
m_constraint_index.erase({_p.index(), _k});
m_constraints.pop_back();
auto ci = m_constraints.size();
if (!m_occurs_trail.empty() && m_occurs_trail.back() == ci) {
remove_occurs(ci);
m_occurs_trail.pop_back();
}
}
for (auto const &[_p, _k, _j] : replay) {
auto ci = add_constraint(_p, _k, _j);
init_occurs(ci);
external.push_back(ci);
}
assumptions.erase(max_ci);
external.append(assumptions);
propagation_justification prop{external};
auto new_ci = add_constraint(p, negate(k), prop);
TRACE(arith, display_constraint(tout << "backtrack ", new_ci) << "\n");
init_occurs(new_ci);
return true;
}
void stellensatz::explain_constraint(lp::constraint_index ci, svector<lp::constraint_index> &external,
svector<lp::constraint_index> &assumptions) {
if (m_constraints_in_conflict.contains(ci))
return;
m_constraints_in_conflict.insert(ci);
auto &[p, k, b] = m_constraints[ci];
if (std::holds_alternative<external_justification>(b)) {
external.push_back(ci);
}
else if (std::holds_alternative<multiplication_justification>(b)) {
auto &m = std::get<multiplication_justification>(b);
explain_constraint(m.left, external, assumptions);
explain_constraint(m.right, external, assumptions);
}
else if (std::holds_alternative<eq_justification>(b)) {
auto &m = std::get<eq_justification>(b);
explain_constraint(m.left, external, assumptions);
explain_constraint(m.right, external, assumptions);
}
else if (std::holds_alternative<division_justification>(b)) {
auto &m = std::get<division_justification>(b);
explain_constraint(m.ci, external, assumptions);
explain_constraint(m.divisor, external, assumptions);
}
else if (std::holds_alternative<substitute_justification>(b)) {
auto &m = std::get<substitute_justification>(b);
explain_constraint(m.ci, external, assumptions);
explain_constraint(m.ci_eq, external, assumptions);
}
else if (std::holds_alternative<propagation_justification>(b)) {
auto &m = std::get<propagation_justification>(b);
for (auto c : m.cs)
explain_constraint(c, external, assumptions);
}
else if (std::holds_alternative<addition_justification>(b)) {
auto &m = std::get<addition_justification>(b);
explain_constraint(m.left, external, assumptions);
explain_constraint(m.right, external, assumptions);
}
else if (std::holds_alternative<multiplication_poly_justification>(b)) {
auto &m = std::get<multiplication_poly_justification>(b);
explain_constraint(m.ci, external, assumptions);
}
else if (std::holds_alternative<assumption_justification>(b)) {
assumptions.push_back(ci);
}
else if (std::holds_alternative<gcd_justification>(b)) {
auto &m = std::get<gcd_justification>(b);
explain_constraint(m.ci, external, assumptions);
}
else
UNREACHABLE();
}
//
// a constraint can be explained by a set of bounds used as justifications
// and by an original constraint.
//
void stellensatz::explain_constraint(lemma_builder &new_lemma, lp::constraint_index ci, lp::explanation &ex) {
svector<lp::constraint_index> external, assumptions;
explain_constraint(ci, external, assumptions);
for (auto ci : external) {
auto &[p, k, b] = m_constraints[ci];
auto dep = std::get<external_justification>(b);
c().lra_solver().push_explanation(dep.dep, ex);
}
for (auto ci : assumptions) {
auto &[p, k, b] = m_constraints[ci];
auto [t, coeff] = to_term_offset(p);
new_lemma |= ineq(t, negate(k), -coeff);
}
}
rational stellensatz::value(dd::pdd const& p) const {
dd::pdd_eval eval;
eval.var2val() = [&](unsigned v) -> rational { return value(v); };
return eval(p);
}
lp::constraint_index stellensatz::gcd_normalize(lp::constraint_index ci) {
auto [p, k, j] = m_constraints[ci];
rational g(0);
bool _is_int = is_int(p);
for (auto const& [c, is_constant] : p.coefficients())
if (!is_constant || !_is_int)
g = gcd(g, c);
if (g == 0 || g == 1)
return ci;
switch (k) {
case lp::lconstraint_kind::GE: {
auto q = p * (1/ g);
q += (ceil(q.offset()) - q.offset());
return add_constraint(q, k, gcd_justification(ci));
}
case lp::lconstraint_kind::GT: {
auto q = p;
if (_is_int) {
q += rational(1);
k = lp::lconstraint_kind::GE;
}
q *= (1 / g);
q += (ceil(q.offset()) - q.offset());
return add_constraint(q, k, gcd_justification(ci));
}
case lp::lconstraint_kind::LT:
case lp::lconstraint_kind::LE:
UNREACHABLE();
case lp::lconstraint_kind::EQ:
case lp::lconstraint_kind::NE:
if (!divides(g, p.offset()))
return ci;
return add_constraint(p * (1/g), k, gcd_justification(ci));
default:
UNREACHABLE();
return ci;
}
}
lp::constraint_index stellensatz::assume(dd::pdd const& p, lp::lconstraint_kind k) {
if (k == lp::lconstraint_kind::EQ) {
auto left = assume(p, lp::lconstraint_kind::GE);
auto right = assume(-p, lp::lconstraint_kind::GE);
return add_constraint(p, k, eq_justification{left, right});
}
u_dependency *d = nullptr;
auto has_bound = [&](rational a, lpvar x, rational b) {
rational bound;
bool is_strict = false;
if (a == 1 && k == lp::lconstraint_kind::GE && c().lra_solver().has_lower_bound(x, d, bound, is_strict) &&
bound >= -b) {
return true;
}
if (a == 1 && k == lp::lconstraint_kind::GT && c().lra_solver().has_lower_bound(x, d, bound, is_strict) &&
(bound > -b || (is_strict && bound >= -b))) {
return true;
}
if (a == -1 && k == lp::lconstraint_kind::GE && c().lra_solver().has_upper_bound(x, d, bound, is_strict) &&
bound <= -b) {
return true;
}
if (a == -1 && k == lp::lconstraint_kind::GT && c().lra_solver().has_upper_bound(x, d, bound, is_strict) &&
(bound < -b || (is_strict && bound <= -b))) {
return true;
}
return false;
};
if (p.is_unilinear() && has_bound(p.hi().val(), p.var(), p.lo().val()))
// ax + b ~k~ 0
return add_constraint(p, k, external_justification(d));
return add_constraint(p, k, assumption_justification());
}
// p1 >= lo1, p2 >= lo2 => p1 + p2 >= lo1 + lo2
lp::constraint_index stellensatz::add(lp::constraint_index left, lp::constraint_index right) {
auto const &[p, k1, j1] = m_constraints[left];
auto const &[q, k2, j2] = m_constraints[right];
lp::lconstraint_kind k = join(k1, k2);
return gcd_normalize(add_constraint(p + q, k, addition_justification{left, right}));
}
// p >= 0 => a * p >= 0 if a > 0,
// p = 0 => p * q = 0 no matter what q
lp::constraint_index stellensatz::multiply(lp::constraint_index ci, dd::pdd q) {
auto const& [p, k, j] = m_constraints[ci];
auto k1 = k;
if (q.is_val() && q.val() < 0)
k1 = swap_side(k1);
SASSERT(q.is_val() || k1 == lp::lconstraint_kind::EQ);
return add_constraint(p * q, k1, multiplication_poly_justification{ci, q});
}
lp::constraint_index stellensatz::multiply(lp::constraint_index left, lp::constraint_index right) {
auto const &[p, k1, j1] = m_constraints[left];
auto const &[q, k2, j2] = m_constraints[right];
lp::lconstraint_kind k = meet(k1, k2);
return add_constraint(p*q, k, multiplication_justification{left, right});
}
// p k 0, d > 0 -> p/d k 0, where q := d / d
// q is the quotient obtained by dividing the divisor constraint, which is of the form d - 1 >= 0 or d > 0
lp::constraint_index stellensatz::divide(lp::constraint_index ci, lp::constraint_index divisor, dd::pdd q) {
auto const &[p, k, j] = m_constraints[ci];
return add_constraint(q, k, division_justification{ci, divisor});
}
lp::constraint_index stellensatz::substitute(lp::constraint_index ci, lp::constraint_index ci_eq, lpvar v,
dd::pdd p) {
auto const &[p1, k1, j1] = m_constraints[ci];
auto const &[p2, k2, j2] = m_constraints[ci_eq];
SASSERT(k2 == lp::lconstraint_kind::EQ);
auto q = p1.subst_pdd(v, p);
return add_constraint(q, k1, substitute_justification{ci, ci_eq, v, p});
}
void stellensatz::init_occurs() {
m_occurs.reset();
m_occurs.reserve(c().lra_solver().number_of_vars());
for (lp::constraint_index ci = 0; ci < m_constraints.size(); ++ci)
init_occurs(ci);
}
void stellensatz::init_occurs(lp::constraint_index ci) {
if (ci == lp::null_ci)
return;
m_occurs_trail.push_back(ci);
auto const &con = m_constraints[ci];
for (auto v : con.p.free_vars())
m_occurs[v].push_back(ci);
}
void stellensatz::remove_occurs(lp::constraint_index ci) {
auto const &con = m_constraints[ci];
for (auto v : con.p.free_vars())
m_occurs[v].pop_back();
}
bool stellensatz::is_int(svector<lp::lpvar> const& vars) const {
return all_of(vars, [&](lpvar v) { return c().lra_solver().var_is_int(v); });
}
bool stellensatz::is_int(dd::pdd const &p) const {
return is_int(p.free_vars());
}
bool stellensatz::constraint_is_true(lp::constraint_index ci) const {
auto const& [p, k, j] = m_constraints[ci];
auto lhs = value(p);
switch (k) {
case lp::lconstraint_kind::GT: return lhs > 0;
case lp::lconstraint_kind::GE: return lhs >= 0;
case lp::lconstraint_kind::LE: return lhs <= 0;
case lp::lconstraint_kind::LT: return lhs < 0;
case lp::lconstraint_kind::EQ: return lhs == 0;
case lp::lconstraint_kind::NE: return lhs != 0;
default: UNREACHABLE(); return false;
}
}
std::ostream& stellensatz::display(std::ostream& out) const {
#if 0
// m_solver.lra().display(out);
for (auto const& [vars, v] : m_vars2mon) {
out << "j" << v << " := ";
display_product(out, vars);
out << "\n";
}
#endif
for (unsigned ci = 0; ci < m_constraints.size(); ++ci) {
out << "(" << ci << ") ";
display_constraint(out, ci);
bool is_true = constraint_is_true(ci);
out << (is_true ? " [true]" : " [false]") << "\n";
out << "\t<- ";
display(out, m_constraints[ci].j);
out << "\n";
}
return out;
}
std::ostream& stellensatz::display_product(std::ostream& out, svector<lpvar> const& vars) const {
bool first = true;
for (auto v : vars) {
if (first)
first = false;
else
out << " * ";
out << "j" << v;
}
return out;
}
std::ostream& stellensatz::display(std::ostream& out, term_offset const& t) const {
bool first = true;
for (auto [v, coeff] : t.first) {
c().display_coeff(out, first, coeff);
first = false;
out << pp_j(*this, v);
}
if (t.second != 0)
out << " + " << t.second;
return out;
}
std::ostream& stellensatz::display_var(std::ostream& out, lpvar j) const {
if (c().is_monic_var(j))
return display_product(out, c().emon(j).vars());
else
return out << "j" << j;
}
std::ostream& stellensatz::display_constraint(std::ostream& out, lp::constraint_index ci) const {
return display_constraint(out, m_constraints[ci]);
}
std::ostream& stellensatz::display_constraint(std::ostream& out, constraint const &c) const {
auto const &[p, k, j] = c;
p.display(out);
return out << " " << k << " 0";
}
std::ostream &stellensatz::display(std::ostream &out, justification const &j) const {
if (std::holds_alternative<external_justification>(j)) {
auto dep = std::get<external_justification>(j).dep;
unsigned_vector cs;
c().lra_solver().dep_manager().linearize(dep, cs);
for (auto c : cs)
out << "[o " << c << "] "; // constraint index from c().lra_solver.
}
else if (std::holds_alternative<addition_justification>(j)) {
auto m = std::get<addition_justification>(j);
out << "(" << m.left << ") + (" << m.right << ")";
}
else if (std::holds_alternative<eq_justification>(j)) {
auto &m = std::get<eq_justification>(j);
out << "(" << m.left << ") & (" << m.right << ")";
}
else if (std::holds_alternative<substitute_justification>(j)) {
auto m = std::get<substitute_justification>(j);
out << "(" << m.ci << ") (" << m.ci_eq << ") by j" << m.v << " := " << m.p;
}
else if (std::holds_alternative<propagation_justification>(j)) {
auto &m = std::get<propagation_justification>(j);
out << "propagate ";
for (auto c : m.cs)
out << "(" << c << ") ";
}
else if (std::holds_alternative<multiplication_justification>(j)) {
auto m = std::get<multiplication_justification>(j);
out << "(" << m.left << ") * (" << m.right << ")";
}
else if (std::holds_alternative<multiplication_poly_justification>(j)) {
auto m = std::get<multiplication_poly_justification>(j);
out << m.p << " * (" << m.ci << ")";
}
else if (std::holds_alternative<division_justification>(j)) {
auto &m = std::get<division_justification>(j);
out << "(" << m.ci << ") / (" << m.divisor << ")";
}
else if (std::holds_alternative<assumption_justification>(j)) {
out << "assumption";
}
else if (std::holds_alternative<gcd_justification>(j)) {
auto m = std::get<gcd_justification>(j);
out << " gcd (" << m.ci << ")";
}
else
UNREACHABLE();
return out;
}
std::ostream &stellensatz::display_lemma(std::ostream &out, lp::explanation const &ex) {
m_constraints_in_conflict.reset();
svector<lp::constraint_index> todo;
for (auto c : ex)
todo.push_back(c.ci());
for (unsigned i = 0; i < todo.size(); ++i) {
auto ci = todo[i];
if (m_constraints_in_conflict.contains(ci))
continue;
m_constraints_in_conflict.insert(ci);
out << "(" << ci << ") ";
display_constraint(out, ci) << " ";
auto const& j = m_constraints[ci].j;
display(out, j) << "\n";
if (std::holds_alternative<multiplication_justification>(j)) {
auto m = std::get<multiplication_justification>(j);
todo.push_back(m.left);
todo.push_back(m.right);
}
if (std::holds_alternative<eq_justification>(j)) {
auto m = std::get<eq_justification>(j);
todo.push_back(m.left);
todo.push_back(m.right);
}
if (std::holds_alternative<propagation_justification>(j)) {
auto m = std::get<propagation_justification>(j);
todo.append(m.cs);
}
else if (std::holds_alternative<substitute_justification>(j)) {
auto m = std::get<substitute_justification>(j);
todo.push_back(m.ci);
todo.push_back(m.ci_eq);
}
else if (std::holds_alternative<division_justification>(j)) {
auto m = std::get<division_justification>(j);
todo.push_back(m.ci);
todo.push_back(m.divisor);
}
else if (std::holds_alternative<addition_justification>(j)) {
auto m = std::get<addition_justification>(j);
todo.push_back(m.left);
todo.push_back(m.right);
}
else if (std::holds_alternative<multiplication_poly_justification>(j)) {
auto m = std::get<multiplication_poly_justification>(j);
todo.push_back(m.ci);
}
else if (std::holds_alternative<external_justification>(j)) {
// do nothing
}
else if (std::holds_alternative<assumption_justification>(j)) {
// do nothing
}
else if (std::holds_alternative<gcd_justification>(j)) {
auto m = std::get<gcd_justification>(j);
todo.push_back(m.ci);
}
else
NOT_IMPLEMENTED_YET();
}
return out;
}
// Solver component
// check LRA feasibilty
// (partial) check LIA feasibility
// try patch LIA model
// option: iterate by continuing saturation based on partial results
// option: add incremental linearization axioms
// option: detect squares and add axioms for violated squares
// option: add NIA filters (non-linear divisbility axioms)
void stellensatz::solver::init() {
lra_solver = alloc(lp::lar_solver);
int_solver = alloc(lp::int_solver, *lra_solver);
m_ex.clear();
m_internal2external_constraints.reset();
m_monomial_factory.reset();
auto &src = s.c().lra_solver();
auto &dst = *lra_solver;
for (unsigned v = 0; v < src.number_of_vars(); ++v)
dst.add_var(v, src.var_is_int(v));
for (lp::constraint_index ci = 0; ci < s.m_constraints.size(); ++ci) {
auto const &[p, k, j] = s.m_constraints[ci];
auto [t, offset] = to_term_offset(p);
auto coeffs = t.coeffs_as_vector();
if (coeffs.empty())
continue;
SASSERT(!coeffs.empty());
auto ti = dst.add_term(coeffs, dst.number_of_vars());
auto new_ci = dst.add_var_bound(ti, k, -offset);
m_internal2external_constraints.setx(new_ci, ci, ci);
}
}
stellensatz::term_offset stellensatz::solver::to_term_offset(dd::pdd const &p) {
term_offset to;
for (auto const &[coeff, vars] : p) {
if (vars.empty())
to.second += coeff;
else
to.first.add_monomial(coeff, m_monomial_factory.mk_monomial(*lra_solver, vars));
}
return to;
}
lbool stellensatz::solver::solve(svector<lp::constraint_index>& core) {
init();
lbool r = solve_lra();
if (r == l_true)
r = solve_lia();
if (r == l_false) {
core.reset();
for (auto p : m_ex)
core.push_back(m_internal2external_constraints[p.ci()]);
return l_false;
}
return r;
}
lbool stellensatz::solver::solve_lra() {
auto status = lra_solver->find_feasible_solution();;
if (lra_solver->is_feasible())
return l_true;
if (status == lp::lp_status::INFEASIBLE) {
lra_solver->get_infeasibility_explanation(m_ex);
return l_false;
}
return l_undef;
}
lbool stellensatz::solver::solve_lia() {
switch (int_solver->check(&m_ex)) {
case lp::lia_move::sat:
return l_true;
case lp::lia_move::conflict:
return l_false;
default: // TODO: an option is to perform (bounded) search here to get an LIA verdict.
return l_undef;
}
return l_undef;
}
// update values using the model
void stellensatz::solver::update_values(vector<rational>& values) {
std::unordered_map<lpvar, rational> _values;
lra_solver->get_model(_values);
unsigned sz = values.size();
for (unsigned i = 0; i < sz; ++i)
values[i] = _values[i];
}
}