mirror of
https://github.com/Z3Prover/z3
synced 2025-05-10 09:15:47 +00:00
147 lines
5.2 KiB
C++
147 lines
5.2 KiB
C++
/*++
|
|
Copyright (c) 2021 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Polysat variable elimination
|
|
|
|
Author:
|
|
|
|
Nikolaj Bjorner (nbjorner) 2021-03-19
|
|
Jakob Rath 2021-04-06
|
|
|
|
--*/
|
|
#include "math/polysat/variable_elimination.h"
|
|
#include "math/polysat/conflict.h"
|
|
#include "math/polysat/clause_builder.h"
|
|
#include "math/polysat/solver.h"
|
|
#include <algorithm>
|
|
|
|
namespace polysat {
|
|
|
|
void free_variable_elimination::find_lemma(conflict& core) {
|
|
LOG_H1("Free Variable Elimination");
|
|
LOG("core: " << core);
|
|
LOG("Free variables: " << s.m_free_pvars);
|
|
for (pvar v : core.vars_occurring_in_constraints())
|
|
if (!s.is_assigned(v)) // TODO: too restrictive. should also consider variables that will be unassigned only after backjumping (can update this after assignment handling in search state is refactored.)
|
|
find_lemma(v, core);
|
|
}
|
|
|
|
void free_variable_elimination::find_lemma(pvar v, conflict& core) {
|
|
LOG_H2("Free Variable Elimination for v" << v);
|
|
// find constraint that allows computing v from other variables
|
|
// (currently, consider only equations that contain v with degree 1)
|
|
for (signed_constraint c : core) {
|
|
if (!c.is_eq())
|
|
continue;
|
|
if (c.eq().degree(v) != 1)
|
|
continue;
|
|
find_lemma(v, c, core);
|
|
}
|
|
}
|
|
|
|
void free_variable_elimination::find_lemma(pvar v, signed_constraint c, conflict& core) {
|
|
LOG_H3("Free Variable Elimination for v" << v << " using equation " << c);
|
|
pdd const& p = c.eq();
|
|
SASSERT_EQ(p.degree(v), 1);
|
|
auto& m = p.manager();
|
|
pdd lc = m.zero();
|
|
pdd rest = m.zero();
|
|
p.factor(v, 1, lc, rest);
|
|
if (rest.is_val())
|
|
return;
|
|
// lc * v + rest == p == 0
|
|
// v == -1 * rest * lc^-1
|
|
|
|
SASSERT(!lc.free_vars().contains(v));
|
|
SASSERT(!rest.free_vars().contains(v));
|
|
|
|
LOG("lc: " << lc);
|
|
LOG("rest: " << rest);
|
|
|
|
substitution sub(m);
|
|
pdd const lcs = eval(lc, core, sub);
|
|
LOG("lcs: " << lcs);
|
|
pdd lci = m.zero();
|
|
if (!inv(lcs, lci))
|
|
return;
|
|
|
|
pdd const rs = sub.apply_to(rest);
|
|
pdd const vs = -rs * lci; // this is the polynomial that computes v
|
|
LOG("vs: " << vs);
|
|
SASSERT(!vs.free_vars().contains(v));
|
|
|
|
// Find another constraint where we want to substitute v
|
|
for (signed_constraint c_target : core) {
|
|
if (c == c_target)
|
|
continue;
|
|
if (c_target.vars().size() <= 1)
|
|
continue;
|
|
if (!c_target.contains_var(v))
|
|
continue;
|
|
|
|
// TODO: helper method constraint::subst(pvar v, pdd const& p)
|
|
// (or rather, add it on constraint_manager since we need to allocate/dedup the new constraint)
|
|
// For now, just restrict to ule_constraint.
|
|
if (!c_target->is_ule())
|
|
continue;
|
|
// TODO: maybe apply assignment a here as well
|
|
pdd const lhs = c_target->to_ule().lhs().subst_pdd(v, vs);
|
|
pdd const rhs = c_target->to_ule().rhs().subst_pdd(v, vs);
|
|
signed_constraint c_new = s.ule(lhs, rhs);
|
|
if (c_target.is_negative())
|
|
c_new.negate();
|
|
LOG("c_target: " << lit_pp(s, c_target));
|
|
LOG("c_new: " << lit_pp(s, c_new));
|
|
|
|
// New constraint is already true (maybe we already derived it previously?)
|
|
// TODO: It might make sense to keep different derivations of the same constraint.
|
|
// E.g., if the new clause could derive c_new at a lower decision level.
|
|
if (c_new.bvalue(s) == l_true)
|
|
continue;
|
|
|
|
clause_builder cb(s);
|
|
for (auto [w, wv] : sub)
|
|
cb.insert(~s.eq(s.var(w), wv));
|
|
cb.insert(~c);
|
|
cb.insert(~c_target);
|
|
cb.insert(c_new);
|
|
core.add_lemma("variable elimination", cb.build());
|
|
}
|
|
}
|
|
|
|
// Evaluate p under assignments in the core.
|
|
pdd free_variable_elimination::eval(pdd const& p, conflict& core, substitution& out_sub) {
|
|
// TODO: this should probably be a helper method on conflict.
|
|
// TODO: recognize constraints of the form "v1 == 27" to be used in the assignment?
|
|
// (but maybe useful evaluations are always part of core.vars() anyway?)
|
|
|
|
substitution& sub = out_sub;
|
|
SASSERT(sub.empty());
|
|
|
|
for (auto v : p.free_vars())
|
|
if (core.contains_pvar(v))
|
|
sub.add(v, s.get_value(v));
|
|
|
|
pdd q = sub.apply_to(p);
|
|
|
|
// TODO: like in the old conflict::minimize_vars, we can now try to remove unnecessary variables from a.
|
|
|
|
return q;
|
|
}
|
|
|
|
// Compute the multiplicative inverse of p.
|
|
bool free_variable_elimination::inv(pdd const& p, pdd& out_p_inv) {
|
|
// TODO: in the non-val case, we could introduce an additional variable to represent the inverse
|
|
// (and a constraint p * p_inv == 1)
|
|
if (!p.is_val())
|
|
return false;
|
|
rational iv;
|
|
if (!p.val().mult_inverse(p.power_of_2(), iv))
|
|
return false;
|
|
out_p_inv = p.manager().mk_val(iv);
|
|
return true;
|
|
}
|
|
|
|
}
|